Changes in proBDNF and Mature BDNF Levels After Medium-Intensity Functional Motor Rehabilitation Program in Patients with Parkinson’s Disease
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Subjects
- –
- Diagnosis of Parkinson’s disease based on the United Kingdom Parkinson’s Disease Society Brain Bank criteria stage three of the disease according to the Hoehn and Yahr scale [54];
- –
- Mini-Mental State Examination (MMSE) score of ≥24 [55];
- –
- Beck Depression Inventory (BDI) score < 10, indicating no depression [56];
- –
- No coexisting neurodegenerative diseases;
- –
- A minimum treatment period of 2 years;
- –
- No contraindications for physical exercise.
- –
- Parkinsonian syndromes other than idiopathic PD;
- –
- Concomitant neurodegenerative diseases;
- –
- Concomitant diseases with reduced exercise tolerance;
- –
- Absence of approval to participate in the study;
- –
- Earlier participation in physical rehabilitation classes.
4.2. Course of the Experiment (Exercises)
4.3. Clinical Assessments (Rating Scales)
4.4. Blood Samples Collection
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bloem, B.R.; Okun, M.S.; Klein, C. Parkinson’s disease. Lancet 2021, 397, 2284–2303. [Google Scholar] [CrossRef] [PubMed]
- Bouça-Machado, R.; Rosário, A.; Caldeira, D.; Castro Caldas, A.; Guerreiro, D.; Venturelli, M.; Tinazzi, M.; Schena, F.; Ferreira, J. Physical Activity, Exercise, and Physiotherapy in Parkinson’s Disease: Defining the Concepts. Mov. Disord. Clin. Pract. 2019, 7, 7–15. [Google Scholar] [CrossRef]
- Gollan, R.; Ernst, M.; Lieker, E.; Caro-Valenzuela, J.; Monsef, I.; Dresen, A.; Roheger, M.; Skoetz, N.; Kalbe, E.; Folkerts, A.K. Effects of Resistance Training on Motor- and Non-Motor Symptoms in Patients with Parkinson’s Disease: A Systematic Review and Meta-Analysis. J. Park. Dis. 2022, 12, 1783–1806. [Google Scholar] [CrossRef] [PubMed]
- Thompson, W.R.; Gordon, N.F.; Pescatello, L.S. ACSM’s Guidelines for Exercise Testing and Prescription, 10th ed.; Lippincott Williams and Wilkins: Philadelphia, PA, USA, 2020. [Google Scholar]
- Schootemeijer, S.; van der Kolk, N.M.; Bloem, B.R.; de Vries, N.M. Current Perspectives on Aerobic Exercise in People with Parkinson’s Disease. Neurotherapeutics. 2020, 17, 1418–1433. [Google Scholar] [CrossRef]
- Peyré-Tartaruga, L.A.; Martinez, F.G.; Zanardi, A.P.J.; Casal, M.Z.; Donida, R.G.; Delabary, M.S.; Passos-Monteiro, E.; Coertjens, M.; Haas, A.N. Samba, deep water, and poles: A framework for exercise prescription in Parkinson’s disease. Sport Sci. Health. 2022, 18, 1119–1127. [Google Scholar] [CrossRef] [PubMed]
- Tiihonen, M.; Westner, B.U.; Butz, M.; Dalal, S.S. Parkinson’s disease patients benefit from bicycling—A systematic review and meta-analysis. NPJ Park. Dis. 2021, 7, 86. [Google Scholar] [CrossRef]
- Harpham, C.; Gunn, H.; Marsden, J.; Connolly, L. The feasibility, safety, physiological and clinical effects of high-intensity interval training for people with Parkinson’s: A systematic review and meta-analysis. Aging Clin. Exp. Res. 2023, 35, 497–523. [Google Scholar] [CrossRef]
- Ernst, M.; Folkerts, A.K.; Gollan, R.; Lieker, E.; Caro-Valenzuela, J.; Adams, A.; Cryns, N.; Monsef, I.; Dresen, A.; Roheger, M.; et al. Physical exercise for people with Parkinson’s disease: A systematic review and network meta-analysis. Cochrane Database Syst. Rev. 2023, 1, CD013856. [Google Scholar] [CrossRef]
- Kaagman, D.G.M.; van Wegen, E.E.H.; Cignetti, N.; Rothermel, E.; Vanbellingen, T.; Hirsch, M.A. Effects and Mechanisms of Exercise on Brain-Derived Neurotrophic Factor (BDNF) Levels and Clinical Outcomes in People with Parkinson’s Disease: A Systematic Review and Meta-Analysis. Brain Sci. 2024, 14, 194. [Google Scholar] [CrossRef]
- da Silva, P.G.; Domingues, D.D.; de Carvalho, L.A.; Allodi, S.; Correa, C.L. Neurotrophic factors in Parkinson’s disease are regulated by exercise: Evidence-based practice. J. Neurol. Sci. 2016, 363, 5–15. [Google Scholar] [CrossRef]
- Li, J.A.; Loevaas, M.B.; Guan, C.; Goh, L.; Allen, N.E.; Mak, M.K.Y.; Lv, J.; Paul, S.S. Does Exercise Attenuate Disease Progression in People With Parkinson’s Disease? A Systematic Review With Meta-Analyses. Neurorehabil. Neural Repair. 2023, 37, 328–352. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Fu, Z.; Le, W. Exercise and Parkinson’s disease. Int. Rev. Neurobiol. 2019, 147, 45–74. [Google Scholar] [CrossRef]
- Li, J.Y.; Liu, J.; Manaph, N.P.A.; Bobrovskaya, L.; Zhou, X.F. ProBDNF inhibits proliferation, migration and differentiation of mouse neural stem cells. Brain Res. 2017, 1668, 46–55. [Google Scholar] [CrossRef]
- Teng, H.K.; Teng, K.K.; Lee, R.; Wright, S.; Tevar, S.; Almeida, R.D.; Kermani, P.; Torkin, R.; Chen, Z.Y.; Lee, F.S.; et al. ProBDNF induces neuronal apoptosis via activation of a receptor complex of p75NTR and sortilin. J. Neurosci. 2005, 25, 5455–5463. [Google Scholar] [CrossRef]
- Petzinger, G.M.; Fisher, B.E.; McEwen, S.; Beeler, J.A.; Walsh, J.P.; Jakowec, M.W. Exercise-enhanced neuroplasticity targeting motor and cognitive circuitry in Parkinson’s disease. Lancet Neurol. 2013, 12, 716–726. [Google Scholar] [CrossRef] [PubMed]
- Belchior, L.D.; Tomaz, B.S.; Abdon, A.P.V.; Frota, N.A.F.; Mont’Alverne, D.G.B.; Gaspar, D.M. Treadmill in Parkinson’s: Influence on gait, balance, BDNF and reduced glutathione. Fisioter. Mov. 2017, 30 (Suppl. S1), 93–100. [Google Scholar] [CrossRef]
- Chung, C.; Huang, P.; Chan, L.; Chen, J.; Chien, L.; Hong, C. Plasma Exosomal Brain-Derived Neurotrophic Factor Correlated with the Postural Instability and Gait Disturbance-Related Motor Symptoms in Patients with Parkinson’s Disease. Diagnostics 2020, 10, 684. [Google Scholar] [CrossRef] [PubMed]
- Palasz, E.; Niewiadomski, W.; Gasiorowska, A.; Mietelska-Porowska, A.; Niewiadomska, G. Neuroplasticity and neuroprotective effect of treadmill training in the chronic mouse model of Parkinson’s disease. Neural Plast. 2019, 2019, 8215017. [Google Scholar] [CrossRef]
- Schmidt-Kassow, M.; Schädle, S.; Otterbein, S.; Thiel, C.; Doehring, A.; Lötsch, J.; Kaiser, J. Kinetics of serum brain-derived neurotrophic factor following low-intensity versus high-intensity exercise in men and women. NeuroReport 2012, 23, 889–893. [Google Scholar] [CrossRef]
- Kurdi, F.N.; Flora, R. The Impact of Physical Exercise on Brain-Derived Neurotrophic Factor (BDNF) Level in Elderly Population. Open Access Maced. J. Med. Sci. 2019, 7, 1618–1620. [Google Scholar] [CrossRef]
- Waterhouse, E.G.; Xu, B. New insights into the role of brain-derived neurotrophic factor in synaptic plasticity. Mol. Cell. Neurosci. 2009, 42, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Hetrick, S.E.; Cuijpers, P.; Qin, B.; Barth, J.; Whittington, C.J.; Cohen, D.; Del Giovane, C.; Liu, Y.; Michael, K.D.; et al. Comparative efficacy and acceptability of psychotherapies for depression in children and adolescents: A systematic review and network meta-analysis. World Psychiatry 2015, 14, 207–222. [Google Scholar] [CrossRef] [PubMed]
- Duman, R.S. Neurotrophic factors and regulation of mood: Role of exercise, diet and metabolism. Neurobiol. Aging. 2005, 26 (Suppl. S1), 88–93. [Google Scholar] [CrossRef] [PubMed]
- Klein, A.B.; Williamson, R.; Santini, M.A.; Clemmensen, C.; Ettrup, A.; Rios, M.; Knudsen, G.M.; Aznar, S. Blood BDNF concentrations reflect brain-tissue BDNF levels across species. Int. J. Neuropsychopharmacol. 2011, 14, 347–353. [Google Scholar] [CrossRef]
- Howells, D.W.; Porritt, M.J.; Wong, J.Y.; Batchelor, P.E.; Kalnins, R.; Hughes, A.J.; Donnan, G.A. Reduced BDNF mRNA expression in the Parkinson’s disease substantia nigra. Exp. Neurol. 2000, 166, 127–135. [Google Scholar] [CrossRef]
- Khalil, H.; Alomari, M.A.; Khabour, O.F.; Al-Hieshan, A.; Bajwa, J.A. Relationship of circulatory BDNF with cognitive deficits in people with Parkinson’s disease. J. Neurol. Sci. 2016, 362, 217–220. [Google Scholar] [CrossRef]
- Ventriglia, M.; Zanardini, R.; Bonomini, C.; Zanetti, O.; Volpe, D.; Pasqualetti, P.; Gennarelli, M.; Bocchio-Chiavetto, L. Serum brain-derived neurotrophic factor levels in different neurological diseases. BioMed Res. Int. 2013, 2013, 901082. [Google Scholar] [CrossRef]
- Ziebell, M.U.; Khalid, A.B.; Klein, A.B.; Aznar, S.; Thomsen, G.; Jensen, P.; Knudsen, G.M. Striatal dopamine transporter binding correlates with serum BDNF levels in patients with striatal dopaminergic neurodegeneration. Neurobiol. Aging 2012, 33, e1–e428. [Google Scholar] [CrossRef]
- Scalzo, P.; Kümmer, T.L.; Bretas, F.; Cardoso, A.L. Teixeira, Serum levels of brain-derived neurotrophic factor correlate with motor impairment in Parkinson’s disease. J. Neurol. 2010, 257, 540–545. [Google Scholar] [CrossRef]
- Tajiri, N.; Yasuhara, T.; Shingo, T.; Kondo, A.; Yuan, W.; Kadota, T.; Wang, F.; Baba, T.; Tayra, J.T.; Morimoto, T.; et al. Exercise exerts neuroprotective effects on Parkinson’s disease model of rats. Brain Res. 2010, 1310, 200–207. [Google Scholar] [CrossRef]
- Tillerson, J.L.; Caudle, W.M.; Reveron, M.E.; Miller, G.W. Exercise induces behavioral recovery and attenuates neurochemical deficits in rodent models of Parkinson’s disease. Neuroscience 2003, 119, 899–911. [Google Scholar] [CrossRef] [PubMed]
- Ahlskog, J.E. Does vigorous exercise have a neuroprotective effect in Parkinson disease? Neurology 2011, 77, 288–294. [Google Scholar] [CrossRef] [PubMed]
- Palasz, E.; Wysocka, A.; Gasiorowska, A.; Chalimoniuk, M.; Niewiadomski, W.; Niewiadomska, G. BDNF as a Promising Therapeutic Agent in Parkinson’s Disease. Int. J. Mol. Sci. 2020, 21, 1170. [Google Scholar] [CrossRef]
- Seifert, T.; Brassard, P.; Wissenberg, M.; Rasmussen, P.; Nordby, P.; Stallknecht, B.; Adser, H.; Jakobsen, A.H.; Pilegaard, H.; Nielsen, H.B.; et al. Endurance training enhances BDNF release from the human brain. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2010, 298, R372–R377. [Google Scholar] [CrossRef] [PubMed]
- Padilha, C.; Souza, R.; Grossl, F.S.; Gauer, A.P.M.; de Sá, C.A.; Rodrigues-Junior, S.A. Physical exercise and its effects on people with Parkinson’s disease: Umbrella review. PLoS ONE 2023, 18, e0293826. [Google Scholar] [CrossRef]
- Paterno, A.; Polsinelli, G.; Federico, B. Changes of brain-derived neurotrophic factor (BDNF) levels after different exercise protocols: A systematic review of clinical studies in Parkinson’s disease. Front. Physiol. 2024, 15, 1352305. [Google Scholar] [CrossRef]
- Yi, X.; Yang, Y.; Zhao, Z.; Xu, M.; Zhang, Y.; Sheng, Y.; Tian, J.; Xu, Z. Serum mBDNF and ProBDNF Expression Levels as Diagnosis Clue for Early Stage Parkinson’s Disease. Front. Neurol. 2021, 12, 680765. [Google Scholar] [CrossRef]
- Yang, J.; Siao, C.J.; Nagappan, G.; Marinic, T.; Jing, D.; McGrath, K.; Chen, Z.Y.; Mark, W.; Tessarollo, L.; Lee, F.S.; et al. Neuronal release of proBDNF. Nat. Neurosci. 2009, 12, 113–115. [Google Scholar] [CrossRef]
- Kolarow, R.; Brigadski, T.; Lessmann, V. Postsynaptic secretion of BDNF and NT-3 from hippocampal neurons depends on calcium calmodulin kinase II signaling and proceeds via delayed fusion pore opening. J. Neurosci. 2007, 27, 10350–10364. [Google Scholar] [CrossRef]
- Mowla, S.J.; Farhadi, H.F.; Pareek, S.; Atwal, J.K.; Morris, S.J.; Seidah, N.G.; Murphy, R.A. Biosynthesis and post-translational processing of the precursor to brain-derived neurotrophic factor. J. Biol. Chem. 2001, 276, 12660–12666. [Google Scholar] [CrossRef]
- Tuon, T.; Valvassori, S.S.; Dal Pont, G.C.; Paganini, C.S.; Pozzi, B.G.; Luciano, T.F.; Souza, P.S.; Quevedo, J.; Souza, C.T.; Pinho, R.A. Physical training prevents depressive symptoms and a decrease in brain-derived neurotrophic factor in Parkinson’s disease. Brain Res. Bull. 2014, 108, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Azevedo, L.V.D.S.; Pereira, J.R.; Silva Santos, R.M.; Rocha, N.P.; Teixeira, A.L.; Christo, P.P.; Santos, V.R.; Scalzo, P.L. Acute exercise increases BDNF serum levels in patients with Parkinson’s disease regardless of depression or fatigue. Eur. J. Sport. Sci. 2022, 22, 1296–1303. [Google Scholar] [CrossRef] [PubMed]
- Pang, P.T.; Teng, H.K.; Zaitsev, E.; Woo, N.T.; Sakata, K.; Zhen, S.; Teng, K.K.; Yung, W.H.; Hempstead, B.L.; Lu, B. Cleavage of proBDNF by tPA/plasmin is essential for long-term hippocampal plasticity. Science 2004, 306, 487–491. [Google Scholar] [CrossRef]
- Ruiz-González, D.; Hernández-Martínez, A.; Valenzuela, P.L.; Morales, J.S.; Soriano-Maldonado, A. Effects of physical exercise on plasma brain-derived neurotrophic factor in neurodegenerative disorders: A systematic review and meta-analysis of randomized controlled trials. Neurosci. Biobehav. Rev. 2021, 128, 394–405. [Google Scholar] [CrossRef]
- Spartano, N.L.; Himali, J.J.; Trinquart, L.; Yang, Q.; Weinstein, G.; Satizabal, C.L.; Dukes, K.A.; Beiser, A.S.; Murabito, J.M.; Vasan, R.S.; et al. Accelerometer-Measured, Habitual Physical Activity and Circulating Brain-Derived Neurotrophic Factor: A Cross-Sectional Study. J. Alzheimers Dis. 2022, 85, 805–814. [Google Scholar] [CrossRef]
- Romero Garavito, A.; Díaz Martínez, V.; Juárez Cortés, E.; Negrete Díaz, J.V.; Montilla Rodríguez, L.M. Impact of physical exercise on the regulation of brain-derived neurotrophic factor in people with neurodegenerative diseases. Front. Neurol. 2025, 15, 1505879. [Google Scholar] [CrossRef]
- Huang, T.; Larsen, K.T.; Ried-Larsen, M.; Møller, N.C.; Andersen, L.B. The effects of physical activity and exercise on brain-derived neurotrophic factor in healthy humans: A review. Scand. J. Med. Sci. Sports. 2014, 24, 1–10. [Google Scholar] [CrossRef]
- Hirsch, M.A.; Wegen, E.E.H.; Newman, M.A.; Heyn, P. Exercise-induced increase in brain-derived neurotrophic factor in human Parkinson’s disease: A systematic review and meta-analysis. Transl. Neurodegener. 2018, 7, 7. [Google Scholar] [CrossRef] [PubMed]
- Piepmeier, A.T.; Etnier, J.L.; Wideman, L.; Berry, N.T.; Kincaid, Z.; Weaver, M.A. A preliminary investigation of acute exercise intensity on memory and BDNF isoform concentrations. Eur. J. Sport. Sci. 2020, 20, 819–830. [Google Scholar] [CrossRef]
- Lemos, J.R., Jr.; Alves, C.R.; de Souza, S.B.; Marsiglia, J.D.; Silva, M.S.; Pereira, A.C.; Teixeira, A.L.; Vieira, E.L.; Krieger, J.E.; Negrão, C.E.; et al. Peripheral vascular reactivity and serum BDNF responses to aerobic training are impaired by the BDNF Val66Met polymorphism. Physiol. Genom. 2016, 48, 116–123. [Google Scholar] [CrossRef]
- Angelucci, F.; Piermaria, J.; Gelfo, F.; Shofany, J.; Tramontano, M.; Fiore, M.; Caltagirone, C.; Peppe, A. The effects of motor rehabilitation training on clinical symptoms and serum BDNF levels in Parkinson’s disease subjects. Can. J. Physiol. Pharmacol. 2016, 94, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.; Cho, K.; Jin, C.; Lee, J.; Kim, T.; Jung, W.W.; Moon, S.; Ko, C.; Cho, S.; Jeon, C.; et al. Exercise therapies for parkinson’s disease: A systematic review and meta-analysis. Park. Dis. 2020, 2020, 1–22. [Google Scholar] [CrossRef]
- Hoehn, M.M.; Yahr, M.D. Parkinsonism: Onset, progression and mortality. Neurology 1967, 17, 427–442. [Google Scholar] [CrossRef]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-mental state”: A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Emre, M.; Aarsland, D.; Brown, R.; Burn, D.J.; Duyckaerts, C.; Mizuno, Y.; Broe, G.A.; Cummings, J.; Dickson, D.W.; Gauthier, S.; et al. Clinical diagnostic criteria for dementia associated with Parkinson’s disease. Mov. Disord. 2007, 22, 1689–1837. [Google Scholar] [CrossRef] [PubMed]
- Tomlinson, C.L.; Stowe, R.; Patel, S.; Rick, C.; Gray, R.; Clarke, C.E. Systematic review of levodopa dose equivalency reporting in Parkinson’s disease. Mov. Disord. 2010, 25, 2649–2653. [Google Scholar] [CrossRef]
- Cholewa, J.; Gorzkowska, A.; Szepelawy, M.; Nawrocka, A.; Cholewa, J. Influence of functional movement rehabilitation on quality of life in people with Parkinson’s disease. J. Phys. Ther. Sci. 2014, 26, 1329–1331. [Google Scholar] [CrossRef]
- Moore, G.E.; Durstine, J.L.; Painter, C.P.L. (Eds.) ACSM’s Exercise Management for Persons with Chronic Diseases and Disabilities, 4th ed.; Human Kinetics: Champaign, IL, USA, 2016. [Google Scholar]
- Goetz, C.G.; Tilley, B.C.; Shaftman, S.R.; Stebbins, G.T.; Fahn, S.; Martinez-Martin, P.; Poewe, W.; Sampaio, C.; Stern, M.B.; Dodel, R.; et al. Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): Scale presentation and clinimetric testing results. Mov. Disord. 2008, 23, 2129–2170. [Google Scholar] [CrossRef]
- MDS-UPDRS. Available online: https://www.movementdisorders.org/MDS-Files1/PDFs/Rating-Scales/MDS-UPDRS_Polish_Official_Translation_FINAL.pdf (accessed on 1 December 2020).
- Jenkinson, C.; Heffernan, C.; Doll, H.; Fitzpatrick, R. The Parkinson’s Disease Questionnaire (PDQ-39): Evidence for a method of imputing missing data. Age Ageing 2006, 35, 497–502. [Google Scholar] [CrossRef]
Characteristic | Group FPR (n = 26) | Group CG (n = 13) | t-Student Test | ||
---|---|---|---|---|---|
M ± SD | M ± SD | T | p | ||
Age (years) | 63.96 ± 8.88 | 64.08 ± 5.94 | 0.042 | 0.967 | |
Disease duration (years) | 7.88 ± 4.59 | 7.05 ± 3.55 | 0.238 | 0.813 | |
MDS-UPDRS (pts) | nM-DL | 13.54 ± 2.89 | 13.38 ± 4.48 | 0.130 | 0.897 |
M-EDL | 17.15 ± 3.69 | 17.00 ± 2.55 | 0.135 | 0.894 | |
ME | 33.46 ± 5,22 | 33.77 ± 5.46 | −0.171 | 0.865 | |
MC | 8.19 ± 2.23 | 8.23 ± 1.23 | −0.058 | 0.954 | |
PDQ-39 (pts) | 52.42 ± 8.00 | 52.08 ± 7.84 | 0.128 | 0.899 |
FPR Group | p | CG Group | p | |||
---|---|---|---|---|---|---|
Before | After | Before | After | |||
proBDNF (ng/mL) | 11.67 ± 3.92 | 16.27 ± 6.53 | 0.006 * | 11.68 ± 2.23 | 12.86 ± 4.43 | 1.0 |
BDNF (pg/mL) | 20,391.36 ± 6550.00 | 22,818.87 ± 5341.59 | 0.131 | 20,518.57 ± 6391.70 | 20,362.39 ± 2525.74 | 0.861 |
FPR | CG | ||||||
---|---|---|---|---|---|---|---|
Absolute Difference II—I (pts) | Relative Difference Δ (%) II—I | p | Absolute Difference II—I (pts) | Relative Difference Δ (%) II—I | p | ||
MDS-UPDRS | nM-DL (F = 59,243, p = 0.00) | −3.5 | −25.85 | p < 0.01 * | −0.07 | −0.52 | p < 1 |
M-DL (F = 34,844, p = 0.00) | −5.0 | −29.15 | p < 0.001 * | 0.77 | 4.53 | p < 1 | |
ME (F = 39,585, p = 0.00) | −0.62 | −1.82 | p < 0.001 * | 1.23 | 3.64 | p < 1 | |
MC (F = 11,243, p = 0.00) | −1.96 | −23.93 | p < 0.001 * | 0.77 | 9.36 | p < 0.001 | |
PDQ-39 (F = 81.078, p = 0.000) | −7.50 | −14.31 | p < 0.001 * | 1.15 | 2.21 | p < 0.899 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cholewa, J.; Nowacka-Chmielewska, M.; Gorzkowska, A.; Malecki, A.; Lasek-Bal, A.; Cholewa, J. Changes in proBDNF and Mature BDNF Levels After Medium-Intensity Functional Motor Rehabilitation Program in Patients with Parkinson’s Disease. Int. J. Mol. Sci. 2025, 26, 3616. https://doi.org/10.3390/ijms26083616
Cholewa J, Nowacka-Chmielewska M, Gorzkowska A, Malecki A, Lasek-Bal A, Cholewa J. Changes in proBDNF and Mature BDNF Levels After Medium-Intensity Functional Motor Rehabilitation Program in Patients with Parkinson’s Disease. International Journal of Molecular Sciences. 2025; 26(8):3616. https://doi.org/10.3390/ijms26083616
Chicago/Turabian StyleCholewa, Joanna, Marta Nowacka-Chmielewska, Agnieszka Gorzkowska, Andrzej Malecki, Anetta Lasek-Bal, and Jaroslaw Cholewa. 2025. "Changes in proBDNF and Mature BDNF Levels After Medium-Intensity Functional Motor Rehabilitation Program in Patients with Parkinson’s Disease" International Journal of Molecular Sciences 26, no. 8: 3616. https://doi.org/10.3390/ijms26083616
APA StyleCholewa, J., Nowacka-Chmielewska, M., Gorzkowska, A., Malecki, A., Lasek-Bal, A., & Cholewa, J. (2025). Changes in proBDNF and Mature BDNF Levels After Medium-Intensity Functional Motor Rehabilitation Program in Patients with Parkinson’s Disease. International Journal of Molecular Sciences, 26(8), 3616. https://doi.org/10.3390/ijms26083616