Resting-State fMRI and Post-Ischemic Stroke Functional Recovery: Unraveling Causality and Predicting Therapeutic Targets
Abstract
1. Introduction
2. Results
2.1. Forward MR
2.2. Reverse MR
2.3. Sensitivity Analyses for rs-fMRI Associated with Functional Outcome After Ischemic Stroke
2.4. Identification of rs-fMRI-Associated Proteins
2.5. Colocalization Analysis and Functional Evaluation of Potential Drug Targets
3. Discussion
4. Materials and Methods
4.1. Data Sources
4.2. Bidirectional Two-Sample MR Analyses
4.3. Sensitivity Analysis
4.4. MR Analysis of Target Prediction
4.5. Colocalization Analysis
4.6. Function Analysis of Potential Drug Targets
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hilkens, N.A.; Casolla, B.; Leung, T.W.; de Leeuw, F.E. Stroke. Lancet 2024, 403, 2820–2836. [Google Scholar] [CrossRef] [PubMed]
- GBD 2021 Stroke Risk Factor Collaborators. Global, regional, and national burden of stroke and its risk factors, 1990–2021: A systematic analysis for the Global Burden of Disease Study 2021. Lancet Neurol. 2024, 23, 973–1003. [Google Scholar] [CrossRef]
- Gurková, E.; Štureková, L.; Mandysová, P.; Šaňák, D. Factors affecting the quality of life after ischemic stroke in young adults: A scoping review. Health Qual. Life Outcomes 2023, 21, 4. [Google Scholar] [CrossRef]
- King, D.; Wittenberg, R.; Patel, A.; Quayyum, Z.; Berdunov, V.; Knapp, M. The future incidence, prevalence and costs of stroke in the UK. Age Ageing 2020, 49, 277–282. [Google Scholar] [CrossRef] [PubMed]
- de Bruijn, M.A.; Synhaeve, N.E.; van Rijsbergen, M.W.; de Leeuw, F.E.; Mark, R.E.; Jansen, B.P.; de Kort, P.L. Quality of Life after Young Ischemic Stroke of Mild Severity Is Mainly Influenced by Psychological Factors. J. Stroke Cerebrovasc. Dis. 2015, 24, 2183–2188. [Google Scholar] [CrossRef] [PubMed]
- Dawson, J.; Liu, C.Y.; Francisco, G.E.; Cramer, S.C.; Wolf, S.L.; Dixit, A.; Alexander, J.; Ali, R.; Brown, B.L.; Feng, W.; et al. Vagus nerve stimulation paired with rehabilitation for upper limb motor function after ischaemic stroke (VNS-REHAB): A randomised, blinded, pivotal, device trial. Lancet 2021, 397, 1545–1553. [Google Scholar] [CrossRef]
- Chollet, F.; Tardy, J.; Albucher, J.F.; Thalamas, C.; Berard, E.; Lamy, C.; Bejot, Y.; Deltour, S.; Jaillard, A.; Niclot, P.; et al. Fluoxetine for motor recovery after acute ischaemic stroke (FLAME): A randomised placebo-controlled trial. Lancet Neurol. 2011, 10, 123–130, Erratum in Lancet Neurol. 2011, 10, 205. [Google Scholar] [CrossRef]
- Reynolds, H.; Steinfort, S.; Tillyard, J.; Ellis, S.; Hayes, A.; Hanson, E.D.; Wijeratne, T.; Skinner, E.H. Feasibility and adherence to moderate intensity cardiovascular fitness training following stroke: A pilot randomized controlled trial. BMC Neurol. 2021, 21, 132. [Google Scholar] [CrossRef]
- Koch, G.; Bonnì, S.; Casula, E.P.; Iosa, M.; Paolucci, S.; Pellicciari, M.C.; Cinnera, A.M.; Ponzo, V.; Maiella, M.; Picazio, S.; et al. Effect of Cerebellar Stimulation on Gait and Balance Recovery in Patients with Hemiparetic Stroke: A Randomized Clinical Trial. JAMA Neurol. 2019, 76, 170–178. [Google Scholar] [CrossRef]
- Lee, J.; Chang, W.H.; Chung, J.W.; Kim, S.J.; Kim, S.K.; Lee, J.S.; Sohn, S.I.; Kim, Y.H.; Bang, O.Y.; STARTING-2 Collaborators. Efficacy of Intravenous Mesenchymal Stem Cells for Motor Recovery After Ischemic Stroke: A Neuroimaging Study. Stroke 2022, 53, 20–28. [Google Scholar] [CrossRef]
- Revill, K.P.; Haut, M.W.; Belagaje, S.R.; Nahab, F.; Drake, D.; Buetefisch, C.M. Hebbian-Type Primary Motor Cortex Stimulation: A Potential Treatment of Impaired Hand Function in Chronic Stroke Patients. Neurorehabil. Neural Repair 2020, 34, 159–171. [Google Scholar] [CrossRef] [PubMed]
- Amemiya, S.; Takao, H.; Abe, O. Resting-State fMRI: Emerging Concepts for Future Clinical Application. J. Magn. Reson. Imaging 2024, 59, 1135–1148. [Google Scholar] [CrossRef] [PubMed]
- Yousaf, T.; Dervenoulas, G.; Politis, M. Advances in MRI Methodology. Int. Rev. Neurobiol. 2018, 141, 31–76. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Cao, S.; Ge, R.L.; Bao, H.; Mou, Y.; Ji, W. Brain-aging related protein expression and imaging characteristics of mice exposed to chronic hypoxia at high altitude. Front. Aging Neurosci. 2023, 15, 1268230. [Google Scholar] [CrossRef]
- Godfrey, J.R.; Pincus, M.; Kovacs-Balint, Z.; Feczko, E.; Earl, E.; Miranda-Dominguez, O.; Fair, D.A.; Jones, S.R.; Locke, J.; Sanchez, M.M.; et al. Obesogenic diet-associated C-reactive protein predicts reduced central dopamine and corticostriatal functional connectivity in female rhesus monkeys. Brain Behav. Immun. 2020, 88, 166–173. [Google Scholar] [CrossRef]
- Yue, X.; Li, Z.; Li, Y.; Gao, J.; Han, H.; Zhang, G.; Li, X.; Shen, Y.; Wei, W.; Bai, Y.; et al. Altered static and dynamic functional network connectivity in post-stroke cognitive impairment. Neurosci. Lett. 2023, 799, 137097. [Google Scholar] [CrossRef]
- Qin, C.; Yang, S.; Chu, Y.H.; Zhang, H.; Pang, X.W.; Chen, L.; Zhou, L.Q.; Chen, M.; Tian, D.S.; Wang, W. Signaling pathways involved in ischemic stroke: Molecular mechanisms and therapeutic interventions. Signal Transduct. Target. Ther. 2022, 7, 215, Erratum in Signal Transduct. Target. Ther. 2022, 7, 278. https://doi.org/10.1038/s41392-022-01129-1. [Google Scholar] [CrossRef]
- Yang, L.; Han, B.; Zhang, Z.; Wang, S.; Bai, Y.; Zhang, Y.; Tang, Y.; Du, L.; Xu, L.; Wu, F.; et al. Extracellular Vesicle-Mediated Delivery of Circular RNA SCMH1 Promotes Functional Recovery in Rodent and Nonhuman Primate Ischemic Stroke Models. Circulation 2020, 142, 556–574. [Google Scholar] [CrossRef]
- Jadavji, N.M.; Emmerson, J.T.; MacFarlane, A.J.; Willmore, W.G.; Smith, P.D. B-vitamin and choline supplementation increases neuroplasticity and recovery after stroke. Neurobiol. Dis. 2017, 103, 89–100. [Google Scholar] [CrossRef]
- Cirillo, C.; Brihmat, N.; Castel-Lacanal, E.; Le Friec, A.; Barbieux-Guillot, M.; Raposo, N.; Pariente, J.; Viguier, A.; Simonetta-Moreau, M.; Albucher, J.F.; et al. Post-stroke remodeling processes in animal models and humans. J. Cereb. Blood Flow Metab. 2020, 40, 3–22. [Google Scholar] [CrossRef]
- Tahmi, M.; Kane, V.A.; Pavol, M.A.; Naqvi, I.A. Neuroimaging biomarkers of cognitive recovery after ischemic stroke. Front. Neurol. 2022, 13, 923942. [Google Scholar] [CrossRef]
- Larsson, S.C.; Butterworth, A.S.; Burgess, S. Mendelian randomization for cardiovascular diseases: Principles and applications. Eur. Heart J. 2023, 44, 4913–4924. [Google Scholar] [CrossRef] [PubMed]
- Evans, D.M.; Davey Smith, G. Mendelian Randomization: New Applications in the Coming Age of Hypothesis-Free Causality. Annu. Rev. Genomics Hum. Genet. 2015, 16, 327–350. [Google Scholar] [CrossRef] [PubMed]
- Ferkingstad, E.; Sulem, P.; Atlason, B.A.; Sveinbjornsson, G.; Magnusson, M.I.; Styrmisdottir, E.L.; Gunnarsdottir, K.; Helgason, A.; Oddsson, A.; Halldorsson, B.V.; et al. Large-scale integration of the plasma proteome with genetics and disease. Nat. Genet. 2021, 53, 1712–1721. [Google Scholar] [CrossRef]
- Sun, B.B.; Chiou, J.; Traylor, M.; Benner, C.; Hsu, Y.-H.; Richardson, T.G.; Surendran, P.; Mahajan, A.; Robins, C.; Vasquez-Grinnell, S.G.; et al. Genetic regulation of the human plasma proteome in 54,306 UK Biobank participants. bioRxiv 2022. [Google Scholar] [CrossRef]
- Regenhardt, R.W.; Takase, H.; Lo, E.H.; Lin, D.J. Translating concepts of neural repair after stroke: Structural and functional targets for recovery. Restor. Neurol. Neurosci. 2020, 38, 67–92. [Google Scholar] [CrossRef]
- Malliarou, M.; Tsionara, C.; Patsopoulou, A.; Bouletis, A.; Tzenetidis, V.; Papathanasiou, I.; Kotrotsiou, E.; Gouva, M.; Nikolentzos, A.; Sarafis, P. Investigation of Factors That Affect the Quality of Life After a Stroke. Adv. Exp. Med. Biol. 2023, 1425, 437–442. [Google Scholar] [CrossRef]
- Sjöstedt, E.; Zhong, W.; Fagerberg, L.; Karlsson, M.; Mitsios, N.; Adori, C.; Oksvold, P.; Edfors, F.; Limiszewska, A.; Hikmet, F.; et al. An atlas of the protein-coding genes in the human, pig, and mouse brain. Science 2020, 367, eaay5947. [Google Scholar] [CrossRef]
- Stinear, C.M. Prediction of motor recovery after stroke: Advances in biomarkers. Lancet Neurol. 2017, 16, 826–836. [Google Scholar] [CrossRef]
- Matchin, W.; Basilakos, A.; Stark, B.C.; den Ouden, D.B.; Fridriksson, J.; Hickok, G. Agrammatism and Paragrammatism: A Cortical Double Dissociation Revealed by Lesion-Symptom Mapping. Neurobiol. Lang. 2020, 1, 208–225. [Google Scholar] [CrossRef]
- Krieger-Redwood, K.; Teige, C.; Davey, J.; Hymers, M.; Jefferies, E. Conceptual control across modalities: Graded specialisation for pictures and words in inferior frontal and posterior temporal cortex. Neuropsychologia 2015, 76, 92–107. [Google Scholar] [CrossRef] [PubMed]
- Simic, T.; Desjardins, M.È.; Courson, M.; Bedetti, C.; Houzé, B.; Brambati, S.M. Treatment-induced neuroplasticity after anomia therapy in post-stroke aphasia: A systematic review of neuroimaging studies. Brain Lang. 2023, 244, 105300. [Google Scholar] [CrossRef] [PubMed]
- Havsteen, I.; Madsen, K.H.; Christensen, H.; Christensen, A.; Siebner, H.R. Diagnostic approach to functional recovery: Functional magnetic resonance imaging after stroke. Front. Neurol. Neurosci. 2013, 32, 9–25. [Google Scholar] [CrossRef] [PubMed]
- Chambers, C.D.; Garavan, H.; Bellgrove, M.A. Insights into the neural basis of response inhibition from cognitive and clinical neuroscience. Neurosci. Biobehav. Rev. 2009, 33, 631–646. [Google Scholar] [CrossRef]
- Allen, C.; Singh, K.D.; Verbruggen, F.; Chambers, C.D. Evidence for parallel activation of the pre-supplementary motor area and inferior frontal cortex during response inhibition: A combined MEG and TMS study. R. Soc. Open Sci. 2018, 5, 171369. [Google Scholar] [CrossRef]
- Chiou, R.; Lambon Ralph, M.A. Task-Related Dynamic Division of Labor Between Anterior Temporal and Lateral Occipital Cortices in Representing Object Size. J. Neurosci. 2016, 36, 4662–4668. [Google Scholar] [CrossRef]
- Beauchamp, M.S.; Lee, K.E.; Haxby, J.V.; Martin, A. Parallel visual motion processing streams for manipulable objects and human movements. Neuron 2002, 34, 149–159. [Google Scholar] [CrossRef]
- Romano, J.G. Progress in rehabilitation of hemianopic visual field defects. Cerebrovasc. Dis. 2009, 27 (Suppl. S1), 187–190. [Google Scholar] [CrossRef]
- Kim, Y.H.; Cho, A.H.; Kim, D.; Kim, S.M.; Lim, H.T.; Kwon, S.U.; Kim, J.S.; Kang, D.W. Early Functional Connectivity Predicts Recovery from Visual Field Defects after Stroke. J. Stroke 2019, 21, 207–216. [Google Scholar] [CrossRef]
- Liu, Y.; Li, X.; Zhou, X.; Wang, J.; Ao, X. FADD as a key molecular player in cancer progression. Mol. Med. 2022, 28, 132. [Google Scholar] [CrossRef]
- Chinnaiyan, A.M.; O’Rourke, K.; Tewari, M.; Dixit, V.M. FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 1995, 81, 505–512. [Google Scholar] [CrossRef] [PubMed]
- Yáñez-Gómez, F.; Gálvez-Melero, L.; Ledesma-Corvi, S.; Bis-Humbert, C.; Hernández-Hernández, E.; Salort, G.; García-Cabrerizo, R.; García-Fuster, M.J. Evaluating the daily modulation of FADD and related molecular markers in different brain regions in male rats. J. Neurosci. Res. 2024, 102, e25296. [Google Scholar] [CrossRef]
- Newton, K.; Wickliffe, K.E.; Maltzman, A.; Dugger, D.L.; Reja, R.; Zhang, Y.; Roose-Girma, M.; Modrusan, Z.; Sagolla, M.S.; Webster, J.D.; et al. Activity of caspase-8 determines plasticity between cell death pathways. Nature 2019, 575, 679–682. [Google Scholar] [CrossRef] [PubMed]
- Mifflin, L.; Ofengeim, D.; Yuan, J. Receptor-interacting protein kinase 1 (RIPK1) as a therapeutic target. Nat. Rev. Drug Discov. 2020, 19, 553–571. [Google Scholar] [CrossRef] [PubMed]
- Ranjan, K.; Pathak, C. Cellular Dynamics of Fas-Associated Death Domain in the Regulation of Cancer and Inflammation. Int. J. Mol. Sci. 2024, 25, 3228. [Google Scholar] [CrossRef]
- Kim, J.; Bang, J.; Ryu, B.; Kim, C.Y.; Park, J.H. Flubendazole exposure disrupts neural development and function of zebrafish embryos (Danio rerio). Sci. Total Environ. 2023, 898, 165376. [Google Scholar] [CrossRef]
- Northington, F.J.; Ferriero, D.M.; Flock, D.L.; Martin, L.J. Delayed neurodegeneration in neonatal rat thalamus after hypoxia-ischemia is apoptosis. J. Neurosci. 2001, 21, 1931–1938. [Google Scholar] [CrossRef]
- Entin-Meer, M.; Yang, X.; VandenBerg, S.R.; Lamborn, K.R.; Nudelman, A.; Rephaeli, A.; Haas-Kogan, D.A. In vivo efficacy of a novel histone deacetylase inhibitor in combination with radiation for the treatment of gliomas. Neuro-Oncology 2007, 9, 82–88. [Google Scholar] [CrossRef]
- Reid, T.; Valone, F.; Lipera, W.; Irwin, D.; Paroly, W.; Natale, R.; Sreedharan, S.; Keer, H.; Lum, B.; Scappaticci, F.; et al. Phase II trial of the histone deacetylase inhibitor pivaloyloxymethyl butyrate (Pivanex, AN-9) in advanced non-small cell lung cancer. Lung Cancer 2004, 45, 381–386. [Google Scholar] [CrossRef]
- Degterev, A.; Ofengeim, D.; Yuan, J. Targeting RIPK1 for the treatment of human diseases. Proc. Natl. Acad. Sci. USA 2019, 116, 9714–9722. [Google Scholar] [CrossRef]
- Yuan, J.; Amin, P.; Ofengeim, D. Necroptosis and RIPK1-mediated neuroinflammation in CNS diseases. Nat. Rev. Neurosci. 2019, 20, 19–33. [Google Scholar] [CrossRef] [PubMed]
- Bussel, J.; Arnold, D.M.; Grossbard, E.; Mayer, J.; Treliński, J.; Homenda, W.; Hellmann, A.; Windyga, J.; Sivcheva, L.; Khalafallah, A.A.; et al. Fostamatinib for the treatment of adult persistent and chronic immune thrombocytopenia: Results of two phase 3, randomized, placebo-controlled trials. Am. J. Hematol. 2018, 93, 921–930. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Liu, H.; Huang, Y.; Lin, S.; Yin, G.; Xie, Q. The Cardiovascular Risks of Fostamatinib in Patients with Rheumatoid Arthritis: A Systematic Review and Meta-Analysis. Front. Pharmacol. 2021, 12, 632551. [Google Scholar] [CrossRef] [PubMed]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Zou, H.; Hastie, T. Regularization and Variable Selection via the Elastic Net. J. R. Stat. Soc. Ser. B Stat. Methodol. 2005, 67, 301–320. [Google Scholar] [CrossRef]
- Zhao, B. GWAS summary statistics for 191 resting-state functional MRI (rs-fMRI) traits. Zenodo 2021. [Google Scholar] [CrossRef]
- Zhao, B.; Li, T.; Smith, S.M.; Xiong, D.; Wang, X.; Yang, Y.; Luo, T.; Zhu, Z.; Shan, Y.; Matoba, N.; et al. Common variants contribute to intrinsic human brain functional networks. Nat. Genet. 2022, 54, 508–517. [Google Scholar] [CrossRef]
- Söderholm, M.; Pedersen, A.; Lorentzen, E.; Stanne, T.M.; Bevan, S.; Olsson, M.; Cole, J.W.; Fernandez-Cadenas, I.; Hankey, G.J.; Jimenez-Conde, J.; et al. Genome-wide association meta-analysis of functional outcome after ischemic stroke. Neurology 2019, 92, e1271–e1283. [Google Scholar] [CrossRef]
- Perry, B.I.; Upthegrove, R.; Kappelmann, N.; Jones, P.B.; Burgess, S.; Khandaker, G.M. Associations of immunological proteins/traits with schizophrenia, major depression and bipolar disorder: A bi-directional two-sample mendelian randomization study. Brain Behav. Immun. 2021, 97, 176–185. [Google Scholar] [CrossRef]
- Duss, S.B.; Seiler, A.; Schmidt, M.H.; Pace, M.; Adamantidis, A.; Müri, R.M.; Bassetti, C.L. The role of sleep in recovery following ischemic stroke: A review of human and animal data. Neurobiol. Sleep Circadian Rhythm. 2017, 2, 94–105. [Google Scholar] [CrossRef]
- Hirt, J.; van Meijeren, L.C.; Saal, S.; Hafsteinsdóttir, T.B.; Hofmeijer, J.; Kraft, A.; Meyer, G.; Janneke, M. Predictive accuracy of the Post-Stroke Depression Prediction Scale: A prospective binational observational study. J. Affect. Disord. 2020, 265, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Almhdawi, K.A.; Alazrai, A.; Kanaan, S.; Shyyab, A.A.; Oteir, A.O.; Mansour, Z.M.; Jaber, H. Post-stroke depression, anxiety, and stress symptoms and their associated factors: A cross-sectional study. Neuropsychol. Rehabil. 2021, 31, 1091–1104. [Google Scholar] [CrossRef] [PubMed]
- Janarek, J.; Drogosz, Z.; Grela, J.; Ochab, J.K.; Oświęcimka, P. Investigating structural and functional aspects of the brain’s criticality in stroke. Sci. Rep. 2023, 13, 12341. [Google Scholar] [CrossRef] [PubMed]
- Curtin, F.; Schulz, P. Multiple correlations and Bonferroni’s correction. Biol. Psychiatry 1998, 44, 775–777. [Google Scholar] [CrossRef]
- Bowden, J.; Spiller, W.; Del Greco, M.F.; Sheehan, N.; Thompson, J.; Minelli, C.; Davey Smith, G. Improving the visualization, interpretation and analysis of two-sample summary data Mendelian randomization via the Radial plot and Radial regression. Int. J. Epidemiol. 2018, 47, 2100. [Google Scholar] [CrossRef]
- Bowden, J.; Davey Smith, G.; Burgess, S. Mendelian randomization with invalid instruments: Efect estimation and bias detection through Egger regression. Int. J. Epidemiol. 2015, 44, 512–525. [Google Scholar] [CrossRef]
- Verbanck, M.; Chen, C.Y.; Neale, B.; Do, R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat. Genet. 2018, 50, 693–698. [Google Scholar] [CrossRef]
- Burgess, S.; Davey Smith, G.; Davies, N.M.; Dudbridge, F.; Gill, D.; Glymour, M.M.; Hartwig, F.P.; Kutalik, Z.; Holmes, M.V.; Minelli, C.; et al. Guidelines for performing Mendelian randomization investigations. Wellcome Open Res. 2019, 4, 186. [Google Scholar] [CrossRef]
- Dijkhuizen, R.M.; Zaharchuk, G.; Otte, W.M. Assessment and modulation of resting-state neural networks after stroke. Curr. Opin. Neurol. 2014, 27, 637–643. [Google Scholar] [CrossRef]
- Golestani, A.M.; Tymchuk, S.; Demchuk, A.; Goodyear, B.G.; VISION-2 Study Group. Longitudinal evaluation of resting-state FMRI after acute stroke with hemiparesis. Neurorehabil. Neural Repair. 2013, 27, 153–163. [Google Scholar] [CrossRef]
- Iorga, M.; Higgins, J.; Caplan, D.; Zinbarg, R.; Kiran, S.; Thompson, C.K.; Rapp, B.; Parrish, T.B. Predicting language recovery in post-stroke aphasia using behavior and functional MRI. Sci. Rep. 2021, 11, 8419. [Google Scholar] [CrossRef] [PubMed]
- Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; et al. STRING V11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019, 47, D607–D613. [Google Scholar] [CrossRef] [PubMed]
- Larsson, S.C.; Traylor, M.; Malik, R.; Dichgans, M.; Burgess, S.; Markus, H.S.; CoSTREAM Consortium, on Behalf of the International Genomics of Alzheimer’s Project. Modifiable pathways in Alzheimer’s disease: Mendelian randomisation analysis. BMJ 2017, 359, j5375. [Google Scholar] [CrossRef] [PubMed]
Exposures | Pleiotropy (IVW) | Heterogeneity (IVW) | MR-PRESSO | |||
---|---|---|---|---|---|---|
Egger_Intercept | se | p-Value | Cochran’s Q | p-Value | p-Value | |
Pheno12 | 0.198 | 0.027 | 0.471 | 49.671 | 0.258 | 0.276 |
Pheno716 | −0.013 | 0.031 | 0.689 | 20.903 | 0.829 | 0.840 |
Pheno1122 | −0.008 | 0.024 | 0.746 | 47.440 | 0.577 | 0.588 |
Pheno1141 | −0.026 | 0.025 | 0.318 | 36.045 | 0.419 | 0.451 |
Outcomes | Pleiotropy (IVW) | Heterogeneity (IVW) | MR-PRESSO | |||
---|---|---|---|---|---|---|
Egger_Intercept | se | p-Value | Cochran’s Q | p-Value | p-Value | |
Pheno249 | 0.013 | 0.012 | 0.314 | 8.865 | 0.354 | 0.401 |
Pheno705 | 0.0003 | 0.012 | 0.977 | 7.909 | 0.442 | 0.478 |
Pheno942 | −0.014 | 0.015 | 0.370 | 14.489 | 0.070 | 0.095 |
Pheno1137 | 0.008 | 0.011 | 0.522 | 4.797 | 0.780 | 0.814 |
Pheno1142 | −0.001 | 0.011 | 0.905 | 3.285 | 0.915 | 0.921 |
Pheno1221 | −0.0005 | 0.011 | 0.963 | 5.489 | 0.704 | 0.742 |
Pheno1699 | 0.007 | 0.011 | 0.540 | 9.440 | 0.307 | 0.340 |
Pheno1701 | 0.007 | 0.011 | 0.561 | 6.401 | 0.602 | 0.599 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.-Z.; Shi, Y.-L.; He, X.-J.; Wang, S.-C.; Liu, J.; Wang, Z.; Dang, H.-X.; Yu, Y.-N. Resting-State fMRI and Post-Ischemic Stroke Functional Recovery: Unraveling Causality and Predicting Therapeutic Targets. Int. J. Mol. Sci. 2025, 26, 3608. https://doi.org/10.3390/ijms26083608
Li M-Z, Shi Y-L, He X-J, Wang S-C, Liu J, Wang Z, Dang H-X, Yu Y-N. Resting-State fMRI and Post-Ischemic Stroke Functional Recovery: Unraveling Causality and Predicting Therapeutic Targets. International Journal of Molecular Sciences. 2025; 26(8):3608. https://doi.org/10.3390/ijms26083608
Chicago/Turabian StyleLi, Mu-Zhi, Yin-Li Shi, Xiao-Jun He, Si-Cun Wang, Jun Liu, Zhong Wang, Hai-Xia Dang, and Ya-Nan Yu. 2025. "Resting-State fMRI and Post-Ischemic Stroke Functional Recovery: Unraveling Causality and Predicting Therapeutic Targets" International Journal of Molecular Sciences 26, no. 8: 3608. https://doi.org/10.3390/ijms26083608
APA StyleLi, M.-Z., Shi, Y.-L., He, X.-J., Wang, S.-C., Liu, J., Wang, Z., Dang, H.-X., & Yu, Y.-N. (2025). Resting-State fMRI and Post-Ischemic Stroke Functional Recovery: Unraveling Causality and Predicting Therapeutic Targets. International Journal of Molecular Sciences, 26(8), 3608. https://doi.org/10.3390/ijms26083608