Prime Editing in Dividing and Quiescent Cells
Abstract
:1. Introduction
2. Quiescent and Terminally Differentiated Cells
3. DNA Mismatch Repair in Prime Editing
4. Reverse Transcription in Non-Dividing Cells, dNTP Concentration, and Prime Editing
5. Prime Editor Delivery in Dividing and Non-Dividing Cells
6. RNAse H in Prime Editing
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Anzalone, A.V.; Randolph, P.B.; Davis, J.R.; Sousa, A.A.; Koblan, L.W.; Levy, J.M.; Chen, P.J.; Wilson, C.; Newby, G.A.; Raguram, A.; et al. Search-and-Replace Genome Editing without Double-Strand Breaks or Donor DNA. Nature 2019, 576, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Awan, M.J.A.; Pervaiz, K.; Rasheed, A.; Amin, I.; Saeed, N.A.; Dhugga, K.S.; Mansoor, S. Genome Edited Wheat- Current Advances for the Second Green Revolution. Biotechnol. Adv. 2022, 60, 108006. [Google Scholar] [CrossRef] [PubMed]
- Ely, Z.A.; Mathey-Andrews, N.; Naranjo, S.; Gould, S.I.; Mercer, K.L.; Newby, G.A.; Cabana, C.M.; Rideout, W.M., 3rd; Cervantes Jaramillo, G.; Khirallah, J.M.; et al. A Prime Editor Mouse to Model a Broad Spectrum of Somatic Mutations in Vivo. Nat. Biotechnol. 2024, 42, 424–436. [Google Scholar] [CrossRef]
- Eş, I.; Thakur, A.; Mousavi Khaneghah, A.; Foged, C.; de la Torre, L.G. Engineering Aspects of Lipid-Based Delivery Systems: In Vivo Gene Delivery, Safety Criteria, and Translation Strategies. Biotechnol. Adv. 2024, 72, 108342. [Google Scholar] [CrossRef]
- Petrova, I.O.; Smirnikhina, S.A. The Development, Optimization and Future of Prime Editing. Int. J. Mol. Sci. 2023, 24, 17045. [Google Scholar] [CrossRef] [PubMed]
- Graham, C.; Hart, S. CRISPR/Cas9 Gene Editing Therapies for Cystic Fibrosis. Expert Opin. Biol. Ther. 2021, 21, 767–780. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Liu, J.; Janssen, J.M.; Tasca, F.; Mei, H.; Gonçalves, M.A.F.V. Broadening the Reach and Investigating the Potential of Prime Editors through Fully Viral Gene-Deleted Adenoviral Vector Delivery. Nucleic Acids Res. 2021, 49, 11986–12001. [Google Scholar] [CrossRef]
- Iyama, T.; Wilson, D.M. DNA Repair Mechanisms in Dividing and Non-Dividing Cells. DNA Repair 2013, 12, 620–636. [Google Scholar] [CrossRef]
- Yao, G. Modelling Mammalian Cellular Quiescence. Interface Focus 2014, 4, 20130074. [Google Scholar] [CrossRef]
- Pajalunga, D.; Crescenzi, M. Restoring the Cell Cycle and Proliferation Competence in Terminally Differentiated Skeletal Muscle Myotubes. Cells 2021, 10, 2753. [Google Scholar] [CrossRef]
- Malik, N.; Rao, M.S. A Review of the Methods for Human IPSC Derivation. Methods Mol. Biol. 2013, 997, 23–33. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Cao, Y.; Liu, Y.; Zhao, D.; Li, J.; Cheng, Z.; Bi, C.; Zhang, X. Enhancement of a Prime Editing System via Optimal Recruitment of the Pioneer Transcription Factor P65. Nat. Commun. 2023, 14, 257. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Zhong, A.; Wu, Y.; Sidharta, M.; Beaury, M.; Zhao, X.; Studer, L.; Zhou, T. Transient Inhibition of P53 Enhances Prime Editing and Cytosine Base-Editing Efficiencies in Human Pluripotent Stem Cells. Nat. Commun. 2022, 13, 6354. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Hartemink, A.J.; Macalpine, D.M. Cell-Cycle—Dependent Chromatin Dynamics at Replication Origins. Genes 2021, 12, 1998. [Google Scholar] [CrossRef]
- Srivastava, S.; Mishra, R.K.; Dhawan, J. Regulation of Cellular Chromatin State from Quiescence and Differentiation. Organogenesis 2010, 6, 37–47. [Google Scholar] [CrossRef]
- Gurtner, A.; Fuschi, P.; Magi, F.; Colussi, C.; Gaetano, C.; Dobbelstein, M.; Sacchi, A.; Piaggio, G. NF-Y Dependent Epigenetic Modifications Discriminate between Proliferating and Postmitotic Tissue. PLoS ONE 2008, 3, e2047. [Google Scholar] [CrossRef] [PubMed]
- Park, S.J.; Jeong, T.Y.; Shin, S.K.; Yoon, D.E.; Lim, S.Y.; Kim, S.P.; Choi, J.; Lee, H.; Hong, J.I.; Ahn, J.; et al. Targeted Mutagenesis in Mouse Cells and Embryos Using an Enhanced Prime Editor. Genome Biol. 2021, 22, 170. [Google Scholar] [CrossRef]
- Chatterjee, N.; Walker, G.C. Mechanisms of DNA Damage, Repair, and Mutagenesis. Environ. Mol. Mutagen. 2017, 58, 235–263. [Google Scholar]
- Baretti, M.; Le, D.T. DNA Mismatch Repair in Cancer. Pharmacol. Ther. 2018, 189, 45–62. [Google Scholar] [PubMed]
- Gupta, S.; Gellert, M.; Yang, W. Mechanism of Mismatch Recognition Revealed by Human MutSβ Bound to Unpaired DNA Loops. Nat. Struct. Mol. Biol. 2012, 19, 72–79. [Google Scholar] [CrossRef]
- Warren, J.J.; Pohlhaus, T.J.; Changela, A.; Iyer, R.R.; Modrich, P.L.; Beese, L.S.S. Structure of the Human MutSα DNA Lesion Recognition Complex. Mol. Cell 2007, 26, 579–592. [Google Scholar] [CrossRef] [PubMed]
- Dowen, J.M.; Putnam, C.D.; Kolodner, R.D. Functional Studies and Homology Modeling of Msh2-Msh3 Predict That Mispair Recognition Involves DNA Bending and Strand Separation. Mol. Cell Biol. 2010, 30, 3321–3328. [Google Scholar] [CrossRef] [PubMed]
- Strand, M.; Earleyt, M.C.; Crouset, G.F.; Petes, T.D. Mutations in the MSH3 gene preferentially lead to deletions within tracts of simple repetitive DNA in Saccharomyces cerevisiae (yeast/microsatellites/DNA mismatch repair). Proc. Natl. Acad. Sci. USA 1995, 92, 10418–10421. [Google Scholar]
- Fang, W.H.; Modrich, P. Human Strand-Specific Mismatch Repair Occurs by a Bidirectional Mechanism Similar to That of the Bacterial Reaction. J. Biol. Chem. 1993, 268, 11838–11844. [Google Scholar] [CrossRef] [PubMed]
- Kadyrov, F.A.; Dzantiev, L.; Constantin, N.; Modrich, P. Endonucleolytic Function of MutLα in Human Mismatch Repair. Cell 2006, 126, 297–308. [Google Scholar] [CrossRef] [PubMed]
- Genschel, J.; Bazemore, L.R.; Modrich, P. Human Exonuclease I Is Required for 5′ and 3′ Mismatch Repair. J. Biol. Chem. 2002, 277, 13302–13311. [Google Scholar] [CrossRef]
- Zhang, Y.; Yuan, F.; Presnell, S.R.; Tian, K.; Gao, Y.; Tomkinson, A.E.; Gu, L.; Li, G.M. Reconstitution of 5′-Directed Human Mismatch Repair in a Purified System. Cell 2005, 122, 693–705. [Google Scholar] [CrossRef]
- Schmidt, T.T.; Hombauer, H. Visualization of Mismatch Repair Complexes Using Fluorescence Microscopy. DNA Repair 2016, 38, 58–67. [Google Scholar]
- Jascur, T.; Boland, C.R. Structure and Function of the Components of the Human DNA Mismatch Repair System. Int. J. Cancer 2006, 119, 2030–2035. [Google Scholar] [PubMed]
- Lahue, R.S.; Au, K.G.; Modrich, P. DNA Mismatch Correction in a Defined System. Science (1979) 1989, 14, 160–164. [Google Scholar] [CrossRef] [PubMed]
- Su, S.S.; Lahue, R.S.; Au, K.G.; Modrich, P. Mispair Specificity of Methyl-Directed DNA Mismatch Correction in Vitro. J. Biol. Chem. 1988, 263, 6829–6835. [Google Scholar] [CrossRef] [PubMed]
- Thomas, D.C.; Roberts, J.D.; Kunkel, T.A. Heteroduplex Repair in Extracts of Human HeLa Cells. J. Biol. Chem. 1991, 266, 3744–3751. [Google Scholar] [CrossRef]
- Chen, P.J.; Hussmann, J.A.; Yan, J.; Knipping, F.; Ravisankar, P.; Chen, P.F.; Chen, C.; Nelson, J.W.; Newby, G.A.; Sahin, M.; et al. Enhanced Prime Editing Systems by Manipulating Cellular Determinants of Editing Outcomes. Cell 2021, 184, 5635–5652.e29. [Google Scholar] [CrossRef] [PubMed]
- Georgescu, R.; Langston, L.; O’Donnell, M. A Proposal: Evolution of PCNA’s Role as a Marker of Newly Replicated DNA. DNA Repair (Amst) 2015, 29, 4–15. [Google Scholar] [CrossRef] [PubMed]
- McElhinny, S.A.N.; Kissling, G.E.; Kunkel, T.A. Differential Correction of Lagging-Strand Replication Errors Made by DNA Polymerases α and δ. Proc. Natl. Acad. Sci. USA 2010, 107, 21070–21075. [Google Scholar] [CrossRef]
- Kunkel, T.A.; Erie, D.A. DNA Mismatch Repair. Annu. Rev. Biochem. 2005, 74, 681–710. [Google Scholar] [PubMed]
- Ferreira da Silva, J.; Oliveira, G.P.; Arasa-Verge, E.A.; Kagiou, C.; Moretton, A.; Timelthaler, G.; Jiricny, J.; Loizou, J.I. Prime Editing Efficiency and Fidelity Are Enhanced in the Absence of Mismatch Repair. Nat. Commun. 2022, 13, 760. [Google Scholar] [CrossRef] [PubMed]
- Montecucco, A.; Biamonti, G.; Savini, E.; Focher, F.; Spadari, S.; Ciarrocchi, G. DNA ligase I gene expression during differentiation and cell proliferation. Nucleic Acids Res. 1992, 20, 6209–6214. [Google Scholar]
- Levesque, S.; Cosentino, A.; Verma, A.; Genovese, P.; Bauer, D.E. Enhancing Prime Editing in Hematopoietic Stem and Progenitor Cells by Modulating Nucleotide Metabolism. Nat. Biotechnol. 2024. [Google Scholar] [CrossRef]
- Sretenovic, S.; Qi, Y. Plant Prime Editing Goes Prime. Nat. Plants 2022, 8, 20–22. [Google Scholar] [CrossRef]
- Lin, B.; Gupta, D.; Heinen, C.D. Human Pluripotent Stem Cells Have a Novel Mismatch Repair-Dependent Damage Response. J. Biol. Chem. 2014, 289, 24314–24324. [Google Scholar] [CrossRef]
- Tomkinson, A.E.; Naila, T.; Bhandari, S.K. Altered DNA Ligase Activity in Human Disease. Mutagenesis 2021, 35, 51–60. [Google Scholar] [CrossRef]
- Peña-Diaz, J.; Bregenhorn, S.; Ghodgaonkar, M.; Follonier, C.; Artola-Borán, M.; Castor, D.; Lopes, M.; Sartori, A.A.; Jiricny, J. Noncanonical Mismatch Repair as a Source of Genomic Instability in Human Cells. Mol. Cell 2012, 47, 669–680. [Google Scholar] [CrossRef]
- Pilzecker, B.; Jacobs, H. Mutating for Good: DNA Damage Responses during Somatic Hypermutation. Front. Immunol. 2019, 10, 438. [Google Scholar] [CrossRef]
- Wilson, T.M.; Vaisman, A.; Martomo, S.A.; Sullivan, P.; Lan, L.; Hanaoka, F.; Yasui, A.; Woodgate, R.; Gearhart, P.J. MSH2-MSH6 Stimulates DNA Polymerase η, Suggesting a Role for A:T Mutations in Antibody Genes. J. Exp. Med. 2005, 201, 637–645. [Google Scholar] [CrossRef] [PubMed]
- Descours, B.; Cribier, A.; Chable-Bessia, C.; Ayinde, D.; Rice, G.; Crow, Y.; Yatim, A.; Schwartz, O.; Laguette, N.; Benkirane, M. SAMHD1 Restricts HIV-1 Reverse Transcription in Quiescent CD4 + T-Cells. Retrovirology 2012, 9, 87. [Google Scholar] [CrossRef] [PubMed]
- Zack, J.A.; Arrigo, S.J.; Weitsman, S.R.; Go, A.S.; Haislip, A.; Chen, I.S.Y. HIV-1 Entry into Quiescent Primary Lymphocytes: Molecular Analysis Reveals a Labile, Latent Viral Structure. Cell 1990, 61, 213–222. [Google Scholar] [CrossRef]
- Skasko, M.; Weiss, K.K.; Reynolds, H.M.; Jamburuthugoda, V.; Lee, K.; Kim, B. Mechanistic Differences in RNA-dependent DNA Polymerization and Fidelity between Murine Leukemia Virus and HIV-1 Reverse Transcriptases * NIH Public Access. J. Biol. Chem. 2005, 280, 12190–12200. [Google Scholar] [CrossRef]
- Chen, S.; Bonifati, S.; Qin, Z.; St. Gelais, C.; Wu, L. SAMHD1 Suppression of Antiviral Immune Responses. Trends Microbiol. 2019, 27, 254–267. [Google Scholar] [CrossRef] [PubMed]
- Diamond, T.L.; Roshal, M.; Jamburuthugoda, V.K.; Reynolds, H.M.; Merriam, A.R.; Lee, K.Y.; Balakrishnan, M.; Bambara, R.A.; Planelles, V.; Dewhurst, S.; et al. Macrophage Tropism of HIV-1 Depends on Efficient Cellular DNTP Utilization by Reverse Transcriptase. J. Biol. Chem. 2004, 279, 51545–51553. [Google Scholar] [CrossRef]
- Goldstone, D.C.; Ennis-Adeniran, V.; Hedden, J.J.; Groom, H.C.T.; Rice, G.I.; Christodoulou, E.; Walker, P.A.; Kelly, G.; Haire, L.F.; Yap, M.W.; et al. HIV-1 Restriction Factor SAMHD1 Is a Deoxynucleoside Triphosphate Triphosphohydrolase. Nature 2011, 480, 379–382. [Google Scholar] [CrossRef] [PubMed]
- Tsai, M.H.C.; Caswell, S.J.; Morris, E.R.; Mann, M.C.; Pennell, S.; Kelly, G.; Groom, H.C.T.; Taylor, I.A.; Bishop, K.N. Attenuation of Reverse Transcriptase Facilitates SAMHD1 Restriction of HIV-1 in Cycling Cells. Retrovirology 2023, 20, 5. [Google Scholar] [CrossRef]
- Ghassemi, S.; Durgin, J.S.; Nunez-Cruz, S.; Patel, J.; Leferovich, J.; Pinzone, M.; Shen, F.; Cummins, K.D.; Plesa, G.; Cantu, V.A.; et al. Rapid Manufacturing of Non-Activated Potent CAR T Cells. Nat. Biomed. Eng. 2022, 6, 118–128. [Google Scholar] [CrossRef] [PubMed]
- Valeri, E.; Unali, G.; Piras, F.; Abou-Alezz, M.; Pais, G.; Benedicenti, F.; Lidonnici, M.R.; Cuccovillo, I.; Castiglioni, I.; Arévalo, S.; et al. Removal of Innate Immune Barriers Allows Efficient Transduction of Quiescent Human Hematopoietic Stem Cells. Mol. Ther. 2024, 32, 124–139. [Google Scholar] [CrossRef]
- Miazzi, C.; Ferraro, P.; Pontarin, G.; Rampazzo, C.; Reichard, P.; Bianchi, V. Allosteric Regulation of the Human and Mouse Deoxyribonucleotide Triphosphohydrolase Sterile α-Motif/Histidine-Aspartate Domain-Containing Protein 1 (SAMHD1). J. Biol. Chem. 2014, 289, 18339–18346. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Zhang, Y.; Tian, S.; Zong, R.; Yan, X.; Wang, Y.; Wang, Y.; Zhao, J. An Optimized Prime Editing System for Efficient Modification of the Pig Genome. Sci. China Life Sci. 2023, 66, 2851–2861. [Google Scholar] [PubMed]
- Sylvers, J.; Wang, Y.; Yuan, F. Nuclear Entry of DNA and Transgene Expression in Dividing and Non-Dividing Cells. Cell Mol. Bioeng. 2023, 16, 459–474. [Google Scholar] [CrossRef] [PubMed]
- Zabner, J.; Fasbender, A.J.; Moninger, T.; Poellinger, K.A.; Welsh, M.J. Cellular and Molecular Barriers to Gene Transfer by a Cationic Lipid. J. Biol. Chem. 1995, 270, 18997–19007. [Google Scholar] [CrossRef]
- Zou, S.; Scarfo, K.; Nantz, M.H.; Hecker, J.G. Lipid-Mediated Delivery of RNA Is More Efficient than Delivery of DNA in Non-Dividing Cells. Int. J. Pharm. 2010, 389, 232–243. [Google Scholar] [CrossRef]
- Davis, J.R.; Banskota, S.; Levy, J.M.; Newby, G.A.; Wang, X.; Anzalone, A.V.; Nelson, A.T.; Chen, P.J.; Hennes, A.D.; An, M.; et al. Efficient Prime Editing in Mouse Brain, Liver and Heart with Dual AAVs. Nat. Biotechnol. 2023, 42, 253–264. [Google Scholar] [CrossRef]
- Doman, J.L.; Pandey, S.; Neugebauer, M.E.; An, M.; Davis, J.R.; Randolph, P.B.; McElroy, A.; Gao, X.D.; Raguram, A.; Richter, M.F.; et al. Phage-Assisted Evolution and Protein Engineering Yield Compact, Efficient Prime Editors. Cell 2023, 186, 3983–4002.e26. [Google Scholar] [CrossRef]
- Dong, W.; Kantor, B. Lentiviral Vectors for Delivery of Gene-Editing Systems Based on Crispr/Cas: Current State and Perspectives. Viruses 2021, 13, 1288. [Google Scholar] [CrossRef] [PubMed]
- Zhi, S.; Chen, Y.; Wu, G.; Wen, J.; Wu, J.; Liu, Q.; Li, Y.; Kang, R.; Hu, S.; Wang, J.; et al. Dual-AAV Delivering Split Prime Editor System for in Vivo Genome Editing. Mol. Ther. 2022, 30, 283–294. [Google Scholar] [CrossRef]
- She, K.; Liu, Y.; Zhao, Q.; Jin, X.; Yang, Y.; Su, J.; Li, R.; Song, L.; Xiao, J.; Yao, S.; et al. Dual-AAV Split Prime Editor Corrects the Mutation and Phenotype in Mice with Inherited Retinal Degeneration. Signal Transduct. Target. Ther. 2023, 8, 57. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.; Liang, S.Q.; Liu, B.; Liu, P.; Kwan, S.Y.; Wolfe, S.A.; Xue, W. A Flexible Split Prime Editor Using Truncated Reverse Transcriptase Improves Dual-AAV Delivery in Mouse Liver. Mol. Ther. 2022, 30, 1343–1351. [Google Scholar] [CrossRef]
- Bulcha, J.T.; Wang, Y.; Ma, H.; Tai, P.W.L.; Gao, G. Viral Vector Platforms within the Gene Therapy Landscape. Signal Transduct. Target. Ther. 2021, 6, 53. [Google Scholar]
- del Pozo-Rodríguez, A.; Solinís, M.Á.; Rodríguez-Gascón, A. Applications of Lipid Nanoparticles in Gene Therapy. Eur. J. Pharm. Biopharm. 2016, 109, 184–193. [Google Scholar] [CrossRef] [PubMed]
- Maury, B.; Gonçalves, C.; Tresset, G.; Zeghal, M.; Cheradame, H.; Guégan, P.; Pichon, C.; Midoux, P. Influence of PDNA Availability on Transfection Efficiency of Polyplexes in Non-Proliferative Cells. Biomaterials 2014, 35, 5977–5985. [Google Scholar] [CrossRef] [PubMed]
- Koseoglu, M.M.; Norambuena, A.; Sharlow, E.R.; Lazo, J.S.; Bloom, G.S. Aberrant Neuronal Cell Cycle Re-Entry: The Pathological Confluence of Alzheimer’s Disease and Brain Insulin Resistance, and Its Relation to Cancer. J. Alzheimer’s Dis. 2019, 67, 1–11. [Google Scholar] [CrossRef] [PubMed]
- White, T.L.; Deshpande, N.; Kumar, V.; Gauthier, A.G.; Jurkunas, U.V. Cell Cycle Re-Entry and Arrest in G2/M Phase Induces Senescence and Fibrosis in Fuchs Endothelial Corneal Dystrophy. Free Radic. Biol. Med. 2021, 164, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Krug, M.S.; Berger, S.L. Ribonuclease H Activities Associated with Viral Reverse Transcriptases Are Endonucleases (Human Immunodeficiency Virus/Avian Myeloblastosis Virus). Proc. Natl. Acad. Sci. USA 1989, 86, 3539–3543. [Google Scholar] [CrossRef]
- Kennedy, E.M.; Amie, S.M.; Bambara, R.A.; Kim, B. Frequent Incorporation of Ribonucleotides during HIV-1 Reverse Transcription and Their Attenuated Repair in Macrophages. J. Biol. Chem. 2012, 287, 14280–14288. [Google Scholar] [CrossRef]
- Potenski, C.J.; Klein, H.L. How the Misincorporation of Ribonucleotides into Genomic DNA Can Be Both Harmful and Helpful to Cells. Nucleic Acids Res. 2014, 42, 10226–10234. [Google Scholar] [CrossRef] [PubMed]
- Lujan, S.A.; Williams, J.S.; Clausen, A.R.; Clark, A.B.; Kunkel, T.A. Ribonucleotides Are Signals for Mismatch Repair of Leading-Strand Replication Errors. Mol. Cell 2013, 50, 437–443. [Google Scholar] [CrossRef] [PubMed]
Protein Name | Function |
---|---|
Msh2 (MutS protein homolog 2) | MutLɑ (PMS2–MLH1) recruitment |
Msh3 (MutS protein homolog 3) | 1–14 bp indel recognition, some base pair mismatch recognition |
Msh6 (MutS protein homolog 6) | Mismatch and 1–2 bp indel recognition |
MutLɑ (PMS2–Mlh1) (Mismatch repair endonuclease PMS2 (postmeiotic segregation increased 2)—MutL protein homolog 1) | Incision of nick-containing strand |
PCNA (Proliferating cell nuclear antigen) | Activation of MutLɑ in replication context |
EXO1 (Exonuclease 1) | Removal of incised strand |
Polymerase δ | Resynthesis of removed strand |
LIG1 (Ligase 1) | Ligation of newly synthesized sequence |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrova, I.O.; Smirnikhina, S.A. Prime Editing in Dividing and Quiescent Cells. Int. J. Mol. Sci. 2025, 26, 3596. https://doi.org/10.3390/ijms26083596
Petrova IO, Smirnikhina SA. Prime Editing in Dividing and Quiescent Cells. International Journal of Molecular Sciences. 2025; 26(8):3596. https://doi.org/10.3390/ijms26083596
Chicago/Turabian StylePetrova, Irina O., and Svetlana A. Smirnikhina. 2025. "Prime Editing in Dividing and Quiescent Cells" International Journal of Molecular Sciences 26, no. 8: 3596. https://doi.org/10.3390/ijms26083596
APA StylePetrova, I. O., & Smirnikhina, S. A. (2025). Prime Editing in Dividing and Quiescent Cells. International Journal of Molecular Sciences, 26(8), 3596. https://doi.org/10.3390/ijms26083596