Half a Century of Progress: The Evolution of Wheat Germ-Based In Vitro Translation into a Versatile Protein Production Method
Abstract
:1. Early Days
2. Increasing Productivity
3. High-Throughput Protein Analysis
4. Protein Complexes
5. Extracellular Proteins
6. Membrane Proteins
7. Protein Synthesis for Structural Studies
Name | Description | Source Organism | Translation Method | Structure Determination Method | PDB/BMRB (#) Identifier | Ref. |
---|---|---|---|---|---|---|
MUB1 | membrane-anchored ubiquitin-fold protein 1 (At3g01050) | Arabidopsis thaliana | dialysis | solution NMR | 1SE9 | [19] |
MAPR2 | membrane-associated progesterone-binding protein 2 (At2g24940.1) | Arabidopsis thaliana | dialysis | solution NMR | 1T0G | [156] |
DRLB1 | dynein light chain roadblock-type 1 | Mus musculus | dialysis | solution NMR | 1Y4O | [157] |
AIG2LA | putative gamma-glutamylcyclotransferase AIG2-like protein A (At5g39720.1) | Arabidopsis thaliana | dialysis | solution NMR | 2G0Q | [158] |
PabI | restriction endonuclease-type II Pab1 domain-containing protein | Pyrococcus abyssi | bilayer | X-ray diffraction | 2DVY | [22] |
STR16 | thiosulfate sulphurtransferase 16 (At5g66040.1) | Arabidopsis thaliana | dialysis | solution NMR | 1TQ1 | [159] |
F24M12.60 | oxidised thioredoxin AtTrx h1 (At3g51020.1) | Arabidopsis thaliana | dialysis | solution NMR | 1XFL | [160] |
ZNF593 | C2H2-type zinc finger protein 593 | Homo sapiens | dialysis | solution NMR | 1ZR9 | [161] |
SNX22 | sorting nexin-22 | Homo sapiens | dialysis | solution NMR | 2ETT | [162] |
UBL3 | ubiquitin-like protein 3 | Homo sapiens | dialysis | solution NMR | 2GOW | [163] |
MLP28 | major latex protein-like protein 28 (At1g70830.1) | Arabidopsis thaliana | dialysis | solution NMR | 2I9Y | [164] |
OARD1 | apo ADP-ribose glycohydrolase OARD1 (apo C6orf130) | Homo sapiens | dialysis | solution NMR | 2LGR | [165] |
DCN1L | DCUN1 domain-containing protein | Galdieria sulphuraria | dialysis | X-ray diffraction | 3KEV | [166] |
NS5A-D1D2D3 | nonstructural protein 5A domains | Hepatitis C virus | bilayer | solution NMR | #26702 | [167] |
NS5A-AHD1 | nonstructural protein 5A AH-linker-D1 | Hepatitis C virus | bilayer | solid-state NMR | #50380 | [150] |
PDX12/PDX13 | pyridoxal 5′-phosphate synthase-like subunit PDX1.2/PDX1.3 heterocomplex (At3g16050, At5g01410) | Arabidopsis thaliana | bilayer | cryo-EM | 7LB6 | [40] |
Artn | molecular chaperone artemin | Artemia franciscana | bilayer | cryo-EM | 7RVB | [168] |
PhC | polyhedrin | Bombyx mori cypovirus 1 | bilayer | X-ray diffraction | 7XHR 7XWS | [43] |
CipA | crystalline inclusion protein A | Photorhabdus luminescens | dialysis | X-ray diffraction | 7XHS | [43] |
Gn | glycoprotein n cytosolic domain | Crimean–Congo haemorrhagic fever virus | bilayer | solution NMR | #52372 | [147] |
S-HDAg | antigen, small isoform | hepatitis delta virus | dialysis | solid-state NMR | #52512 | [151] |
c-Myc/PhC | c-Myc proto-oncogene protein/polyhedrin | Homo sapiens/Bombyx mori cypovirus 1 | dialysis | X-ray diffraction | 8J2Q 8WLG 8X8S 8X8V | [155] |
NMR: nuclear magnetic resonance; cryo-EM: cryogenic electron microscopy |
8. Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AahII | Androctonus australis hector α-toxin |
ABA | abscisic acid |
ABI1 | abscisic acid insensitive 1 |
ADP | adenosine 5’-diphosphate |
ALPHA | amplified luminescent proximity homogenous assay |
ATP | adenosine 5′-triphosphate |
AtPPT1 | Arabidopsis thaliana phosphoenolpyruvate/phosphate translocator 1 |
AtRGS1 | Arabidopsis thaliana regulator of G protein signalling 1 |
CECF | continuous exchange cell-free |
CFCF | continuous flow cell-free |
CFPS | cell-free protein synthesis |
CRBN | cereblon protein |
cryo-EM | cryogenic electron microscopy |
cytb5 | cytochrome b5 |
DTT | dithiothreitol |
eIF | eukaryotic initiation factor |
FIZZ1 | found in inflammatory zone 1 protein |
GA | gibberellin |
GPCR | G protein-coupled receptor |
GST | glutathione S-transferase |
GTP | guanosine 5′-triphosphate |
HBV | hepatitis B virus |
hERG | human ether-a-go-go-related gene |
IMAC | immobilised metal affinity chromatography |
IRES | internal ribosome entry site |
MP | membrane protein |
mRNA | messenger ribonucleic acid |
NMR | nuclear magnetic resonance |
ORF | open reading frame |
PDI | protein disulfide isomerase |
PDX | pyridoxal 5′-phosphate synthase-like subunit |
TMV | tobacco mosaic virus |
UTR | untranslated region |
QSOX | quiescin sulfhydryl oxidase |
WGE | wheat germ extract |
References
- Littlefield, J.W.; Keller, E.B.; Gross, J.; Zamecnik, P.C. Studies on Cytoplasmic Ribonucleoprotein Particles from the Liver of the Rat. J. Biol. Chem. 1955, 217, 111–123. [Google Scholar] [CrossRef] [PubMed]
- Schachtschabel, D.; Zillig, W. Untersuchungen Zur Biosynthese Der Proteine, I Über Den Einbau 14C-Markierter Aminosäuren Ins Protein Zellfreier Nucleoproteid-Enzym-Systeme Aus Escherichia Coli B. Hoppe. Seylers. Z. Physiol. Chem. 1959, 314, 262–275. [Google Scholar] [CrossRef]
- Nirenberg, M.W.; Matthaei, J.H. The Dependence of Cell-Free Protein Synthesis in E. coli upon Naturally Occurring or Synthetic Polyribonucleotides. Proc. Natl. Acad. Sci. USA 1961, 47, 1588–1602. [Google Scholar] [CrossRef]
- Zamecnik, P.C. An Historical Account of Protein Synthesis, with Current Overtones—A Personalized View. Cold Spring Harb. Symp. Quant. Biol. 1969, 34, 1–16. [Google Scholar] [CrossRef]
- Roberts, B.E.; Paterson, B.M. Efficient Translation of Tobacco Mosaic Virus RNA and Rabbit Globin 9S RNA in a Cell Free System from Commercial Wheat Germ. Proc. Natl. Acad. Sci. USA 1973, 70, 2330–2334. [Google Scholar] [CrossRef]
- Efron, D.; Marcus, A. Translation of TMV-RNA in a Cell-Free Wheat Embryo System. Virology 1973, 53, 343–348. [Google Scholar] [CrossRef] [PubMed]
- Pelham, H.R.B.; Jackson, R.J. An Efficient mRNA-Dependent Translation System from Reticulocyte Lysates. Eur. J. Biochem. 1976, 67, 247–256. [Google Scholar] [CrossRef] [PubMed]
- Gregorio, N.E.; Levine, M.Z.; Oza, J.P. A User’s Guide to Cell-Free Protein Synthesis. Methods Protoc. 2019, 2, 24. [Google Scholar] [CrossRef]
- Batista, A.C.; Soudier, P.; Kushwaha, M.; Faulon, J. Optimising Protein Synthesis in Cell-free Systems, a Review. Eng. Biol. 2021, 5, 10–19. [Google Scholar] [CrossRef]
- Harbers, M. Wheat Germ Systems for Cell-Free Protein Expression. FEBS Lett. 2014, 588, 2762–2773. [Google Scholar] [CrossRef]
- Madin, K.; Sawasaki, T.; Ogasawara, T.; Endo, Y. A Highly Efficient and Robust Cell-Free Protein Synthesis System Prepared from Wheat Embryos: Plants Apparently Contain a Suicide System Directed at Ribosomes. Proc. Natl. Acad. Sci. USA 2000, 97, 559–564. [Google Scholar] [CrossRef] [PubMed]
- Endo, Y. Development of a Cell-Free Protein Synthesis System for Practical Use. Proc. Jpn. Acad. Ser. B 2021, 97, 261–276. [Google Scholar] [CrossRef] [PubMed]
- Spirin, A.S.; Baranov, V.I.; Ryabova, L.A.; Ovodov, S.Y.; Alakhov, Y.B. A Continuous Cell-Free Translation System Capable of Producing Polypeptides in High Yield. Science 1988, 242, 1162–1164. [Google Scholar] [CrossRef]
- Sawasaki, T.; Ogasawara, T.; Morishita, R.; Endo, Y. A Cell-Free Protein Synthesis System for High-Throughput Proteomics. Proc. Natl. Acad. Sci. USA 2002, 99, 14652–14657. [Google Scholar] [CrossRef]
- Kamura, N.; Sawasaki, T.; Kasahara, Y.; Takai, K.; Endo, Y. Selection of 5′-Untranslated Sequences That Enhance Initiation of Translation in a Cell-Free Protein Synthesis System from Wheat Embryos. Bioorganic Med. Chem. Lett. 2005, 15, 5402–5406. [Google Scholar] [CrossRef] [PubMed]
- Sawasaki, T.; Hasegawa, Y.; Tsuchimochi, M.; Kamura, N.; Ogasawara, T.; Kuroita, T.; Endo, Y. A Bilayer Cell-Free Protein Synthesis System for High-Throughput Screening of Gene Products. FEBS Lett. 2002, 514, 102–105. [Google Scholar] [CrossRef]
- Kawasaki, T.; Gouda, M.D.; Sawasaki, T.; Takai, K.; Endo, Y. Efficient Synthesis of a Disulfide-Containing Protein through a Batch Cell-Free System from Wheat Germ. Eur. J. Biochem. 2003, 270, 4780–4786. [Google Scholar] [CrossRef]
- Spirin, A.S. High-Throughput Cell-Free Systems for Synthesis of Functionally Active Proteins. Trends Biotechnol. 2004, 22, 538–545. [Google Scholar] [CrossRef]
- Vinarov, D.A.; Lytle, B.L.; Peterson, F.C.; Tyler, E.M.; Volkman, B.F.; Markley, J.L. Cell-Free Protein Production and Labeling Protocol for NMR-Based Structural Proteomics. Nat. Methods 2004, 1, 149–153. [Google Scholar] [CrossRef]
- Vinarov, D.A.; Newman, C.L.L.; Markley, J.L. Wheat Germ Cell-free Platform for Eukaryotic Protein Production. FEBS J. 2006, 273, 4160–4169. [Google Scholar] [CrossRef]
- Nozawa, A.; Nanamiya, H.; Miyata, T.; Linka, N.; Endo, Y.; Weber, A.P.M.; Tozawa, Y. A Cell-Free Translation and Proteoliposome Reconstitution System for Functional Analysis of Plant Solute Transporters. Plant Cell Physiol. 2007, 48, 1815–1820. [Google Scholar] [CrossRef]
- Miyazono, K.I.; Watanabe, M.; Kosinski, J.; Ishikawa, K.; Kamo, M.; Sawasaki, T.; Nagata, K.; Bujnicki, J.M.; Endo, Y.; Tanokura, M.; et al. Novel Protein Fold Discovered in the PabI Family of Restriction Enzymes. Nucleic Acids Res. 2007, 35, 1908–1918. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, M.; Miyazono, K.-I.; Tanokura, M.; Sawasaki, T.; Endo, Y.; Kobayashi, I. Cell-Free Protein Synthesis for Structure Determination by X-Ray Crystallography. Methods Mol. Biol. 2010, 607, 149–160. [Google Scholar] [CrossRef] [PubMed]
- Goshima, N.; Kawamura, Y.; Fukumoto, A.; Miura, A.; Honma, R.; Satoh, R.; Wakamatsu, A.; Yamamoto, J.I.; Kimura, K.; Nishikawa, T.; et al. Human Protein Factory for Converting the Transcriptome into an in Vitro-Expressed Proteome. Nat. Methods 2008, 5, 1011–1017. [Google Scholar] [CrossRef] [PubMed]
- Park, N.; Um, S.H.; Funabashi, H.; Xu, J.; Luo, D. A Cell-Free Protein-Producing Gel. Nat. Mater. 2009, 8, 432–437. [Google Scholar] [CrossRef]
- Nozawa, A.; Ogasawara, T.; Matsunaga, S.; Iwasaki, T.; Sawasaki, T.; Endo, Y. Production and Partial Purification of Membrane Proteins Using a Liposome-Supplemented Wheat Cell-Free Translation System. BMC Biotechnol. 2011, 11, 35. [Google Scholar] [CrossRef]
- Gad, W.; Nair, M.G.; van Belle, K.; Wahni, K.; de Greve, H.; van Ginderachter, J.A.; Vandenbussche, G.; Endo, Y.; Artis, D.; Messens, J. The Quiescin Sulfhydryl Oxidase (HQSOX1b) Tunes the Expression of Resistin-Like Molecule Alpha (RELM-α or MFIZZ1) in a Wheat Germ Cell-Free Extract. PLoS ONE 2013, 8, e55621. [Google Scholar] [CrossRef]
- Takeda, H.; Ogasawara, T.; Ozawa, T.; Muraguchi, A.; Jih, P.J.; Morishita, R.; Uchigashima, M.; Watanabe, M.; Fujimoto, T.; Iwasaki, T.; et al. Production of Monoclonal Antibodies against GPCR Using Cell-Free Synthesized GPCR Antigen and Biotinylated Liposome-Based Interaction Assay. Sci. Rep. 2015, 5, 11333. [Google Scholar] [CrossRef]
- Zhou, W.; Takeda, H. Production of Immunizing Antigen Proteoliposome Using Cell-Free Protein Synthesis System. In Methods in Molecular Biology; Humana Press Inc.: New York, NY, USA, 2018; Volume 1868, pp. 49–67. [Google Scholar] [CrossRef]
- Zhou, W.; Takeda, H. Cell-Free Production of Proteoliposomes for Functional Analysis and Antibody Development Targeting Membrane Proteins. J. Vis. Exp. 2020, 2020, e61871. [Google Scholar] [CrossRef]
- Takai, K.; Sawasaki, T.; Endo, Y. Practical Cell-Free Protein Synthesis System Using Purified Wheat Embryos. Nat. Protoc. 2010, 5, 227–238. [Google Scholar] [CrossRef]
- Fogeron, M.L.; Badillo, A.; Penin, F.; Böckmann, A. Wheat Germ Cell-Free Overexpression for the Production of Membrane Proteins. In Methods in Molecular Biology; Humana Press: New York, NY, USA, 2017; Volume 1635, pp. 91–108. [Google Scholar] [CrossRef]
- Ogawa, A.; Takamatsu, M. Mutation of the Start Codon to Enhance Cripavirus Internal Ribosome Entry Site-Mediated Translation in a Wheat Germ Extract. Bioorganic Med. Chem. Lett. 2019, 29, 126729. [Google Scholar] [CrossRef]
- Takahashi, H.; Ogawa, A. Coupled in Vitro Transcription/Translation Based on Wheat Germ Extract for Efficient Expression from PCR-Generated Templates in Short-Time Batch Reactions. Bioorganic Med. Chem. Lett. 2021, 52, 128412. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, A.; Fujikawa, M.; Tanimoto, R.; Matsuno, K.; Uehara, R.; Inoue, H.; Takahashi, H. Cell-Free Multistep Gene Regulatory Cascades Using Eukaryotic ON-Riboswitches Responsive to in Situ Expressed Protein Ligands. ACS Synth. Biol. 2025, 14, 909–918. [Google Scholar] [CrossRef] [PubMed]
- Endo, Y.; Takemori, N.; Nagy, S.K.; Okimune, K.-I.; Kamakaka, R.; Onouchi, H.; Takasuka, T.E. De Novo Reconstitution of Chromatin Using Wheat Germ Cell-Free Protein Synthesis. FEBS Open Bio 2021, 11, 1552–1564. [Google Scholar] [CrossRef]
- Okimune, K.; Hataya, S.; Matsumoto, K.; Ushirogata, K.; Banko, P.; Takeda, S.; Takasuka, T.E. Histone Chaperone-Mediated Co-Expression Assembly of Tetrasomes and Nucleosomes. FEBS Open Bio 2021, 11, 2912–2920. [Google Scholar] [CrossRef] [PubMed]
- Banko, P.; Okimune, K.-I.; Nagy, S.K.; Hamasaki, A.; Morishita, R.; Onouchi, H.; Takasuka, T.E. In Vitro Co-Expression Chromatin Assembly and Remodeling Platform for Plant Histone Variants. Sci. Rep. 2024, 14, 936. [Google Scholar] [CrossRef]
- Novikova, I.V.; Sharma, N.; Moser, T.; Sontag, R.; Liu, Y.; Collazo, M.J.; Cascio, D.; Shokuhfar, T.; Hellmann, H.; Knoblauch, M.; et al. Protein Structural Biology Using Cell-Free Platform from Wheat Germ. Adv. Struct. Chem. Imaging 2018, 4, 13. [Google Scholar] [CrossRef]
- Novikova, I.V.; Zhou, M.; Du, C.; Parra, M.; Kim, D.N.; Vanaernum, Z.L.; Shaw, J.B.; Hellmann, H.; Wysocki, V.H.; Evans, J.E. Tunable Heteroassembly of a Plant Pseudoenzyme-Enzyme Complex. ACS Chem. Biol. 2021, 16, 2315–2325. [Google Scholar] [CrossRef]
- Dudley, Q.M.; Cai, Y.M.; Kallam, K.; Debreyne, H.; Carrasco Lopez, J.A.; Patron, N.J. Biofoundry-Assisted Expression and Characterization of Plant Proteins. Synth. Biol. 2021, 6, ysab029. [Google Scholar] [CrossRef]
- Yamaoka, Y.; Jeremiah, S.S.; Funabashi, R.; Miyakawa, K.; Morita, T.; Mihana, Y.; Kato, H.; Ryo, A. Characterization and Utilization of Disulfide-Bonded SARS-CoV-2 Receptor Binding Domain of Spike Protein Synthesized by Wheat Germ Cell-Free Production System. Viruses 2022, 14, 1461. [Google Scholar] [CrossRef]
- Abe, S.; Tanaka, J.; Kojima, M.; Kanamaru, S.; Hirata, K.; Yamashita, K.; Kobayashi, A.; Ueno, T. Cell-Free Protein Crystallization for Nanocrystal Structure Determination. Sci. Rep. 2022, 12, 16031. [Google Scholar] [CrossRef] [PubMed]
- Brümmer, J.; Thole, H.; Kloppstech, K. Hordothionins Inhibit Protein Synthesis at the Level of Initiation in the Wheat-germ System. Eur. J. Biochem. 1994, 219, 425–433. [Google Scholar] [CrossRef]
- Spanò, C.; Buselli, R.; Ruffini Castiglione, M.; Bottega, S.; Grilli, I. RNases and Nucleases in Embryos and Endosperms from Naturally Aged Wheat Seeds Stored in Different Conditions. J. Plant Physiol. 2007, 164, 487–495. [Google Scholar] [CrossRef]
- Takai, K.; Sawasaki, T.; Endo, Y. RNA N-Glycosidase Activity of Ribosome-Inactivating Proteins. Plant Cell Monogr. 2010, 18, 27–39. [Google Scholar] [CrossRef]
- Shatkin, A.J.; Manley, J.L. The Ends of the Affair: Capping and Polyadenylation. Nat. Struct. Biol. 2000, 7, 838–842. [Google Scholar] [CrossRef] [PubMed]
- Trepotec, Z.; Geiger, J.; Plank, C.; Aneja, M.K.; Rudolph, C. Segmented Poly(A) Tails Significantly Reduce Recombination of Plasmid DNA without Affecting mRNA Translation Efficiency or Half-Life. RNA 2019, 25, 507–518. [Google Scholar] [CrossRef]
- Gallie, D.R. The 5′-Leader of Tobacco Mosaic Virus Promotes Translation through Enhanced Recruitment of ElF4F. Nucleic Acids Res. 2002, 30, 3401–3411. [Google Scholar] [CrossRef]
- Anderson, J.S.J.; Parker, R. The 3′ to 5′ Degradation of Yeast mRNAs Is a General Mechanism for mRNA Turnover That Requires the SK12 DEVH Box Protein and 3′ to 5′ Exonucleases of the Exosome Complex. EMBO J. 1998, 17, 1497–1506. [Google Scholar] [CrossRef]
- Lai, W.J.C.; Zhu, M.; Belinite, M.; Ballard, G.; Mathews, D.H.; Ermolenko, D.N. Intrinsically Unstructured Sequences in the mRNA 3′ UTR Reduce the Ability of Poly(A) Tail to Enhance Translation. J. Mol. Biol. 2022, 434, 167877. [Google Scholar] [CrossRef]
- Ogawa, A.; Tabuchi, J.; Doi, Y. Identification of Short Untranslated Regions That Sufficiently Enhance Translation in High-Quality Wheat Germ Extract. Bioorganic Med. Chem. Lett. 2014, 24, 3724–3727. [Google Scholar] [CrossRef]
- Ogawa, A.; Kutsuna, A.; Takamatsu, M.; Okuzono, T. In Vitro Selection of a 3′ Terminal Short Protector That Stabilizes Transcripts to Improve the Translation Efficiency in a Wheat Germ Extract. Bioorganic Med. Chem. Lett. 2019, 29, 2141–2144. [Google Scholar] [CrossRef] [PubMed]
- Nomoto, M.; Tada, Y. Cloning-Free Template DNA Preparation for Cell-Free Protein Synthesis via Two-Step PCR Using Versatile Primer Designs with Short 3′-UTR. Genes to Cells 2018, 23, 46–53. [Google Scholar] [CrossRef]
- Morita, E.H.; Sawasaki, T.; Tanaka, R.; Endo, Y.; Kohno, T. A Wheat Germ Cell-free System Is a Novel Way to Screen Protein Folding and Function. Protein Sci. 2003, 12, 1216–1221. [Google Scholar] [CrossRef]
- Bardóczy, V.; Géczi, V.; Sawasaki, T.; Endo, Y.; Mészáros, T. A Set of Ligation-Independent in Vitro Translation Vectors for Eukaryotic Protein Production. BMC Biotechnol. 2008, 8, 32. [Google Scholar] [CrossRef] [PubMed]
- Nagy, S.K.; Kállai, B.M.; András, J.; Mészáros, T. A Novel Family of Expression Vectors with Multiple Affinity Tags for Wheat Germ Cell-Free Protein Expression. BMC Biotechnol. 2020, 20, 17. [Google Scholar] [CrossRef]
- Wilson, J.E.; Powell, M.J.; Hoover, S.E.; Sarnow, P. Naturally Occurring Dicistronic Cricket Paralysis Virus RNA Is Regulated by Two Internal Ribosome Entry Sites. Mol. Cell. Biol. 2000, 20, 4990–4999. [Google Scholar] [CrossRef] [PubMed]
- Brödel, A.K.; Sonnabend, A.; Roberts, L.O.; Stech, M.; Wüstenhagen, D.A.; Kubick, S. IRES-Mediated Translation of Membrane Proteins and Glycoproteins in Eukaryotic Cell-Free Systems. PLoS ONE 2013, 8, e82234. [Google Scholar] [CrossRef]
- Biffo, S.; Ruggero, D.; Santoro, M.M. The Crosstalk between Metabolism and Translation. Cell Metab. 2024, 36, 1945–1962. [Google Scholar] [CrossRef]
- Calhoun, K.A.; Swartz, J.R. Energy Systems for ATP Regeneration in Cell-Free Protein Synthesis Reactions. In In Vitro Transcription and Translation Protocols; Humana Press Inc.: New York, NJ, USA, 2007; pp. 3–17. [Google Scholar] [CrossRef]
- Calhoun, K.A.; Swartz, J.R. Energizing Cell-Free Protein Synthesis with Glucose Metabolism. Biotechnol. Bioeng. 2005, 90, 606–613. [Google Scholar] [CrossRef]
- Kim, D.M.; Kigawa, T.; Choi, C.Y.; Yokoyama, S. A Highly Efficient Cell-Free, Protein Synthesis System from Escherichia coli. Eur. J. Biochem. 1996, 239, 881–886. [Google Scholar] [CrossRef]
- Ryabova, L.A.; Vinokurov, L.M.; Shekhovtsova, E.A.; Alakhov, Y.B.; Spirin, A.S. Acetyl Phosphate as an Energy Source for Bacterial Cell-Free Translation Systems. Anal. Biochem. 1995, 226, 184–186. [Google Scholar] [CrossRef] [PubMed]
- Sonnemann, J.; Mutzel, R. Cytosolic Nucleoside Diphosphate Kinase Associated with the Translation Apparatus May Provide GTP for Protein Synthesis. Biochem. Biophys. Res. Commun. 1995, 209, 490–496. [Google Scholar] [CrossRef]
- Aleksashin, N.A.; Chang, S.T.-L.; Cate, J.H.D. A Highly Efficient Human Cell-Free Translation System. RNA 2023, 29, 1960–1972. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.H.; Fujishima, K.; Berhanu, S.; Kuruma, Y.; Jia, T.Z.; Khusnutdinova, A.N.; Yakunin, A.F.; McGlynn, S.E. A Bifunctional Polyphosphate Kinase Driving the Regeneration of Nucleoside Triphosphate and Reconstituted Cell-Free Protein Synthesis. ACS Synth. Biol. 2020, 9, 36–42. [Google Scholar] [CrossRef]
- Dever, T.E.; Ivanov, I.P. Roles of Polyamines in Translation. J. Biol. Chem. 2018, 293, 18719–18729. [Google Scholar] [CrossRef] [PubMed]
- Endo, Y.; Otsuzuki, S.; Ito, K.; Miura, K.I. Production of an Enzymatic Active Protein Using a Continuous Flow Cell-Free Translation System. J. Biotechnol. 1992, 25, 221–230. [Google Scholar] [CrossRef]
- Volyanik, E.V.; Dalley, A.; McKay, I.A.; Leigh, I.; Williams, N.S.; Bustin, S.A. Synthesis of Preparative Amounts of Biologically Active Interleukin-6 Using a Continuous-Flow Cell-Free Translation System. Anal. Biochem. 1993, 214, 289–294. [Google Scholar] [CrossRef]
- Kim, D.M.; Choi, C.Y. A Semicontinuous Prokaryotic Coupled Transcription/Translation System Using a Dialysis Membrane. Biotechnol. Prog. 1996, 12, 645–649. [Google Scholar] [CrossRef]
- Kuzumi, A.; Norimatsu, Y.; Matsuda, K.M.; Ono, C.; Okumura, T.; Kogo, E.; Goshima, N.; Fukasawa, T.; Fushida, N.; Horii, M.; et al. Comprehensive Autoantibody Profiling in Systemic Autoimmunity by a Highly-Sensitive Multiplex Protein Array. Front. Immunol. 2023, 14, 1255540. [Google Scholar] [CrossRef]
- Morishita, R.; Sugiyama, S.; Denda, M.; Tokunaga, S.; Kido, K.; Shioya, R.; Ozawa, S.; Sawasaki, T. CF-PA2Vtech: A Cell-Free Human Protein Array Technology for Antibody Validation against Human Proteins. Sci. Rep. 2019, 9, 19349. [Google Scholar] [CrossRef]
- Ramadan, A.; Nemoto, K.; Seki, M.; Shinozaki, K.; Takeda, H.; Takahashi, H.; Sawasaki, T. Wheat Germ-Based Protein Libraries for the Functional Characterisation of the Arabidopsis E2 Ubiquitin Conjugating Enzymes and the RING-Type E3 Ubiquitin Ligase Enzymes. BMC Plant Biol. 2015, 15, 275. [Google Scholar] [CrossRef]
- Mizutani, Y.; Matsuoka, K.; Takeda, H.; Shiogama, K.; Inada, K.-I.; Hayakawa, K.; Yamada, H.; Miyazaki, T.; Sawasaki, T.; Endo, Y.; et al. Novel Approach to Identifying Autoantibodies in Rheumatoid Synovitis with a Biotinylated Human Autoantigen Library and the Enzyme-Labeled Antigen Method. J. Immunol. Methods 2013, 387, 57–70. [Google Scholar] [CrossRef] [PubMed]
- Madono, M.; Sawasaki, T.; Morishita, R.; Endo, Y. Wheat Germ Cell-Free Protein Production System for Post-Genomic Research. New Biotechnol. 2011, 28, 211–217. [Google Scholar] [CrossRef]
- Ishigami, T.; Abe, K.; Aoki, I.; Minegishi, S.; Ryo, A.; Matsunaga, S.; Matsuoka, K.; Takeda, H.; Sawasaki, T.; Umemura, S.; et al. Anti-Interleukin-5 and Multiple Autoantibodies Are Associated with Human Atherosclerotic Diseases and Serum Interleukin-5 Levels. FASEB J. 2013, 27, 3437–3445. [Google Scholar] [CrossRef]
- Kállai, B.M.; Kourová, H.; Chumová, J.; Papdi, C.; Trögelová, L.; Kofroňová, O.; Hozák, P.; Filimonenko, V.; Mészáros, T.; Magyar, Z.; et al. γ-Tubulin Interacts with E2F Transcription Factors to Regulate Proliferation and Endocycling in Arabidopsis. J. Exp. Bot. 2020, 71, 1265–1277. [Google Scholar] [CrossRef] [PubMed]
- Nemoto, K.; Kagawa, M.; Nozawa, A.; Hasegawa, Y.; Hayashi, M.; Imai, K.; Tomii, K.; Sawasaki, T. Identification of New Abscisic Acid Receptor Agonists Using a Wheat Cell-Free Based Drug Screening System. Sci. Rep. 2018, 8, 4268. [Google Scholar] [CrossRef]
- Rademacher, W. Chemical Regulators of Gibberellin Status and Their Application in Plant Production. Annu. Plant Rev. Gibberellins 2016, 49, 359–404. [Google Scholar] [CrossRef]
- Nozawa, A.; Miyazaki, R.; Aoki, Y.; Hirose, R.; Hori, R.; Muramatsu, C.; Shigematsu, Y.; Nemoto, K.; Hasegawa, Y.; Fujita, K.; et al. Identification of a New Gibberellin Receptor Agonist, Diphegaractin, by a Cell-Free Chemical Screening System. Commun. Biol. 2023, 6, 448. [Google Scholar] [CrossRef]
- Smithells, R.W.; Newman, C.G.H. Recognition of Thalidomide Defects. J. Med. Genet. 1992, 29, 716–723. [Google Scholar] [CrossRef]
- Matyskiela, M.E.; Couto, S.; Zheng, X.; Lu, G.; Hui, J.; Stamp, K.; Drew, C.; Ren, Y.; Wang, M.; Carpenter, A.; et al. SALL4 Mediates Teratogenicity as a Thalidomide-Dependent Cereblon Substrate. Nat. Chem. Biol. 2018, 14, 981–987. [Google Scholar] [CrossRef]
- Yamanaka, S.; Murai, H.; Saito, D.; Abe, G.; Tokunaga, E.; Iwasaki, T.; Takahashi, H.; Takeda, H.; Suzuki, T.; Shibata, N.; et al. Thalidomide and Its Metabolite 5-hydroxythalidomide Induce Teratogenicity via the Cereblon Neosubstrate PLZF. EMBO J. 2021, 40, e105375. [Google Scholar] [CrossRef] [PubMed]
- Abdulrahman, W.; Radu, L.; Garzoni, F.; Kolesnikova, O.; Gupta, K.; Osz-Papai, J.; Berger, I.; Poterszman, A. The Production of Multiprotein Complexes in Insect Cells Using the Baculovirus Expression System. Methods Mol. Biol. 2015, 1261, 91–114. [Google Scholar] [CrossRef]
- Liutkute, M.; Samatova, E.; Rodnina, M.V. Cotranslational Folding of Proteins on the Ribosome. Biomolecules 2020, 10, 97. [Google Scholar] [CrossRef] [PubMed]
- Weingartner, M.; Criqui, M.C.; Mészáros, T.; Binarova, P.; Schmit, A.C.; Helfer, A.; Derevier, A.; Erhardt, M.; Bögre, L.; Genschik, P. Expression of a Nondegradable Cyclin B1 Affects Plant Development and Leads to Endomitosis by Inhibiting the Formation of a Phragmoplast. Plant Cell 2004, 16, 643–657. [Google Scholar] [CrossRef]
- Luger, K.; Mäder, A.W.; Richmond, R.K.; Sargent, D.F.; Richmond, T.J. Crystal Structure of the Nucleosome Core Particle at 2.8 Å Resolution. Nature 1997, 389, 251–260. [Google Scholar] [CrossRef]
- Borg, M.; Jiang, D.; Berger, F. Histone Variants Take Center Stage in Shaping the Epigenome. Curr. Opin. Plant Biol. 2021, 61, 101991. [Google Scholar] [CrossRef] [PubMed]
- Millán-Zambrano, G.; Burton, A.; Bannister, A.J.; Schneider, R. Histone Post-Translational Modifications—Cause and Consequence of Genome Function. Nat. Rev. Genet. 2022, 23, 563–580. [Google Scholar] [CrossRef]
- Okimune, K.-I.; Nagy, S.K.; Hataya, S.; Endo, Y.; Takasuka, T.E. Reconstitution of Drosophila and Human Chromatins by Wheat Germ Cell-Free Co-Expression System. BMC Biotechnol. 2020, 20, 62. [Google Scholar] [CrossRef] [PubMed]
- Uhlén, M.; Karlsson, M.J.; Hober, A.; Svensson, A.S.; Scheffel, J.; Kotol, D.; Zhong, W.; Tebani, A.; Strandberg, L.; Edfors, F.; et al. The Human Secretome. Sci. Signal. 2019, 12, eaaz0274. [Google Scholar] [CrossRef]
- Braakman, I.; Hebert, D.N. Protein Folding in the Endoplasmic Reticulum. Cold Spring Harb. Perspect. Biol. 2013, 5, a013201. [Google Scholar] [CrossRef]
- Thorpe, C.; Hoober, K.L.; Raje, S.; Glynn, N.M.; Burnside, J.; Turi, G.K.; Coppock, D.L. Sulfhydryl Oxidases: Emerging Catalysts of Protein Disulfide Bond Formation in Eukaryotes. Arch. Biochem. Biophys. 2002, 405, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Holcomb, I.N.; Kabakoff, R.C.; Chan, B.; Baker, T.W.; Gurney, A.; Henzel, W.; Nelson, C.; Lowman, H.B.; Wright, B.D.; Skelton, N.J.; et al. FIZZ1, a Novel Cysteine-Rich Secreted Protein Associated with Pulmonary Inflammation, Defines a New Gene Family. EMBO J. 2000, 19, 4046–4055. [Google Scholar] [CrossRef] [PubMed]
- Gad, W.; Ben-Abderrazek, R.; Wahni, K.; Vertommen, D.; Muyldermans, S.; Bouhaouala-Zahar, B.; Messens, J. Wheat Germ in Vitro Translation to Produce One of the Most Toxic Sodium Channel Specific Toxins. Biosci. Rep. 2014, 34, 369–379. [Google Scholar] [CrossRef]
- Inaba, K.; Masui, S.; Iida, H.; Vavassori, S.; Sitia, R.; Suzuki, M. Crystal Structures of Human Ero1α Reveal the Mechanisms of Regulated and Targeted Oxidation of PDI. EMBO J. 2010, 29, 3330–3343. [Google Scholar] [CrossRef] [PubMed]
- Bundy, B.C.; Swartz, J.R. Efficient Disulfide Bond Formation in Virus-like Particles. J. Biotechnol. 2011, 154, 230–239. [Google Scholar] [CrossRef]
- Michel, E.; Wüthrich, K. Cell-Free Expression of Disulfide-Containing Eukaryotic Proteins for Structural Biology. FEBS J. 2012, 279, 3176–3184. [Google Scholar] [CrossRef]
- Yin, G.; Swartz, J.R. Enhancing Multiple Disulfide Bonded Protein Folding in a Cell-Free System. Biotechnol. Bioeng. 2004, 86, 188–195. [Google Scholar] [CrossRef]
- Das Gupta, M.; Flaskamp, Y.; Roentgen, R.; Juergens, H.; Armero-Gimenez, J.; Albrecht, F.; Hemmerich, J.; Arfi, Z.A.; Neuser, J.; Spiegel, H.; et al. Scaling Eukaryotic Cell-Free Protein Synthesis Achieved with the Versatile and High-Yielding Tobacco BY-2 Cell Lysate. Biotechnol. Bioeng. 2023, 120, 2890–2906. [Google Scholar] [CrossRef]
- Stockton, J.D.; Merkert, M.C.; Kellaris, K.V. A Complex of Chaperones and Disulfide Isomerases Occludes the Cytosolic Face of the Translocation Protein Sec61p and Affects Translocation of the Prion Protein. Biochemistry 2003, 42, 12821–12834. [Google Scholar] [CrossRef]
- Ezure, T.; Nanatani, K.; Sato, Y.; Suzuki, S.; Aizawa, K.; Souma, S.; Ito, M.; Hohsaka, T.; Von Heijine, G.; Utsumi, T.; et al. A Cell-Free Translocation System Using Extracts of Cultured Insect Cells to Yield Functional Membrane Proteins. PLoS ONE 2014, 9, e112874. [Google Scholar] [CrossRef]
- Tsuboi, T.; Takeo, S.; Iriko, H.; Jin, L.; Tsuchimochi, M.; Matsuda, S.; Han, E.T.; Otsuki, H.; Kaneko, O.; Sattabongkot, J.; et al. Wheat Germ Cell-Free System-Based Production of Malaria Proteins for Discovery of Novel Vaccine Candidates. Infect. Immun. 2008, 76, 1702–1708. [Google Scholar] [CrossRef] [PubMed]
- Beebe, E.T.; Makino, S.I.; Nozawa, A.; Matsubara, Y.; Frederick, R.O.; Primm, J.G.; Goren, M.A.; Fox, B.G. Robotic Large-Scale Application of Wheat Cell-Free Translation to Structural Studies Including Membrane Proteins. New Biotechnol. 2011, 28, 239–249. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, D.; Dötsch, V.; Bernhard, F. Production of Membrane Proteins Using Cell-free Expression Systems. Proteomics 2008, 8, 3933–3946. [Google Scholar] [CrossRef] [PubMed]
- Fogeron, M.L.; Lecoq, L.; Cole, L.; Harbers, M.; Böckmann, A. Easy Synthesis of Complex Biomolecular Assemblies: Wheat Germ Cell-Free Protein Expression in Structural Biology. Front. Mol. Biosci. 2021, 8, 639587. [Google Scholar] [CrossRef]
- Nomura, S.-I.M.; Kondoh, S.; Asayama, W.; Asada, A.; Nishikawa, S.; Akiyoshi, K. Direct Preparation of Giant Proteo-Liposomes by in Vitro Membrane Protein Synthesis. J. Biotechnol. 2008, 133, 190–195. [Google Scholar] [CrossRef]
- Goren, M.A.; Fox, B.G. Wheat Germ Cell-Free Translation, Purification, and Assembly of a Functional Human Stearoyl-CoA Desaturase Complex. Protein Expr. Purif. 2008, 62, 171–178. [Google Scholar] [CrossRef]
- Németh, C.E.; Marcolongo, P.; Gamberucci, A.; Fulceri, R.; Benedetti, A.; Zoppi, N.; Ritelli, M.; Chiarelli, N.; Colombi, M.; Willaert, A.; et al. Glucose Transporter Type 10—Lacking in Arterial Tortuosity Syndrome—Facilitates Dehydroascorbic Acid Transport. FEBS Lett. 2016, 590, 1630–1640. [Google Scholar] [CrossRef]
- Long, A.R.; O’Brien, C.C.; Alder, N.N. The Cell-Free Integration of a Polytopic Mitochondrial Membrane Protein into Liposomes Occurs Cotranslationally and in a Lipid-Dependent Manner. PLoS ONE 2012, 7, e46332. [Google Scholar] [CrossRef]
- Tadaki, D.; Yamaura, D.; Araki, S.; Yoshida, M.; Arata, K.; Ohori, T.; Ishibashi, K.I.; Kato, M.; Ma, T.; Miyata, R.; et al. Mechanically Stable Solvent-Free Lipid Bilayers in Nano- and Micro-Tapered Apertures for Reconstitution of Cell-Free Synthesized HERG Channels. Sci. Rep. 2017, 7, 17736. [Google Scholar] [CrossRef]
- Komiya, M.; Kato, M.; Tadaki, D.; Ma, T.; Yamamoto, H.; Tero, R.; Tozawa, Y.; Niwano, M.; Hirano-Iwata, A. Advances in Artificial Cell Membrane Systems as a Platform for Reconstituting Ion Channels. Chem. Rec. 2020, 20, 730–742. [Google Scholar] [CrossRef]
- Kögler, L.M.; Stichel, J.; Beck-Sickinger, A.G. Structural Investigations of Cell-Free Expressed G Protein-Coupled Receptors. Biol. Chem. 2019, 401, 97–116. [Google Scholar] [CrossRef]
- Ritz, S.; Hulko, M.; Zerfaß, C.; May, S.; Hospach, I.; Krasteva, N.; Nelles, G.; Sinner, E.K. Cell-Free Expression of a Mammalian Olfactory Receptor and Unidirectional Insertion into Small Unilamellar Vesicles (SUVs). Biochimie 2013, 95, 1909–1916. [Google Scholar] [CrossRef]
- Yoshii, T.; Takayama, I.; Fukutani, Y.; Ikuta, T.; Maehashi, K.; Yohda, M. Development of an Odorant Sensor with a Cell-Free Synthesized Olfactory Receptor and a Graphene Field-Effect Transistor. Anal. Sci. 2022, 38, 241–245. [Google Scholar] [CrossRef]
- Kaiser, L.; Graveland-Bikker, J.; Steuerwald, D.; Vanberghem, M.; Herlihy, K.; Zhang, S. Efficient Cell-Free Production of Olfactory Receptors: Detergent Optimization, Structure, and Ligand Binding Analyses. Proc. Natl. Acad. Sci. USA 2008, 105, 15726–15731. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, Y. Reconstruction of Protein/Liposome Complex. In Methods in Molecular Biology; Humana Press Inc.: New York, NY, USA, 2018; Volume 1868, pp. 69–77. [Google Scholar] [CrossRef]
- Suzuki, Y.; Ogasawara, T.; Tanaka, Y.; Takeda, H.; Sawasaki, T.; Mogi, M.; Liu, S.; Maeyama, K. Functional G-Protein-Coupled Receptor (GPCR) Synthesis: The Pharmacological Analysis of Human Histamine H1 Receptor (HRH1) Synthesized by a Wheat Germ Cell-Free Protein Synthesis System Combined with Asolectin Glycerosomes. Front. Pharmacol. 2018, 9, 38. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Suzuki, Y.; Inui, M. Generation of Specific Aptamers. In Methods in Molecular Biology; Humana Press Inc.: New York, NY, USA, 2018; Volume 1868, pp. 113–121. [Google Scholar] [CrossRef]
- Suzuki, Y.; Liu, S.; Ogasawara, T.; Sawasaki, T.; Takasaki, Y.; Yorozuya, T.; Mogi, M. A Novel MRGPRX2-Targeting Antagonistic DNA Aptamer Inhibits Histamine Release and Prevents Mast Cell-Mediated Anaphylaxis. Eur. J. Pharmacol. 2020, 878, 173104. [Google Scholar] [CrossRef] [PubMed]
- Katz, F.N.; Rothman, J.E.; Lingappa, V.R.; Blobel, G.; Lodish, H.F. Membrane Assembly in Vitro: Synthesis, Glycosylation, and Asymmetric Insertion of a Transmembrane Protein. Proc. Natl. Acad. Sci. USA 1977, 74, 3278–3282. [Google Scholar] [CrossRef]
- Rideau, E.; Dimova, R.; Schwille, P.; Wurm, F.R.; Landfester, K. Liposomes and Polymersomes: A Comparative Review towards Cell Mimicking. Chem. Soc. Rev. 2018, 47, 8572–8610. [Google Scholar] [CrossRef]
- Nallani, M.; Andreasson-Ochsner, M.; Tan, C.-W.D.; Sinner, E.-K.; Wisantoso, Y.; Geifman-Shochat, S.; Hunziker, W. Proteopolymersomes: In Vitro Production of a Membrane Protein in Polymersome Membranes. Biointerphases 2011, 6, 153–157. [Google Scholar] [CrossRef]
- Zapf, T.; Tan, C.D.; Reinelt, T.; Huber, C.; Shaohua, D.; Geifman-Shochat, S.; Paulsen, H.; Sinner, E. Funktionelle Synthese Des Lichtsammelkomplexes II in Polymermembran-Architekturen. Angew. Chem. 2015, 127, 14875–14879. [Google Scholar] [CrossRef]
- May, S.; Andreasson-Ochsner, M.; Fu, Z.; Low, Y.X.; Tan, D.; De Hoog, H.P.M.; Ritz, S.; Nallani, M.; Sinner, E.K. In Vitro Expressed GPCR Inserted in Polymersome Membranes for Ligand-Binding Studies. Angew. Chem.-Int. Ed. 2013, 52, 749–753. [Google Scholar] [CrossRef]
- De Hoog, H.P.M.; JieRong, E.M.L.; Banerjee, S.; Décaillot, F.M.; Nallani, M. Conformational Antibody Binding to a Native, Cell-Free Expressed GPCR in Block Copolymer Membranes. PLoS ONE 2014, 9, e110847. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Makino, S.I.; Beebe, E.T.; Urano, D.; Aceti, D.J.; Misenheimer, T.M.; Peters, J.; Fox, B.G.; Jones, A.M. Cell-Free Translation and Purification of Arabidopsis thaliana Regulator of G Signaling 1 Protein. Protein Expr. Purif. 2016, 126, 33–41. [Google Scholar] [CrossRef]
- Kuroiwa, F.; Nishino, A.; Mandal, Y.; Honzawa, M.; Suenaga-Hiromori, M.; Suzuki, K.; Takani, Y.; Miyagi-Inoue, Y.; Yamaguchi, H.; Yamashita, S.; et al. Reconstitution of Prenyltransferase Activity on Nanodiscs by Components of the Rubber Synthesis Machinery of the Para Rubber Tree and Guayule. Sci. Rep. 2022, 12, 373. [Google Scholar] [CrossRef] [PubMed]
- Umar, A.W.; Park, J.C.; Ling, T.; Ryu, S.B. Plant Molecular Engine out of the Chassis: Natural Rubber Synthesis in Cell-Free Systems. Ind. Crops Prod. 2023, 195, 116166. [Google Scholar] [CrossRef]
- Andreas, L.B.; Jaudzems, K.; Stanek, J.; Lalli, D.; Bertarelloa, A.; Le Marchand, T.; De Paepe, D.C.; Kotelovica, S.; Akopjana, I.; Knott, B.; et al. Structure of Fully Protonated Proteins by Proton-Detected Magic-Angle Spinning NMR. Proc. Natl. Acad. Sci. USA 2016, 113, 9187–9192. [Google Scholar] [CrossRef]
- Griffin, R.G.; Swager, T.M.; Temkin, R.J. High Frequency Dynamic Nuclear Polarization: New Directions for the 21st Century. J. Magn. Reson. 2019, 306, 128–133. [Google Scholar] [CrossRef]
- Lacabanne, D.; Fogeron, M.-L.; Wiegand, T.; Cadalbert, R.; Meier, B.H.; Böckmann, A. Protein Sample Preparation for Solid-State NMR Investigations. Prog. Nucl. Magn. Reson. Spectrosc. 2019, 110, 20–33. [Google Scholar] [CrossRef]
- Kleywegt, G.J.; Adams, P.D.; Butcher, S.J.; Lawson, C.L.; Rohou, A.; Rosenthal, P.B.; Subramaniam, S.; Topf, M.; Abbott, S.; Baldwin, P.R.; et al. Community Recommendations on CryoEM Data Archiving and Validation. IUCrJ 2024, 11, 140–151. [Google Scholar] [CrossRef]
- Noirot, C.; Habenstein, B.; Bousset, L.; Melki, R.; Meier, B.H.; Endo, Y.; Penin, F.; Böckmann, A. Wheat-Germ Cell-Free Production of Prion Proteins for Solid-State NMR Structural Studies. New Biotechnol. 2011, 28, 232–238. [Google Scholar] [CrossRef]
- David, G.; Fogeron, M.; Schledorn, M.; Montserret, R.; Haselmann, U.; Penzel, S.; Badillo, A.; Lecoq, L.; André, P.; Nassal, M.; et al. Strukturelle Untersuchung Subviraler Partikel Durch Die Kombination von Zellfreier Proteinherstellung Mit 110 kHz MAS-NMR-Spektroskopie. Angew. Chem. 2018, 130, 4877–4882. [Google Scholar] [CrossRef]
- Zhao, K.Q.; Hurst, R.; Slater, M.R.; Bulleit, R.F. Functional Protein Expression from a DNA Based Wheat Germ Cell-Free System. J. Struct. Funct. Genom. 2007, 8, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Zhao, K.Q.; Hurst, R.; Slater, M.R.; Acton, T.B.; Swapna, G.V.T.; Shastry, R.; Kornhaber, G.J.; Montelione, G.T. Engineering of a Wheat Germ Expression System to Provide Compatibility with a High Throughput PET-Based Cloning Platform. J. Struct. Funct. Genom. 2010, 11, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, B.; Löhr, F.; Laguerre, A.; Bernhard, F.; Dötsch, V. Protein Labeling Strategies for Liquid-State NMR Spectroscopy Using Cell-Free Synthesis. Prog. Nucl. Magn. Reson. Spectrosc. 2018, 105, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Tonelli, M.; Singarapu, K.K.; Makino, S.I.; Sahu, S.C.; Matsubara, Y.; Endo, Y.; Kainosho, M.; Markley, J.L. Hydrogen Exchange during Cell-Free Incorporation of Deuterated Amino Acids and an Approach to Its Inhibition. J. Biomol. NMR 2011, 51, 467–476. [Google Scholar] [CrossRef]
- Kang, S.J.; Todokoro, Y.; Yumen, I.; Shen, B.; Iwasaki, I.; Suzuki, T.; Miyagi, A.; Yoshida, M.; Fujiwara, T.; Akutsu, H. Active-Site Structure of the Thermophilic Foc-Subunit Ring in Membranes Elucidated by Solid-State NMR. Biophys. J. 2014, 106, 390–398. [Google Scholar] [CrossRef]
- Todokoro, Y.; Kang, S.J.; Suzuki, T.; Ikegami, T.; Kainosho, M.; Yoshida, M.; Fujiwara, T.; Akutsu, H. Chemical Conformation of the Essential Glutamate Site of the C-Ring within Thermophilic Bacillus FoF1-ATP Synthase Determined by Solid-State NMR Based on Its Isolated c-Ring Structure. J. Am. Chem. Soc. 2022, 144, 14132–14139. [Google Scholar] [CrossRef]
- Sugihara, D.; Ono, F.; Sugino, M.; Suzuki, H.; Endo, N.; Shimada, A.; Ebihara, A. Production of Recombinant His-Tagged Triple-FLAG Peptide in Brevibacillus choshinensis and Its Utilization as an Easy-to-Remove Affinity Peptide. Biosci. Biotechnol. Biochem. 2023, 87, 1029–1035. [Google Scholar] [CrossRef]
- Jirasko, V.; Lakomek, N.A.; Penzel, S.; Fogeron, M.L.; Bartenschlager, R.; Meier, B.H.; Böckmann, A. Proton-Detected Solid-State NMR of the Cell-Free Synthesized α-Helical Transmembrane Protein NS4B from Hepatitis C Virus. ChemBioChem 2020, 21, 1453–1460. [Google Scholar] [CrossRef]
- Fogeron, M.L.; Lecoq, L.; Cole, L.; Montserret, R.; David, G.; Page, A.; Delolme, F.; Nassal, M.; Böckmann, A. Phosphorylation of the Hepatitis B Virus Large Envelope Protein. Front. Mol. Biosci. 2022, 8, 821755. [Google Scholar] [CrossRef]
- Fieulaine, S.; Tubiana, T.; Bressanelli, S. De Novo Modelling of HEV Replication Polyprotein: Five-Domain Breakdown and Involvement of Flexibility in Functional Regulation. Virology 2023, 578, 128–140. [Google Scholar] [CrossRef] [PubMed]
- Brigandat, L.; Laux, M.; Marteau, C.; Cole, L.; Böckmann, A.; Lecoq, L.; Fogeron, M.L.; Callon, M. NMR Side-Chain Assignments of the Crimean–Congo Hemorrhagic Fever Virus Glycoprotein n Cytosolic Domain. Magn. Reson. 2024, 5, 95–101. [Google Scholar] [CrossRef]
- Babot, M.; Boulard, Y.; Agouda, S.; Pieri, L.; Fieulaine, S.; Bressanelli, S.; Gervais, V. Oligomeric Assembly of the C-Terminal and Transmembrane Region of SARS-CoV-2 Nsp3. J. Virol. 2024, 98, e0157523. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, M.-H.; Palfy, G.; Fogeron, M.-L.; Ninot Pedrosa, M.; Zehnder, J.; Rimal, V.; Callon, M.; Lecoq, L.; Barnes, A.; Meier, B.H.; et al. Analysis of the Structure and Interactions of the SARS-CoV-2 ORF7b Accessory Protein. Proc. Natl. Acad. Sci. USA 2024, 121, e2407731121. [Google Scholar] [CrossRef] [PubMed]
- Jirasko, V.; Lends, A.; Lakomek, N.A.; Fogeron, M.L.; Weber, M.E.; Malär, A.A.; Penzel, S.; Bartenschlager, R.; Meier, B.H.; Böckmann, A. Dimer Organization of Membrane-Associated NS5A of Hepatitis C Virus as Determined by Highly Sensitive 1H-Detected Solid-State NMR. Angew. Chem.-Int. Ed. 2021, 60, 5339–5347. [Google Scholar] [CrossRef]
- Yang, Y.; Fogeron, M.L.; Malär, A.A.; Lecoq, L.; Barnes, A.B.; Meier, B.H.; Böckmann, A.; Callon, M. Hepatitis Delta Antigen Retains the Assembly Domain as the Only Rigid Entity. J. Am. Chem. Soc. 2024, 146, 29531–29539. [Google Scholar] [CrossRef]
- Wang, S.; Fogeron, M.L.; Schledorn, M.; Dujardin, M.; Penzel, S.; Burdette, D.; Berke, J.M.; Nassal, M.; Lecoq, L.; Meier, B.H.; et al. Combining Cell-Free Protein Synthesis and NMR Into a Tool to Study Capsid Assembly Modulation. Front. Mol. Biosci. 2019, 6, 67. [Google Scholar] [CrossRef]
- Lecoq, L.; Brigandat, L.; Huber, R.; Fogeron, M.L.; Wang, S.; Dujardin, M.; Briday, M.; Wiegand, T.; Callon, M.; Malär, A.; et al. Molecular Elucidation of Drug-Induced Abnormal Assemblies of the Hepatitis B Virus Capsid Protein by Solid-State NMR. Nat. Commun. 2023, 14, 471. [Google Scholar] [CrossRef]
- David, G.; Fogeron, M.L.; Montserret, R.; Lecoq, L.; Page, A.; Delolme, F.; Nassal, M.; Böckmann, A. Phosphorylation and Alternative Translation on Wheat Germ Cell-Free Protein Synthesis of the DHBV Large Envelope Protein. Front. Mol. Biosci. 2019, 6, 138. [Google Scholar] [CrossRef]
- Kojima, M.; Abe, S.; Furuta, T.; Hirata, K.; Yao, X.; Kobayashi, A.; Kobayashi, R.; Ueno, T. High-Throughput Structure Determination of an Intrinsically Disordered Protein Using Cell-Free Protein Crystallization. Proc. Natl. Acad. Sci. USA 2024, 121, e2322452121. [Google Scholar] [CrossRef]
- Song, J.; Vinarov, D.A.; Tyler, E.M.; Shahan, M.N.; Tyler, R.C.; Markley, J.L. Hypothetical Protein At2g24940.1 from Arabidopsis thaliana Has a Cytochrome B5 like Fold. J. Biomol. NMR 2004, 30, 215–218. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Tyler, R.C.; Lee, M.S.; Tyler, E.M.; Markley, J.L. Solution Structure of Isoform 1 of Roadblock/LC7, a Light Chain in the Dynein Complex. J. Mol. Biol. 2005, 354, 1043–1051. [Google Scholar] [CrossRef]
- Lytle, B.L.; Peterson, F.C.; Tyler, E.M.; Newman, C.L.; Vinarov, D.A.; Markley, J.L.; Volkman, B.F. Solution Structure of Arabidopsis thaliana Protein At5g39720.1, a Member of the AIG2-like Protein Family. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 2006, 62, 490–493. [Google Scholar] [CrossRef] [PubMed]
- Cornilescu, G.; Vinarov, D.A.; Tyler, E.M.; Markley, J.L.; Cornilescu, C.C. Solution Structure of a Single-domain Thiosulfate Sulfurtransferase from Arabidopsis thaliana. Protein Sci. 2006, 15, 2836–2841. [Google Scholar] [CrossRef]
- Peterson, F.C.; Lytle, B.L.; Sampath, S.; Vinarov, D.; Tyler, E.; Shahan, M.; Markley, J.L.; Volkman, B.F. Solution Structure of Thioredoxin h 1 from Arabidopsis thaliana. Protein Sci. 2005, 14, 2195–2200. [Google Scholar] [CrossRef]
- Hayes, P.L.; Lytle, B.L.; Volkman, B.F.; Peterson, F.C. The Solution Structure of ZNF593 from Homo Sapiens Reveals a Zinc Finger in a Predominately Unstructured Protein. Protein Sci. 2008, 17, 571–576. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Zhao, K.Q.; Newman, C.L.L.; Vinarov, D.A.; Markley, J.L. Solution Structure of Human Sorting Nexin 22. Protein Sci. 2007, 16, 807–814. [Google Scholar] [CrossRef] [PubMed]
- de la Cruz, N.B.; Peterson, F.C.; Lytle, B.L.; Volkman, B.F. Solution Structure of a Membrane-anchored Ubiquitin-fold (MUB) Protein from Homo sapiens. Protein Sci. 2007, 16, 1479–1484. [Google Scholar] [CrossRef]
- Lytle, B.L.; Song, J.; De La Cruz, N.B.; Peterson, F.C.; Johnson, K.A.; Bingman, C.A.; Phillips, G.N.; Volkman, B.F. Structures of Two Arabidopsis thaliana Major Latex Proteins Represent Novel Helix-Grip Folds. Proteins Struct. Funct. Bioinform. 2009, 76, 237–243. [Google Scholar] [CrossRef]
- Peterson, F.C.; Chen, D.; Lytle, B.L.; Rossi, M.N.; Ahel, I.; Denu, J.M.; Volkman, B.F. Orphan Macrodomain Protein (Human C6orf130) Is an O-Acyl-ADP-Ribose Deacylase: Solution Structure and Catalytic Properties. J. Biol. Chem. 2011, 286, 35955–35965. [Google Scholar] [CrossRef]
- Sethe Burgie, E.; Bingman, C.A.; Makino, S.; Wesenberg, G.E.; Pan, X.; Fox, B.G.; Phillips, G.N. Structural Architecture of Galdieria sulphuraria DCN1L. Proteins Struct. Funct. Bioinforma. 2011, 79, 1329–1336. [Google Scholar] [CrossRef] [PubMed]
- Badillo, A.; Receveur-Brechot, V.; Sarrazin, S.; Cantrelle, F.X.; Delolme, F.; Fogeron, M.L.; Molle, J.; Montserret, R.; Bockmann, A.; Bartenschlager, R.; et al. Overall Structural Model of NS5A Protein from Hepatitis C Virus and Modulation by Mutations Confering Resistance of Virus Replication to Cyclosporin A. Biochemistry 2017, 56, 3029–3048. [Google Scholar] [CrossRef] [PubMed]
- Parvate, A.D.; Powell, S.M.; Brookreson, J.T.; Moser, T.H.; Novikova, I.V.; Zhou, M.; Evans, J.E. Cryo-EM Structure of the Diapause Chaperone Artemin. Front. Mol. Biosci. 2022, 9, 998562. [Google Scholar] [CrossRef] [PubMed]
Year | Milestone | Improvement | Ref. |
---|---|---|---|
1973 | Batch in vitro translation using wheat germ extract | Translation of exogenous viral and eukaryotic messenger ribonucleic acid (mRNA) proceeded for up to 1.5 h. | [5,6] |
1988 | Continuous-flow cell-free (CFCF) translation | The continuous, active flow of feeding buffer through the ultrafiltration-separated reaction mixture extended the reaction time to 40 h, transforming the WGE into a preparative-scale CFPS. | [13] |
2000 | Improvement of wheat germ extract | Careful selection of wheat embryos and thorough washing increased translation efficiency by removing ribosome-inactivating proteins and other translational inhibitors. | [11] |
2002 | Improvement of the mRNA used for translation | The introduction of a 5′ cap replacing GAAΩ or GAA-artificial translation enhancer sequences, along with a long 3′-untranslated region (UTR) and a short poly(A) repeat, achieved translation efficiency comparable to capped mRNAs. These innovations streamlined the mRNA generation process for WGE in vitro translation. | [14,15] |
2002 | Bilayer method for translation | Continuous feeding of translation without a physical barrier enabled small-scale protein production for high-throughput studies and simplified large-scale production in 6-well plates. | [16] |
2003 | Supplementation with exogenous protein disulfide isomerase (PDI) | Functional synthesis of a single-chain antibody variable fragment with proper disulfide bonds using dithiotreitol-free translation buffer and exogenous PDI. | [17] |
2004 | Continuous-exchange cell-free (CECF) translation | The passive diffusional exchange of the feeding solution through a semipermeable membrane resulted in a simpler setup compared to the CFCF system, while maintaining comparable efficiency. | [18] |
2004 | Protein-producing pipeline for structural analysis of proteins by solution nuclear magnetic resonance (NMR) | Small-scale translation reactions in dialysis cups, followed by large-scale reactions in dialysis bags, resulted in labelling efficiency >95%. | [19,20] |
2007 | Detergent-supplemented WGE (D-CF mode) for membrane protein synthesis | The inclusion of an appropriate detergent increased the soluble fraction of the Arabidopsis thaliana multi-pass membrane protein phosphoenolpyruvate/phosphate translocator 1 (AtPPT1). | [21] |
2007 | Structure determination by X-ray crystallography | The first crystal structure determined using WGE-produced protein demonstrated that the approach enabled the incorporation of selenomethionine into the cell-toxic PabI restriction endonuclease. | [22,23] |
2008 | High-throughput protein synthesis | Using the transcriptome as a template, 13,277 human proteins were produced on a whole-proteome scale with nearly 100% efficiency. This achievement led to the creation of protein microarrays, dubbed the ‘human protein factory’, for applications in genomics research, drug discovery and other fields. | [24] |
2009 | Protein-producing hydrogel (P-gel) system for translation | The incorporation of the DNA template into a hydrogel resulted in at least 10 times higher expression yields in a coupled in vitro transcription/translation system than in solution-based systems. | [25] |
2011 | Liposome-supplemented WGE for membrane protein synthesis (L-CF mode) | A bilayer setup of producing functional lipid/membrane protein complexes resulted in a >40% association rate of membrane proteins with 1 to 14 transmembrane domains in liposomes, making it suitable for large-scale membrane protein production. | [26] |
2013 | Supplementation with exogenous quiescin sulfhydryl oxidase (QSOX) | The murine found in inflammatory zone 1 (FIZZ1) cysteine-rich secreted protein was synthesised in a physiologically functional spatial structure with proper disulfide bridges. | [27] |
2015 | Bilayer-dialysis method for membrane protein synthesis | The bilayer translation system was implemented using a dialysis cup containing liposomes, which was immersed in the feeding buffer. This setup efficiently produced several G protein-coupled receptors (GPCRs). | [28,29,30] |
2017 | Protein-producing pipeline for structural analysis of proteins by solid-state NMR | Optimised high-yield expression of membrane proteins in a detergent-solubilised form, followed by their high-level purification by Strep-tag II-based affinity chromatography and reconstitution in lipids with low lipid/protein ratios. | [31,32] |
2021 | Coupled in vitro transcription/translation (cIVTT) in batch and dialysis format | The application of a mutant variant of the cricket paralysis virus (CrPV) internal ribosomal entry site (IRES) significantly increased productivity and performed effectively in supergiant unilamellar vesicles (SGUVs). | [33,34,35] |
2021 | De novo and histone chaperone-mediated assembly of nucleosomes | Reconstitution of nucleosomes from canonical and variant histones using a positioning DNA sequence resulted in chromatin assembly devoid of typical epigenetic modifications, making it suitable for chromatin studies. | [36,37,38] |
2021 | Protein-producing pipeline for structure determination by cryogenic electron microscopy (cryo-EM) | The open format of the CFPS allowed precise stoichiometric control of protein coexpression and thus the assembly of pyridoxal 5′-phosphate synthase-like (PDX) heterocomplexes for the first cryo-EM structure determination of a WGE-produced complex. | [39,40] |
2021 | Workflow for automated DNA assembly and cell-free expression | Miniaturised cell-free reactions were performed by using an acoustic liquid handling platform for high-throughput functional assays without the need for protein purification. | [41] |
2022 | Supplementation with exogenous endoplasmic reticulum oxidoreductase-1 α and protein disulfide isomerase (EP-WG system) | Synthesis of disulfide-bonded receptor-binding domain of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein. | [42] |
2022 | Cell-free protein crystallisation (CFPC) method | Production of high-quality crystals directly in the translation mixture. | [43] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kállai, B.M.; Sawasaki, T.; Endo, Y.; Mészáros, T. Half a Century of Progress: The Evolution of Wheat Germ-Based In Vitro Translation into a Versatile Protein Production Method. Int. J. Mol. Sci. 2025, 26, 3577. https://doi.org/10.3390/ijms26083577
Kállai BM, Sawasaki T, Endo Y, Mészáros T. Half a Century of Progress: The Evolution of Wheat Germ-Based In Vitro Translation into a Versatile Protein Production Method. International Journal of Molecular Sciences. 2025; 26(8):3577. https://doi.org/10.3390/ijms26083577
Chicago/Turabian StyleKállai, Brigitta M., Tatsuya Sawasaki, Yaeta Endo, and Tamás Mészáros. 2025. "Half a Century of Progress: The Evolution of Wheat Germ-Based In Vitro Translation into a Versatile Protein Production Method" International Journal of Molecular Sciences 26, no. 8: 3577. https://doi.org/10.3390/ijms26083577
APA StyleKállai, B. M., Sawasaki, T., Endo, Y., & Mészáros, T. (2025). Half a Century of Progress: The Evolution of Wheat Germ-Based In Vitro Translation into a Versatile Protein Production Method. International Journal of Molecular Sciences, 26(8), 3577. https://doi.org/10.3390/ijms26083577