Do Nitrosative Stress Molecules Hold Promise as Biomarkers for Multiple Sclerosis?
Abstract
:1. Introductions
2. Nitric Oxide (NO) and Nitrosative Stress Molecules (NOx) in the Central Nervous System
3. Neurofilament Light Chain (NfL) and Its Role in MS
4. Glial Fibrillary Acidic Protein (GFAP) and Its Role in MS
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Hedström, A.K.; Segersson, D.; Hillert, J.; Stridh, P.; Kockum, I.; Olsson, T.; Bellander, T.; Alfredsson, L. Association between exposure to combustion-related air pollution and multiple sclerosis risk. Int. J. Epidemiol. 2023, 52, 703–714. [Google Scholar] [CrossRef] [PubMed]
- Vacca, I. The microbiota maintains oxygen balance in the gut. Nat. Rev. Microbiol. 2017, 15, 574–575. [Google Scholar] [CrossRef]
- Thirion, F.; Sellebjerg, F.; Fan, Y.; Lyu, L.; Hansen, T.H.; Pons, N.; Levenez, F.; Quinquis, B.; Stankevic, E.; Søndergaard, H.B.; et al. The gut microbiota in multiple sclerosis varies with disease activity. Genome Med. 2023, 15, 1. [Google Scholar] [CrossRef]
- Flores, J.A.; Antonio, J.M.; Suntornsaratoon, P.; Meadows, V.; Bandyopadhyay, S.; Han, J.; Singh, R.; Balasubramanian, I.; Upadhyay, R.; Liu, Y.; et al. The arginine and nitric oxide metabolic pathway regulate the gut colonization and expansion of Ruminococcous gnavus. J. Biol. Chem. 2024, 300, 107614. [Google Scholar] [CrossRef]
- Förster, M.; Nelke, C.; Räuber, S.; Lassmann, H.; Ruck, T.; Sormani, M.P.; Signori, A.; Hartung, H.-P.; Küry, P.; Meuth, S.G.; et al. Nitrosative Stress Molecules in Multiple Sclerosis: A Meta-Analysis. Biomedicines 2021, 9, 1899. [Google Scholar] [CrossRef] [PubMed]
- Räuber, S.; Förster, M.; Schüller, J.; Willison, A.; Golombeck, K.S.; Schroeter, C.B.; Oeztuerk, M.; Jansen, R.; Huntemann, N.; Nelke, C.; et al. The Use of Nitrosative Stress Molecules as Po-tential Diagnostic Biomarkers in Multiple Sclerosis. Int. J. Mol. Sci. 2024, 25, 787. [Google Scholar] [CrossRef]
- Farah, C.; Michel, L.Y.M.; Balligand, J.-L. Nitric oxide signalling in cardiovascular health and disease. Nat. Rev. Cardiol. 2018, 15, 292–316. [Google Scholar]
- Calabrese, V.; Mancuso, C.; Calvani, M.; Rizzarelli, E.; Butterfield, D.A.; Stella, A.M.G. Nitric oxide in the central nervous system: Neuroprotection versus neurotoxicity. Nat. Rev. Neurosci. 2007, 8, 766–775. [Google Scholar] [CrossRef]
- Zhuo, M.; Small, S.A.; Kandel, E.R.; Hawkins, R.D. Nitric oxide and carbon monoxide produce activity-dependent long-term synaptic enhancement in hippocampus. Science 1993, 260, 1946–1950. [Google Scholar] [CrossRef]
- Böhme, G.A.; Bon, C.; Lemaire, M.; Reibaud, M.; Piot, O.; Stutzmann, J.M.; Doble, A.; Blanchard, J.C. Altered synaptic plasticity and memory formation in nitric oxide synthase inhibitor-treated rats. Proc. Natl. Acad. Sci. USA 1993, 90, 9191–9194. [Google Scholar] [CrossRef]
- Contestabile, A.; Ciani, E. Role of nitric oxide in the regulation of neuronal proliferation, survival and differentiation. Neurochem. Int. 2004, 45, 903–914. [Google Scholar] [CrossRef] [PubMed]
- Wink, D.A.; Cook, J.A.; Pacelli, R.; Liebmann, J.; Krishna, M.C.; Mitchell, J.B. Nitric oxide (NO) protects against cellular damage by reactive oxygen species. Toxicol. Lett. 1995, 82–83, 221–226. [Google Scholar] [CrossRef]
- Wang, Y.; Hong, F.; Yang, S. Roles of Nitric Oxide in Brain Ischemia and Reperfusion. Int. J. Mol. Sci. 2022, 23, 4243. [Google Scholar] [CrossRef]
- Bö, L.; Dawson, T.M.; Wesselingh, S.; Möurk, S.; Choi, S.; Kong, P.A.; Hanley, D.; Trapp, B.D. Induction of nitric oxide synthase in demyelinating regions of multiple sclerosis brains. Ann. Neurol. 1994, 36, 778–786. [Google Scholar] [CrossRef]
- Lan, M.; Tang, X.; Zhang, J.; Yao, Z. Insights in pathogenesis of multiple sclerosis: Nitric oxide may induce mitochondrial dysfunction of oligodendrocytes. Rev. Neurosci. 2017, 29, 39–53. [Google Scholar] [CrossRef]
- Toda, N.; Ayajiki, K.; Okamura, T. Cerebral blood flow regulation by nitric oxide: Recent advances. Pharmacol. Rev. 2009, 61, 62–97. [Google Scholar] [CrossRef]
- Bryan, N.S.; Grisham, M.B. Methods to detect nitric oxide and its metabolites in biological samples. Free Radic. Biol. Med. 2007, 43, 645–657. [Google Scholar] [CrossRef]
- Morris, G.; Reiche, E.M.V.; Murru, A.; Carvalho, A.F.; Maes, M.; Berk, M.; Puri, B.K. Multiple Immune-Inflammatory and Oxidative and Nitrosative Stress Pathways Explain the Frequent Presence of Depression in Multiple Sclerosis. Mol. Neurobiol. 2018, 55, 6282–6306. [Google Scholar] [CrossRef]
- Wennmalm, A.; Benthin, G.; Edlund, A.; Jungersten, L.; Kieler-Jensen, N.; Lundin, S.; Westfelt, U.N.; Petersson, A.S.; Waagstein, F. Metabolism and excretion of nitric oxide in humans. An experimental and clinical study. Circ. Res. 1993, 73, 1121–1127. [Google Scholar] [CrossRef]
- Kapil, V.; Khambata, R.S.; Jones, D.A.; Rathod, K.; Primus, C.; Massimo, G.; Fukuto, J.M.; Ahluwalia, A.; Garland, C.J. The Noncanonical Pathway for In Vivo Nitric Oxide Generation: The Nitrate-Nitrite-Nitric Oxide Pathway. Pharmacol. Rev. 2020, 72, 692–766. [Google Scholar] [CrossRef]
- Chuman, H. Nitric Oxide in Optic Neuritis and Multiple Sclerosis. J. Neuro-Ophthalmol. 2006, 26, 85–86. [Google Scholar] [CrossRef]
- Tsoi, V.L.; Hill, K.E.; Carlson, N.G.; Warner, J.E.A.; Rose, J.W. Immunohistochemical evidence of inducible nitric oxide synthase and nitrotyrosine in a case of clinically isolated optic neuritis. J. Neuro-Ophthalmol. 2006, 26, 87–94. [Google Scholar] [CrossRef]
- Varhaug, K.N.; Torkildsen, Ø.; Myhr, K.-M.; Vedeler, C.A. Neurofilament light chain as a biomarker in multiple sclerosis. Front. Neurol. 2019, 10, 338. [Google Scholar] [CrossRef]
- Hooper, D.C.; Ohnishi, S.T.; Kean, R.; Numagami, Y.; Dietzschold, B.; Koprowski, H. Local nitric oxide production in viral and autoimmune diseases of the central nervous system. Proc. Natl. Acad. Sci. USA 1995, 92, 5312–5316. [Google Scholar] [CrossRef] [PubMed]
- Calabrese, V.; Scapagnini, G.; Ravagna, A.; Bella, R.; Foresti, R.; Bates, T.E.; Stella, A.G.; Pennisi, G. Nitric oxide synthase is present in the cerebrospinal fluid of patients with active multiple sclerosis and is associated with increases in cerebrospinal fluid protein nitrotyrosine and S-nitrosothiols and with changes in glutathione levels. J. Neurosci. Res. 2002, 70, 580–587. [Google Scholar] [CrossRef]
- Rosengren, L.E.; Karlsson, J.; Persson, L.I.; Wikkelsø, C. Patients with amyotrophic lateral sclerosis and other neurodegenerative diseases have increased levels of neurofilament protein in CSF. J. Neurochem. 1996, 67, 2013–2018. [Google Scholar] [CrossRef] [PubMed]
- Thebault, S.; Abdoli, M.; Fereshtehnejad, S.-M.; Tessier, D.; Tabard-Cossa, V.; Freedman, M.S. Serum neurofilament light chain predicts long term clinical outcomes in multiple sclerosis. Sci. Rep. 2020, 10, 10381. [Google Scholar] [CrossRef]
- Martin, S.-J.; McGlasson, S.; Hunt, D.; Overell, J. Cerebrospinal fluid neurofilament light chain in multiple sclerosis and its subtypes: A meta-analysis of case–control studies. J. Neurol. Neurosurg. Psychiatry 2019, 90, 1059–1067. [Google Scholar] [CrossRef]
- Håkansson, I.; Tisell, A.; Cassel, P.; Blennow, K.; Zetterberg, H.; Lundberg, P.; Dahle, C.; Vrethem, M.; Ernerudh, J. Neurofilament levels, disease activity and brain volume during follow-up in multiple sclerosis. J. Neuroinflamm. 2018, 15, 209. [Google Scholar] [CrossRef]
- Freedman, M.S.; Gnanapavan, S.; Booth, R.A.; Calabresi, P.A.; Khalil, M.; Kuhle, J.; Lycke, J.; Olsson, T. Guidance for use of neurofilament light chain as a cerebrospinal fluid and blood biomarker in multiple sclerosis management. EBioMedicine 2024, 101, 104970. [Google Scholar] [CrossRef]
- Rosso, M.; Gonzalez, C.T.; Healy, B.C.; Saxena, S.; Paul, A.; Bjornevik, K.; Kuhle, J.; Benkert, P.; Leppert, D.; Guttmann, C.; et al. Temporal association of sNfL and gad-enhancing lesions in multiple sclerosis. Ann. Clin. Transl. Neurol. 2020, 7, 945–955. [Google Scholar] [CrossRef] [PubMed]
- Disanto, G.; Barro, C.; Benkert, P.; Naegelin, Y.; Schädelin, S.; Giardiello, A.; Zecca, C.; Blennow, K.; Zetterberg, H.; Leppert, D.; et al. Serum Neurofilament light: A biomarker of neuronal damage in multiple sclerosis. Ann. Neurol. 2017, 81, 857–870. [Google Scholar] [CrossRef] [PubMed]
- Hendricks, R.; Baker, D.; Brumm, J.; Davancaze, T.; Harp, C.; Herman, A.; von Büdingen, H.-C.; Townsend, M.; Fischer, S.K. Establishment of neurofilament light chain Simoa assay in cerebrospinal fluid and blood. Bioanalysis 2019, 11, 1405–1418. [Google Scholar] [CrossRef] [PubMed]
- Olsson, B.; Portelius, E.; Cullen, N.C.; Sandelius, Å.; Zetterberg, H.; Andreasson, U.; Höglund, K.; Irwin, D.J.; Grossman, M.; Weintraub, D.; et al. Association of Cerebrospinal Fluid Neuro-filament Light Protein Levels With Cognition in Patients With Dementia, Motor Neuron Disease, and Movement Disorders. JAMA Neurol. 2019, 76, 318–325. [Google Scholar] [CrossRef]
- Verkhratsky, A.; Butt, A.; Li, B.; Illes, P.; Zorec, R.; Semyanov, A.; Tang, Y.; Sofroniew, M.V. Astrocytes in human central nervous system diseases: A frontier for new therapies. Signal Transduct. Target. Ther. 2023, 8, 396. [Google Scholar] [CrossRef]
- Correale, J.; Farez, M.F. The Role of Astrocytes in Multiple Sclerosis Progression. Front. Neurol. 2015, 6, 180. [Google Scholar] [CrossRef]
- Abdelhak, A.; Antweiler, K.; Kowarik, M.C.; Senel, M.; Havla, J.; Zettl, U.K.; Kleiter, I.; Skripuletz, T.; Haarmann, A.; Stahmann, A.; et al. Serum glial fibrillary acidic protein and disability progression in progressive multiple sclerosis. Ann. Clin. Transl. Neurol. 2023, 11, 477–485. [Google Scholar] [CrossRef]
- Madill, E.; Healy, B.C.; Molazadeh, N.; Polgar-Turcsanyi, M.; Glanz, B.I.; Weiner, H.L.; Chitnis, T. Serum glial fibrillary acidic protein predicts disease progression in multiple sclerosis. Ann. Clin. Transl. Neurol. 2024, 11, 2719–2730. [Google Scholar] [CrossRef]
- Cross, A.H.; Gelfand, J.M.; Thebault, S.; Bennett, J.L.; von Büdingen, H.C.; Cameron, B.; Carruthers, R.; Edwards, K.; Fallis, R.; Gerstein, R.; et al. Emerging Cerebrospinal Fluid Biomarkers of Disease Activity and Progression in Multiple Sclerosis. JAMA Neurol. 2024, 81, 373–383. [Google Scholar] [CrossRef]
- Abdelhak, A.; Huss, A.; Kassubek, J.; Tumani, H.; Otto, M. Serum GFAP as a biomarker for disease severity in multiple sclerosis. Sci. Rep. 2018, 8, 14798. [Google Scholar] [CrossRef]
- Meier, S.; Willemse, E.A.; Schaedelin, S.; Oechtering, J.; Lorscheider, J.; Melie-Garcia, L.; Cagol, A.; Barakovic, M.; Galbusera, R.; Subramaniam, S.; et al. Serum Glial Fibrillary Acidic Protein Compared With Neurofilament Light Chain as a Biomarker for Disease Progression in Multiple Sclerosis. JAMA Neurol. 2023, 80, 287–297. [Google Scholar] [CrossRef] [PubMed]
- Ayrignac, X.; Le Bars, E.; Duflos, C.; Hirtz, C.; Maceski, A.M.; Carra-Dallière, C.; Charif, M.; Pinna, F.; Prin, P.; de Champfleur, N.M.; et al. Serum GFAP in multiple sclerosis: Correlation with disease type and MRI markers of disease severity. Sci. Rep. 2020, 10, 10923. [Google Scholar] [CrossRef]
- Di Filippo, M.; Gaetani, L.; Centonze, D.; Hegen, H.; Kuhle, J.; Teunissen, C.E.; Tintoré, M.; Villar, L.M.; Willemse, E.A.; Zetterberg, H.; et al. Fluid biomarkers in multiple sclerosis: From current to future applications. Lancet Reg. Health—Eur. 2024, 44, 101009. [Google Scholar] [CrossRef] [PubMed]
Feature | NOx/Nitrite/Nitrate | Neurofilament Light Chain (NfL) | Glial Fibrillary Acidic Protein (GFAP) |
---|---|---|---|
Biological role | Reflects nitrosative stress, inflammation, and oxidative damage | Indicates axonal injury and neurodegeneration | Reflects astrocytic reactivity, inflammation, and tissue damage |
Disease relevance | Elevated in MS, particularly during relapses; linked to disease activity and poorer prognosis | Elevated during active disease and relapses; correlates with axonal damage and disability | Elevated in progressive forms of MS; reflects chronic damage, glial activation, and neurodegeneration |
Sampling | Measured in cerebrospinal fluid (CSF) and serum | Measured in CSF and serum | Measured in CSF and serum |
Strengths | Provides insight into inflammation and nitrosative stress mechanisms not captured by other markers | Directly correlates with axonal damage and disease progression; well-established methodology | Strong correlation with chronic disease progression and progressive MS phenotypes |
Limitations | Affected by environmental factors, diet and comorbidities; lacks standardization and large-scale validation | High intra- and interindividual variability; elevated levels may also appear in other neurodegenerative diseases | Less sensitive for early disease stages; primarily associated with progressive MS and chronic inflammation |
Clinical applications | Potential for early diagnosis and monitoring disease activity; less developed as a standard marker | Monitoring disease progression, activity, and treatment response | Tracking disease progression in progressive MS and stratifying patients by disease phenotype |
Integration with others | May complement NfL and GFAP by capturing inflammation and oxidative stress information | Complementary with GFAP for more accurate disease progression assessment | Enhances specificity when used with NfL for progressive MS characterization |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Förster, M.; Räuber, S.; Albrecht, P.; Wojtecki, L.; Meuth, S.G.; Kremer, D. Do Nitrosative Stress Molecules Hold Promise as Biomarkers for Multiple Sclerosis? Int. J. Mol. Sci. 2025, 26, 3412. https://doi.org/10.3390/ijms26073412
Förster M, Räuber S, Albrecht P, Wojtecki L, Meuth SG, Kremer D. Do Nitrosative Stress Molecules Hold Promise as Biomarkers for Multiple Sclerosis? International Journal of Molecular Sciences. 2025; 26(7):3412. https://doi.org/10.3390/ijms26073412
Chicago/Turabian StyleFörster, Moritz, Saskia Räuber, Philipp Albrecht, Lars Wojtecki, Sven G. Meuth, and David Kremer. 2025. "Do Nitrosative Stress Molecules Hold Promise as Biomarkers for Multiple Sclerosis?" International Journal of Molecular Sciences 26, no. 7: 3412. https://doi.org/10.3390/ijms26073412
APA StyleFörster, M., Räuber, S., Albrecht, P., Wojtecki, L., Meuth, S. G., & Kremer, D. (2025). Do Nitrosative Stress Molecules Hold Promise as Biomarkers for Multiple Sclerosis? International Journal of Molecular Sciences, 26(7), 3412. https://doi.org/10.3390/ijms26073412