Association Between Telomere Shortening and Erythropoietin Resistance in Patients with Chronic Kidney Disease Undergoing Hemodialysis
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Inclusion Criteria
4.2. Exclusion Criteria
4.3. Technique for Telomere Length Measurement
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lankhorst, C.E.; Wish, J.B. Anemia in renal disease: Diagnosis and management. Blood Rev. 2010, 24, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Kidney Disease: Improving Global Outcomes (KDIGO) Anemia Work Group. Clinical practice guideline for anemia in chronic kidney disease. Kidney Int. 2012, 2, 279–335. [Google Scholar]
- Johnson, D.W.; Pollock, C.A.; Macdougall, I.C. Erythropoiesis-stimulating agent hyporesponsiveness. Nephrology 2007, 12, 321–330. [Google Scholar] [CrossRef] [PubMed]
- Alves, M.T.; Vilaça, S.S.; Carvalho, M.; Fernandes, A.P.; Dusse, L.M.; Gomes, K.B. Resistance of dialyzed patients to erythropoietin. Rev. Bras. Hematol. Hemoter. 2015, 37, 190–197. [Google Scholar] [CrossRef]
- Weiss, G.; Goodnough, L.T. Anemia of chronic disease. N. Engl. J. Med. 2005, 352, 1011–1023. [Google Scholar] [CrossRef]
- Eleftheriadis, T.; Antoniadi, G.; Liakopoulos, V.; Kartsios, C.; Stefanidis, I. Disturbances of acquired immunity in hemodialysis patients. Semin. Dial. 2007, 20, 440–451. [Google Scholar] [CrossRef]
- Babitt, J.L.; Lin, H.Y. Mechanisms of anemia in CKD. J. Am. Soc. Nephrol. 2012, 23, 1631–1634. [Google Scholar] [CrossRef]
- Teschner, M.; Kosch, M.; Schaefer, R.M. Folate metabolism in renal failure. Nephrol. Dial. Transplant. 2002, 17 (Suppl. 5), 24–27. [Google Scholar] [CrossRef] [PubMed]
- Drüeke, T.B.; Eckardt, K.U. Role of secondary hyperparathyroidism in erythropoietin resistance of chronic renal failure patients. Nephrol. Dial. Transplant. 2002, 17 (Suppl. 5), 28–31. [Google Scholar] [CrossRef]
- Brancaccio, D.; Cozzolino, M.; Gallieni, M. Hyperparathyroidism and anemia in uremic subjects: A combined therapeutic approach. J. Am. Soc. Nephrol. 2004, 15 (Suppl. 1), S21–S24. [Google Scholar] [CrossRef]
- Tanaka, M.; Komaba, H.; Fukagawa, M. Emerging Association Between Parathyroid Hormone and Anemia in Hemodialysis Patients. Ther. Apher. Dial. 2018, 22, 242–245. [Google Scholar] [CrossRef]
- Trunzo, J.A.; McHenry, C.R.; Schulak, J.A.; Wilhelm, S.M. Effect of parathyroidectomy on anemia and erythropoietin dosing in end-stage renal disease patients with hyperparathyroidism. Surgery 2008, 144, 915–919. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, S.; Feng, S.; Wang, C.; Jiang, H.; Rong, S.; Hermann, H.; Chen, J.; Zhang, P. Telomere shortening in patients on long-term hemodialysis. Chronic Dis. Transl. Dis. 2021, 7, 266–275. [Google Scholar] [CrossRef] [PubMed]
- Stefanidis, I.; Voliotis, G.; Papanikolaou, V.; Chronopoulou, I.; Eleftheriadis, T.; Kowald, A.; Zintzaras, E.; Tsezou, A. Telomere length in peripheral blood mononuclear cells of patients on chronic hemodialysis is related with telomerase activity and treatment duration. Artif. Organs. 2015, 39, 756–764. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, L.; Wang, Z.; Liu, J.P. Roles of telomere biology in cell senescence, replicative and chronological ageing. Cells 2019, 8, 54. [Google Scholar] [CrossRef]
- Bhatt, S.P.; Misra, A.; Pandey, R.M.; Upadhyay, A.D. Shortening of leucocyte telomere length is independently correlated with high body mass index and subcutaneous obesity (predominantly truncal), in Asian Indian women with abnormal fasting glycemia. BMJ Open Diabetes Res. Care 2022, 10, e002706. [Google Scholar] [CrossRef]
- Nguyen, M.T.; Lycett, K.; Vryer, R.; Burgner, D.P.; Ranganathan, S.; Grobler, A.C.; Wake, M.; Saffery, R. Telomere length: Population epidemiology and concordance in Australian children aged 11–12 years and their parents. BMJ Open 2019, 9 (Suppl. 3), 118–126. [Google Scholar] [CrossRef]
- Fazzini, F.; Lamina, C.; Raschenberger, J.; Schultheiss, U.T.; Kotsis, F.; Schonherr, S.; Weissensteiner, H.; Forer, L.; Steinbrenner, I.; Meiselbach, H.; et al. Results from the German Chronic Kidney Disease (GCKD) study support association of relative telomere length with mortality in a large cohort of patients with moderate chronic kidney disease. Kidney Int. 2020, 98, 488–497. [Google Scholar] [CrossRef]
- Willis, L.P.; Schnellmann, R.G. Telomeres and Telomerase in Renal Health. J. Am. Soc. Nephrol. 2011, 22, 39–41. [Google Scholar] [CrossRef]
- Akinnibosun, O.A.; Maier, M.C.; Eales, J.; Tomaszewski, M.; Charchar, F.J. Telomere therapy for chronic kidney disease. Epigenomics 2022, 14, 1039–1054. [Google Scholar] [CrossRef]
- Westhoff, J.H.; Schildhorn, C.; Jacobi, C.; Hömme, M.; Hartner, A.; Braun, H.; Kryzer, C.; Wang, C.; von Zglinicki, T.; Kränzlin, B.; et al. Telomere shortening reduces regenerative capacity after acute kidney injury. J. Am. Soc. Nephrol. 2010, 21, 327–336. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Fan, X.; Lawson, W.E.; Paueksakon, P.; Harris, R.C. Telomerase deficiency delays renal recovery in mice after ischemia-reperfusion injury by impairing autophagy. Kidney Int. 2015, 88, 85–94. [Google Scholar] [CrossRef]
- Quimby, J.M.; Maranon, D.G.; Battaglia, C.L.; McLeland, S.M.; Brock, W.T.; Bailey, S.M. Feline chronic kidney disease is associated with shortened telomeres and increased cellular senescence. Am. J. Physiol. Ren. Physiol. 2013, 305, F295–F303. [Google Scholar] [CrossRef] [PubMed]
- Raeisi, S.; Ghorbanihaghjo, A.; Argani, H.; Dastmalchi, S.; Seifi, M.; Ghasemi, B.; Ghazizadeh, T.; Abbasi, M.M.; Karimi, P. Oxidative stress-induced renal telomere shortening as a mechanism of cyclosporine-induced nephrotoxicity. J. Biochem. Mol. Toxicol. 2018, 32, e22166. [Google Scholar] [CrossRef]
- Carracedo, J.; Buendía, P.; Merino, A.; Soriano, S.; Esquivias, E.; Martín-Malo, A.; Aljama, P.; Ramírez, R. Cellular senescence determines endothelial cell damage induced by uremia. Exp. Gerontol. 2013, 48, 766–773. [Google Scholar] [CrossRef]
- Cao, D.W.; Jiang, C.M.; Wan, C.; Zhang, M.; Zhang, Q.Y.; Zhao, M.; Yang, B.; Zhu, D.L.; Han, X. Upregulation of MiR-126 Delays the Senescence of Human Glomerular Mesangial Cells Induced by High Glucose via Telomere-p53-p21-Rb Signaling Pathway. Curr. Med. Sci. 2018, 38, 758–764. [Google Scholar] [CrossRef] [PubMed]
- De Vusser, K.; Pieters, N.; Janssen, B.; Lerut, E.; Kuypers, D.; Jochmans, I.; Monbaliu, D.; Pirenne, J.; Nawrot, T.; Naesens, M. Telomere length, cardiovascular risk and arteriosclerosis in human kidneys: An observational cohort study. Aging 2015, 7, 766–775. [Google Scholar] [CrossRef]
- Levstek, T.; Trebušak Podkrajšek, K. Telomere Attrition in Chronic Kidney Diseases. Antioxidants 2023, 12, 579. [Google Scholar] [CrossRef]
- Saxena, P.; Srivastava, J.; Rai, B.; Tripathy, N.K.; Raza, S.; Sinha, R.A.; Gupta, R.; Yadav, S.; Nityanand, S.; Chaturvedi, C.P. Elevated senescence in the bone marrow mesenchymal stem cells of acquired aplastic anemia patients: A possible implication of DNA damage responses and telomere attrition. BBA—Mol. Basis Dis. 2024, 1870, 167025. [Google Scholar] [CrossRef]
- Strauss, J.D.; Brown, D.W.; Zhou, W.; Dagnall, C.; Yuan, J.-M.; Im, A.; Savage, S.A.; Wang, Y.; Rafati, M.; Spellman, S.R.; et al. Telomere length and clonal chromosomal alterations in peripheral blood of patients with severe aplastic anaemia. Br. J. Haematol. 2024, 205, 1180–1187. [Google Scholar] [CrossRef]
- Murillo-Ortiz, B.; Ramírez Emiliano, J.; Hernández Vázquez, W.I.; Martínez-Garza, S.; Solorio-Meza, S.; Albarrán-Tamayo, F.; Ramos-Rodríguez, E.; Benítez-Bribiesca, L. Impact of oxidative stress in premature aging and iron overload in hemodialysis patients. Oxid. Med. Cell Longev. 2016, 2016, 1578235. [Google Scholar] [CrossRef] [PubMed]
- Rao, D.S.; Shih, M.S.; Mohini, R. Effect of serum parathyroid hormone and bone marrow fibrosis on the response to erythropoietin in uremia. N. Engl. J. Med. 1993, 328, 171–175. [Google Scholar] [CrossRef] [PubMed]
- Gaweda, A.E.; Goldsmith, L.J.; Brier, M.E.; Aronoff, G.R. Iron, inflammation, dialysis adequacy, nutritional status, and hyperparathyroidism modify erythropoietic response. Clin. J. Am. Soc. Nephrol. 2010, 5, 576–581. [Google Scholar] [CrossRef]
- Hong, J.; Yun, C.O. Telomere gene therapy: Polarizing therapeutic goals for treatment of various diseases. Cells 2019, 8, 392. [Google Scholar] [CrossRef]
- Berei, J.; Eckburg, A.; Miliavski, E.; Anderson, A.D.; Miller, R.J.; Dein, J.; Giuffre, A.M.; Tang, D.; Deb, S.; Racherla, K.S.; et al. Potential telomere-related pharmacological targets. Curr. Top. Med. Chem. 2020, 20, 458–484. [Google Scholar] [CrossRef]
- Bär, C.; Blasco, M.A. Telomeres and telomerase as therapeutic targets to prevent and treat age-related diseases [version 1; peer review: 4 approved]. F1000Research 2016, 5, 29. [Google Scholar] [CrossRef]
- Kanda, E.; Bieber, B.A.; Pisoni, R.L.; Robinson, B.M.; Fuller, D.S. Importance of simultaneous evaluation of multiple risk factors for hemodialysis patients’ mortality and development of a novel index: Dialysis outcomes and practice patterns study. PLoS ONE 2015, 10, e0128652. [Google Scholar] [CrossRef]
- Pisoni, R.L.; Gillespie, B.W.; Dickinson, D.M.; Chen, K.; Kutner, M.H.; Wolfe, R.A. The Dialysis Outcomes and Practice Patterns Study (DOPPS): Design, data elements, and methodology. Am. J. Kidney Dis. 2004, 44 (Suppl. 2), 7–15. [Google Scholar] [CrossRef] [PubMed]
- Karaboyas, A.; Morgenstern, H.; Fleischer, N.L.; Vanholder, R.C.; Dhalwani, N.N.; Schaeffner, E.; Schaubel, D.E.; Akizawa, T.; James, G.; Sinsakul, M.V.; et al. Inflammation and erythropoiesis-stimulating agent response in hemodialysis patients: A self-matched longitudinal study of anemia management in the Dialysis Outcomes and Practice Patterns Study (DOPPS). Kidney Med. 2020, 2, 286–296. [Google Scholar] [CrossRef]
- Lacson, E., Jr.; Levin, N.W. C-reactive protein and end-stage renal disease. Semin. Dial. 2004, 17, 438–448. [Google Scholar] [CrossRef]
- Luo, J.; Jensen, D.E.; Maroni, B.J.; Brunelli, S.M. Spectrum and burden of erythropoiesis-stimulating agent hyporesponsiveness among contemporary hemodialysis patients. Am. J. Kidney Dis. 2016, 68, 763–771. [Google Scholar] [CrossRef] [PubMed]
- Habas, E.S.; Eledrisi, M.; Khan, F.; Elzouki, A.Y. Secondary hyperparathyroidism in chronic kidney disease: Pathophysiology and management. Cureus 2021, 13, e16388. [Google Scholar] [CrossRef] [PubMed]
- Townsley, D.M.; Dumitriu, B.; Young, N.S. Bone marrow failure and the telomeropathies. Blood 2014, 124, 2775–2783. [Google Scholar] [CrossRef]
- Raj, H.A.; Lai, T.P.; Niewisch, M.R.; Giri, N.; Wang, Y.; Spellman, S.R.; Aviv, A.; Gadalla, S.M.; Savage, S.A. The distribution and accumulation of the shortest telomeres in telomere biology disorders. Br. J. Haematol. 2023, 203, 820–828. [Google Scholar] [CrossRef]
- Guralnik, J.M.; Eisenstaedt, R.S.; Ferrucci, L.; Klein, H.G.; Woodman, R.C. Prevalence of anemia in persons 65 years and older in the United States: Evidence for a high rate of unexplained anemia. Blood 2004, 104, 2263–2268. [Google Scholar] [CrossRef]
- Codd, V.; Wang, Q.; Allara, E.; Musicha, C.; Kaptoge, S.; Stoma, S.; Jiang, T.; Hamby, S.E.; Braund, P.S.; Bountziouka, V.; et al. Polygenic basis and biomedical consequences of telomere length variation. Nat. Genet. 2021, 53, 1425–1433. [Google Scholar] [CrossRef] [PubMed]
- Aviv, A. The “telomereless” erythrocytes and telomere-length dependent erythropoiesis. Aging Cell. 2023, 22, e13997. [Google Scholar] [CrossRef]
- Bär, C.; Huber, N.; Beier, F.; Blasco, M.A. Therapeutic effect of androgen therapy in a mouse model of aplastic anemia produced by short telomeres. Haematologica 2015, 100, 1267–1274. [Google Scholar] [CrossRef]
- Raval, A.; Behbehani, G.K.; Nguyen, L.X.T.; Thomas, D.; Kusler, B.; Garbuzov, A.; Ramunas, J.; Holbrook, C.; Park, C.Y.; Blau, H.; et al. Reversibility of defective hematopoiesis caused by telomere shortening in telomerase knockout mice. PLoS ONE 2015, 10, e0131722. [Google Scholar] [CrossRef]
- Saraswati, S.; Martínez, P.; Serrano, R.; Mejías, D.; Graña-Castro, O.; Álvarez Díaz, R.; Blasco, M.A. Renal fibroblasts are involved in fibrogenic changes in kidney fibrosis associated with dysfunctional telomeres. Exp. Mol. Med. 2024, 56, 2216–2230. [Google Scholar] [CrossRef]
- Cawthon, R.M. Telomere measurement by quantitative PCR. Nucleic Acids Res. 2002, 30, e47. [Google Scholar] [CrossRef] [PubMed]
Group with Resistance to Erythropoiesis n = 40 | Group Without Resistance to Erythropoiesis n = 40 | p-Value | |
---|---|---|---|
Female gender % | 25 | 22.5 | p = 0.75 |
Age (years) | 34 ± 14.7 | 38 ± 11.6 | p = 0.87 |
Time on Hemodialysis (years) | 5 ± 4.1 | 5 ± 3.3 | p = 0.77 |
Erythropoeitin (U/week) | 24,000 ± 4258 | 4000 ± 2783 | p = 0.01 |
Group with Resistance to Erythropoiesis n = 40 | Group Without Resistance to Erythropoiesis n = 40 | p-Value | |
---|---|---|---|
T/S telomere length | 0.45 ± 0.04 | 0.56 ± 0.03 | p < 0.001 |
Hemoglobin (g/dL) | 8.8 ± 2.1 | 11.6 ± 1.81 | p < 0.001 |
Hematocrit (%) | 28.9 ± 6.28 | 35.6 ± 5.62 | p < 0.001 |
Iron (UG/DL) | 115 ± 41.7 | 89.5 ± 58.1 | p = 0.52 |
Iron saturation (%) | 62.5 ± 26.6 | 46 ± 28.9 | p = 0.76 |
Transferrin (mg/dL) | 98 ± 33.2 | 97 ± 30.1 | p = 0.85 |
Ferritin (ng/mL) | 2059.4 ± 1289.5 | 2259 ± 1214 | p = 0.64 |
Urea (mg/dL) | 102.7 ± 32.6 | 98.4 ± 25.9 | p = 0.75 |
Creatinine (mg/dL) | 8.3 ± 3.4 | 10.1 ± 2.8 | p = 0.21 |
Albumin (g/dL) | 4.1 ± 0.71 | 4.4 ± 0.32 | p = 0.04 |
Calcium (mg/dL) | 8.7 ± 0.73 | 8.8± 0.92 | p = 0.64 |
Phosphorus (mmol/dL) | 5.05 ± 1.52 | 5.2 ± 1.49 | p = 0.92 |
PTH pg/mL | 788 ± 538.47 | 535.65 ± 603.06 | p < 0.001 |
CRP mg/dL | 3.6 ± 2.80 | 3.4 ± 2.34 | p = 0.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murillo-Ortiz, B.O.; Romero-Vázquez, M.J.; Luevanos-Aguilera, A.J.; Meza-Herrán, P.M.; Ramos-Rodriguez, E.M.; Martínez-Garza, S.; Murguia-Perez, M. Association Between Telomere Shortening and Erythropoietin Resistance in Patients with Chronic Kidney Disease Undergoing Hemodialysis. Int. J. Mol. Sci. 2025, 26, 3405. https://doi.org/10.3390/ijms26073405
Murillo-Ortiz BO, Romero-Vázquez MJ, Luevanos-Aguilera AJ, Meza-Herrán PM, Ramos-Rodriguez EM, Martínez-Garza S, Murguia-Perez M. Association Between Telomere Shortening and Erythropoietin Resistance in Patients with Chronic Kidney Disease Undergoing Hemodialysis. International Journal of Molecular Sciences. 2025; 26(7):3405. https://doi.org/10.3390/ijms26073405
Chicago/Turabian StyleMurillo-Ortiz, Blanca Olivia, Marcos Javier Romero-Vázquez, Angélica Jeanette Luevanos-Aguilera, Paulina Monserrat Meza-Herrán, Edna Montserrat Ramos-Rodriguez, Sandra Martínez-Garza, and Mario Murguia-Perez. 2025. "Association Between Telomere Shortening and Erythropoietin Resistance in Patients with Chronic Kidney Disease Undergoing Hemodialysis" International Journal of Molecular Sciences 26, no. 7: 3405. https://doi.org/10.3390/ijms26073405
APA StyleMurillo-Ortiz, B. O., Romero-Vázquez, M. J., Luevanos-Aguilera, A. J., Meza-Herrán, P. M., Ramos-Rodriguez, E. M., Martínez-Garza, S., & Murguia-Perez, M. (2025). Association Between Telomere Shortening and Erythropoietin Resistance in Patients with Chronic Kidney Disease Undergoing Hemodialysis. International Journal of Molecular Sciences, 26(7), 3405. https://doi.org/10.3390/ijms26073405