Mitochondrial Bioenergetics in Different Pathophysiological Conditions 4.0
Acknowledgments
Conflicts of Interest
References
- Lisowski, P.; Kannan, P.; Mlody, B.; Prigione, A. Mitochondria and the dynamic control of stem cell homeostasis. EMBO Rep. 2018, 19, e45432. [Google Scholar] [CrossRef] [PubMed]
- Wallace, D.C. A Mitochondrial Paradigm of Metabolic and Degenerative Diseases, Aging, and Cancer: A Dawn for Evolutionary Medicine. Annu. Rev. Genet. 2005, 39, 359–407. [Google Scholar] [CrossRef] [PubMed]
- Swerdlow, R.H. Mitochondria and Mitochondrial Cascades in Alzheimer’s Disease. J. Alzheimer’s Dis. 2018, 62, 1403–1416. [Google Scholar] [CrossRef] [PubMed]
- Nitzan, K.; Benhamron, S.; Valitsky, M.; Kesner, E.E.; Lichtenstein, M.; Ben-Zvi, A.; Ella, E.; Segalstein, Y.; Saada, A.; Lorberboum Galski, H.; et al. Mitochondrial Transfer Ameliorates Cognitive Deficits, Neuronal Loss, and Gliosis in Alzheimer’s Disease Mice. J. Alzheimer’s Dis. 2019, 72, 587–604. [Google Scholar] [CrossRef] [PubMed]
- García-Bermúdez, M.Y.; Vohra, R.; Freude, K.; Wijngaarden, P.V.; Martin, K.; Thomsen, M.S.; Aldana, B.I.; Kolko, M. Potential Retinal Biomarkers in Alzheimer’s Disease. Int. J. Mol. Sci. 2023, 24, 15834. [Google Scholar] [CrossRef] [PubMed]
- Marino, B.L.; De Souza, L.R.; Sousa, K.P.; Ferreira, J.V.; Padilha, E.C.; Da Silva, C.H.; Taft, C.A.; Hage-Melim, L.I. Parkinson’s Disease: A Review from Pathophysiology to Treatment. Mini-Rev. Med. Chem. 2020, 20, 754–767. [Google Scholar]
- Mironova, G.D.; Mosentsov, A.A.; Mironov, V.V.; Medvedeva, V.P.; Khunderyakova, N.V.; Pavlik, L.L.; Mikheeva, I.B.; Shigaeva, M.I.; Agafonov, A.V.; Khmil, N.V.; et al. The Protective Effect of Uridine in a Rotenone-Induced Model of Parkinson’s Disease: The Role of the Mitochondrial ATP-Dependent Potassium Channel. Int. J. Mol. Sci. 2024, 25, 7441. [Google Scholar] [CrossRef] [PubMed]
- Tam, E.; Sweeney, G. MitoNEET Provides Cardioprotection via Reducing Oxidative Damage and Conserving Mitochondrial Function. Int. J. Mol. Sci. 2023, 25, 480. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N. Sperm Mitochondria, the Driving Force behind Human Spermatozoa Activities: Its Functions and Dysfunctions—A Narrative Review. Curr. Mol. Med. 2023, 23, 332–340. [Google Scholar] [PubMed]
- Ferigolo, M.; Nardi, J.; Freddo, N.; Ferramosca, A.; Zara, V.; Dallegrave, E.; Macedo, M.B.; Eller, S.; de Oliveira, A.P.; Biazus, I.C.; et al. Evaluation of Genistein as a Mitochondrial Modulator and Its Effects on Sperm Quality. Int. J. Mol. Sci. 2023, 24, 14260. [Google Scholar] [CrossRef] [PubMed]
- Luo, S.; Xu, T.; Zheng, Q.; Jiang, A.; Zhao, J.; Ying, Y.; Liu, N.; Pan, Y.; Zhang, D. Mitochondria: An Emerging Unavoidable Link in the Pathogenesis of Periodontitis Caused by Porphyromonas gingivalis. Int. J. Mol. Sci. 2024, 25, 737. [Google Scholar] [CrossRef] [PubMed]
- Feng, Q.; Wang, L.; Chen, Y.; Teng, J.; Li, M.; Cai, Z.; Niu, X.; Rein, G.; Yang, Q.; Shao, X.; et al. Effects of different music on HEK293T cell growth and mitochondrial functions. Explore 2022, 18, 670–675. [Google Scholar] [CrossRef] [PubMed]
- Valenti, D.; Atlante, A. Sound Matrix Shaping of Living Matter: From Macrosystems to Cell Microenvironment, Where Mitochondria Act as Energy Portals in Detecting and Processing Sound Vibrations. Int. J. Mol. Sci. 2024, 25, 6841. [Google Scholar] [CrossRef] [PubMed]
- Muehsam, D.; Ventura, C. Life rhythm as a symphony of oscillatory patterns: Electromagnetic energy and sound vibration modulates gene expression for biological signalling and healing. Glob. Adv. Health Med. 2014, 3, 40–55. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valenti, D.; Atlante, A. Mitochondrial Bioenergetics in Different Pathophysiological Conditions 4.0. Int. J. Mol. Sci. 2025, 26, 3396. https://doi.org/10.3390/ijms26073396
Valenti D, Atlante A. Mitochondrial Bioenergetics in Different Pathophysiological Conditions 4.0. International Journal of Molecular Sciences. 2025; 26(7):3396. https://doi.org/10.3390/ijms26073396
Chicago/Turabian StyleValenti, Daniela, and Anna Atlante. 2025. "Mitochondrial Bioenergetics in Different Pathophysiological Conditions 4.0" International Journal of Molecular Sciences 26, no. 7: 3396. https://doi.org/10.3390/ijms26073396
APA StyleValenti, D., & Atlante, A. (2025). Mitochondrial Bioenergetics in Different Pathophysiological Conditions 4.0. International Journal of Molecular Sciences, 26(7), 3396. https://doi.org/10.3390/ijms26073396