The Clinical Utility and Plausibility of Oxidative and Antioxidant Variables in Chronic and End-Stage Kidney Disease: A Review of the Literature
Abstract
1. Introduction
2. Biomarkers of OS: Pro-Oxidants
2.1. Oxidized Albumin
2.2. Advanced Oxidation Protein Products (AOPPs)
2.3. Xanthine Oxidase/Dehydrogenase
2.4. NO Synthase-Nitrite and Nitrate (NO2 and NO3)
2.5. Malondialdehyde (MDA)
3. Biomarkers of OS: Antioxidants
3.1. Superoxide Dismutase (SOD)
3.2. Catalase (CAT)
3.3. Vitamin E
3.4. Total Antioxidant Capacity (TAC)
3.5. N-Acetylcysteine (NAC)
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ACE | Angiotensin-converting enzyme |
ADMA | Asymmetric dimethylarginine |
AGEs | Advanced glycation end products |
AKI | Acute kidney injury |
AOPPs | Advanced oxidation protein products |
AOPPs-RSA | Advanced oxidation protein product-modified rat serum albumin |
AS | Arterial stiffness |
baPWV | Brachial–ankle pulse wave velocity |
BMI | Body mass index |
BP | Blood pressure |
CAC | Coronary artery calcification |
CAPD | Continuous ambulatory peritoneal dialysis |
CAT | Catalase |
cDBP | Central diastolic blood pressure |
cfPWV | Carotid–femoral pulse wave velocity |
CIN | Contrast-induced nephropathy |
CKD | Chronic kidney disease |
cNOS | Constitutive nitric oxide synthase |
CRP | C-reactive protein |
cSBP | Central systolic blood pressure |
CV | Cardiovascular |
CVD | Cardiovascular disease |
DGF | Delayed graft function |
DM | Diabetes mellitus |
DN | Diabetic nephropathy |
DTAC | Dietary total antioxidant capacity |
EC-SOD | Extracellular superoxide dismutase |
eGFR | Estimated glomerular filtration rate |
eNOS | Endothelial nitric oxide synthase |
EPO | Erythropoietin |
ESKD | End-stage kidney disease |
FGF23 | Fibroblast growth factor 23 |
FMD | Flow-mediated dilation |
HbA1c | Glycated hemoglobin |
HD | Hemodialysis |
HDL | High-density lipoprotein |
HMA | Human mercaptoalbumin |
HNA | Human non-mercaptoalbumin |
HNE | 4-hydroxy-2-nonenal |
hOGG1 | Human 8-oxoguanine DNA glycosylase 1 |
HPLC | High-performance liquid chromatography |
HPMCs | Human peritoneal mesothelial cells |
HSA | Human serum albumin |
HT | Hypertension |
ICAM | Intercellular adhesion molecule |
IL- | Interleukin |
IMA | Ischemia-modified albumin |
IMT | Intima media thickness |
LDL | Low-density lipoprotein |
MDA | Malondialdehyde |
MNC | Mononuclear cells |
NAC | N-acetylcysteine |
NADPH | Nicotinamide adenine dinucleotide phosphate hydrogen |
NFκB | Nuclear factor κΒ |
nNOS | Neuronal nitric oxide synthase |
NO | Nitric oxide |
NOS | Nitric oxide synthase |
NT-proBNP | N-terminal pro-B-type natriuretic peptide |
OS | Oxidative stress |
Ox-LDL | Oxidized low-density lipoprotein |
PAS | Peripheral arterial stiffness |
PD | Peritoneal dialysis |
pDBP | Peripheral diastolic blood pressure |
PET | Peritoneal equilibration test |
PMCs | Peritoneal mesothelial cells |
Post-Tx | Post-transplantation |
pSBP | Peripheral systolic blood pressure |
PWV | Pulse wave velocity |
RAAS | Renin–angiotensin–aldosterone system |
RBC | Red blood cell |
RCT | Randomized controlled trial |
ROC | Receiver operating characteristic |
ROS | Reactive oxygen species |
sICAM | Soluble intercellular adhesion molecule |
SOD | Superoxide dismutase |
SSNS | Teroid-sensitive nephrotic syndrome |
TAC | Total antioxidant capacity |
TBARS | Thiobarbituric acid-reactive substances |
TGF-β | Tumor growth factor β |
TNF-α | Tumor necrosis factor α |
UACR | Urine albumin–creatinine ratio |
UAER | Urinary albumin excretion rate |
VC | Vascular calcification |
VCAM | Vascular cell adhesion molecule |
VECM | Vitamin E-coated membrane |
XDH | Xanthine dehydrogenase |
XO | Xanthine oxidase |
XOR | Xanthine oxidoreductase |
References
- Sinenko, S.A.; Starkova, T.Y.; Kuzmin, A.A.; Tomilin, A.N. Physiological Signaling Functions of Reactive Oxygen Species in Stem Cells: From Flies to Man. Front. Cell Dev. Biol. 2021, 9, 714370. [Google Scholar]
- Forrester, S.J.; Kikuchi, D.S.; Hernandes, M.S.; Xu, Q.; Griendling, K.K. Reactive Oxygen Species in Metabolic and Inflammatory Signaling. Circ. Res. 2018, 122, 877–902. [Google Scholar] [PubMed]
- Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative Stress: Harms and Benefits for Human Health. Oxidative Med. Cell. Longev. 2017, 2017, 8416763. [Google Scholar]
- Chen, Z.; Tian, R.; She, Z.; Cai, J.; Li, H. Role of oxidative stress in the pathogenesis of nonalcoholic fatty liver disease. Free Radic. Biol. Med. 2020, 152, 116–141. [Google Scholar]
- Haigis, M.C.; Yankner, B.A. The Aging Stress Response. Mol. Cell 2010, 40, 333–344. [Google Scholar]
- Sies, H. Strategies of antioxidant defense. Eur. J. Biochem. 1993, 215, 213–219. [Google Scholar]
- Hajam, Y.A.; Rani, R.; Ganie, S.Y.; Sheikh, T.A.; Javaid, D.; Qadri, S.S.; Pramodh, S.; Alsulimani, A.; Alkhanani, M.F.; Harakeh, S.; et al. Oxidative Stress in Human Pathology and Aging: Molecular Mechanisms and Perspectives. Cells 2022, 11, 552. [Google Scholar] [CrossRef]
- Roumeliotis, S.; Roumeliotis, A.; Georgianos, P.I.; Stamou, A.; Manolopoulos, V.G.; Panagoutsos, S.; Liakopoulos, V. Oxidized LDL Is Associated with eGFR Decline in Proteinuric Diabetic Kidney Disease: A Cohort Study. Oxidative Med. Cell. Longev. 2021, 2021, 2968869. [Google Scholar]
- Roumeliotis, A.; Roumeliotis, S.; Tsetsos, F.; Georgitsi, M.; Georgianos, P.I.; Stamou, A.; Vasilakou, A.; Kotsa, K.; Tsekmekidou, X.; Paschou, P.; et al. Oxidative Stress Genes in Diabetes Mellitus Type 2: Association with Diabetic Kidney Disease. Oxidative Med. Cell. Longev. 2021, 2021, 2531062. [Google Scholar]
- Roumeliotis, S.; Georgianos, P.I.; Roumeliotis, A.; Eleftheriadis, T.; Stamou, A.; Manolopoulos, V.G.; Panagoutsos, S.; Liakopoulos, V. Oxidized LDL Modifies the Association between Proteinuria and Deterioration of Kidney Function in Proteinuric Diabetic Kidney Disease. Life 2021, 11, 504. [Google Scholar] [CrossRef]
- Duni, A.; Liakopoulos, V.; Roumeliotis, S.; Peschos, D.; Dounousi, E. Oxidative Stress in the Pathogenesis and Evolution of Chronic Kidney Disease: Untangling Ariadne’s Thread. Int. J. Mol. Sci. 2019, 20, 3711. [Google Scholar] [CrossRef]
- Jha, J.C.; Banal, C.; Chow, B.S.M.; Cooper, M.E.; Jandeleit-Dahm, K. Diabetes and Kidney Disease: Role of Oxidative Stress. Antioxid. Redox Signal. 2016, 25, 657–684. [Google Scholar] [PubMed]
- Oberg, B.P.; McMenamin, E.; Lucas, F.L.; McMonagle, E.; Morrow, J.; Ikizler, T.A.; Himmelfarb, J. Increased prevalence of oxidant stress and inflammation in patients with moderate to severe chronic kidney disease. Kidney Int. 2004, 65, 1009–1016. [Google Scholar] [PubMed]
- Liakopoulos, V.; Roumeliotis, S.; Gorny, X.; Dounousi, E.; Mertens, P.R. Oxidative Stress in Hemodialysis Patients: A Review of the Literature. Oxidative Med. Cell. Longev. 2017, 2017, 3081856. [Google Scholar]
- Liakopoulos, V.; Roumeliotis, S.; Zarogiannis, S.; Eleftheriadis, T.; Mertens, P.R. Oxidative stress in hemodialysis: Causative mecha-nisms, clinical implications, and possible therapeutic interventions. Semin. Dial. 2019, 32, 58–71. [Google Scholar] [CrossRef]
- Morena, M.; Cristol, J.P.; Canaud, B. Why Hemodialysis Patients Are in a Prooxidant State? What Could Be Done to Correct the Pro/Antioxidant Imbalance. Blood Purif. 2000, 18, 191–199. [Google Scholar]
- Liakopoulos, V.; Roumeliotis, S.; Gorny, X.; Eleftheriadis, T.; Mertens, P.R. Oxidative Stress in Patients Undergoing Peritoneal Dialysis: A Current Review of the Literature. Oxidative Med. Cell. Longev. 2017, 2017, 3494867. [Google Scholar]
- Roumeliotis, S.; Dounousi, E.; Salmas, M.; Eleftheriadis, T.; Liakopoulos, V. Unfavorable Effects of Peritoneal Dialysis Solutions on the Peritoneal Membrane: The Role of Oxidative Stress. Biomolecules 2020, 10, 768. [Google Scholar] [CrossRef]
- Duni, A.; Liakopoulos, V.; Rapsomanikis, K.P.; Dounousi, E. Chronic Kidney Disease and Disproportionally Increased Cardiovas-cular Damage: Does Oxidative Stress Explain the Burden? Oxidative Med. Cell Longev. 2017, 2017, 9036450. [Google Scholar]
- Ling, X.C.; Kuo, K.L. Oxidative stress in chronic kidney disease. Ren. Replace. Ther. 2018, 4, 53. [Google Scholar] [CrossRef]
- Roumeliotis, S.; Mallamaci, F.; Zoccali, C. Endothelial Dysfunction in Chronic Kidney Disease, from Biology to Clinical Outcomes: A 2020 Update. J. Clin. Med. 2020, 9, 2359. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Zheng, L.; Xu, H.; Tang, D.; Lin, L.; Zhang, J.; Li, C.; Wang, W.; Yuan, Q.; Tao, L.; et al. Oxidative stress contributes to vascular calcification in patients with chronic kidney disease. J. Mol. Cell. Cardiol. 2020, 138, 256–268. [Google Scholar] [CrossRef]
- Tejchman, K.; Kotfis, K.; Sieńko, J. Biomarkers and Mechanisms of Oxidative Stress—Last 20 Years of Research with an Emphasis on Kidney Damage and Renal Transplantation. Int. J. Mol. Sci. 2021, 22, 8010. [Google Scholar] [CrossRef] [PubMed]
- Baralić, M.; Spasojević, I.; Miljuš, G.; Šunderić, M.; Robajac, D.; Dobrijević, Z.; Gligorijević, N.; Nedić, O.; Penezić, A. Albumin at the intersection between antioxidant and pro-oxidant in patients on peritoneal dialysis. Free Radic. Biol. Med. 2022, 187, 105–112. [Google Scholar]
- Figueroa, S.M.; Araos, P.; Reyes, J.; Gravez, B.; Barrera-Chimal, J.; Amador, C.A. Oxidized Albumin as a Mediator of Kidney Disease. Antioxidants 2021, 10, 404. [Google Scholar] [CrossRef] [PubMed]
- Jovanović, V.B.; Penezić-Romanjuk, A.Z.; Pavićević, I.D.; Aćimović, J.M.; Mandić, L.M. Improving the reliability of human serum al-bumin-thiol group determination. Anal. Biochem. 2013, 439, 17–22. [Google Scholar] [CrossRef]
- Watanabe, H. Oxidized Albumin: Evaluation of Oxidative Stress as a Marker for the Progression of Kidney Disease. Biol. Pharm. Bull. 2022, 45, 1728–1732. [Google Scholar] [CrossRef]
- Liu, B.; Yasukawa, K.; Koid, S.S.; Yeerbolati, A.; Reheman, L.; Wang, C.; Yatomi, Y.; Shimosawa, T. A rapid method for measuring serum oxidized albumin in a rat model of proteinuria and hypertension. Sci. Rep. 2019, 9, 8620. [Google Scholar]
- Liu, B.; Hu, Y.; Tian, D.; Dong, J.; Li, B.F. Assessing the effects of tempol on renal fibrosis, inflammation, and oxidative stress in a high-salt diet combined with 5/6 nephrectomy rat model: Utilizing oxidized albumin as a biomarker. BMC Nephrol. 2024, 25, 64. [Google Scholar]
- Terawaki, H.; Yoshimura, K.; Hasegawa, T.; Matsuyama, Y.; Negawa, T.; Yamada, K.; Matsushima, M.; Nakayama, M.; Hosoya, T.; Era, S. Oxidative stress is enhanced in correlation with renal dysfunction: Examination with the redox state of albumin. Kidney Int. 2004, 66, 1988–1993. [Google Scholar]
- Soejima, A.; Matsuzawa, N.; Hayashi, T.; Kimura, R.; Ootsuka, T.; Fukuoka, K.; Yamada, A.; Nagasawa, T.; Era, S. Alteration of Redox State of Human Serum Albumin before and after Hemodialysis. Blood Purif. 2004, 22, 525–529. [Google Scholar] [PubMed]
- Terawaki, H.; Takada, Y.; Era, S.; Funakoshi, Y.; Nakayama, K.; Nakayama, M.; Ogura, M.; Ito, S.; Hosoya, T. The Redox State of Albumin and Serious Car-diovascular Incidence in Hemodialysis Patients. Ther. Apher. Dial. 2010, 14, 465–471. [Google Scholar] [CrossRef]
- Lim, P.S.; Jeng, Y.; Wu, M.Y.; Pai, M.A.; Wu, T.K.; Liu, C.S.; Chen, C.H.; Kuo, Y.C.; Chien, S.W.; Chen, H.P. Serum oxidized albumin and cardiovascular mortality in normoalbuminemic hemodialysis patients: A cohort study. PLoS ONE 2013, 8, e70822. [Google Scholar] [CrossRef]
- Magzal, F.; Sela, S.; Szuchman-Sapir, A.; Tamir, S.; Michelis, R.; Kristal, B. In-vivo oxidized albumin– a pro-inflammatory agent in hypoalbuminemia. PLoS ONE 2017, 12, e0177799. [Google Scholar] [CrossRef]
- Bar–Or, D.; Lau, E.; Winkler, J.V. A novel assay for cobalt-albumin binding and its potential as a marker for myocardial ischemia—A preliminary report. J. Emerg. Med. 2000, 19, 311–315. [Google Scholar]
- Yücel, D. Ischemia—Modified albumin by albumin cobalt binding test: A false myth or reality. Turk. J. Biochem. 2023, 48, 1–4. [Google Scholar]
- Kıyıcı, A.; Mehmetoğlu, İ.; Karaoğlan, H.; Atalay, H.; Solak, Y.; Türk, S. Ischemia-Modified albumin levels in patients with end-stage renal disease patients on hemodialysis: Does albumin analysis method affect albumin-adjusted Ischemia-Modified albumin levels? J. Clin. Lab. Anal. 2010, 24, 273–277. [Google Scholar] [PubMed]
- Szulimowska, J.; Zalewska, A.; Taranta-Janusz, K.; Trocka, D.; Żendzian-Piotrowska, M.; Tomasiuk, R.; Maciejczyk, M. Association of Ischemia-Modified Albumin (IMA) in Saliva, Serum, and Urine with Diagnosis of Chronic Kidney Disease (CKD) in Children: A Case-Control Study. Med. Sci. Monit. 2023, 29, e942230. [Google Scholar] [CrossRef]
- Cakirca, G.; Guzelcicek, A.; Yilmaz, K.; Nas, C. Increased ischemia-modified albumin levels in children with steroid-sensitive nephrotic syndrome. Pak. J. Med. Sci. 2020, 36, 1490–1494. [Google Scholar] [CrossRef]
- Azouaou Toualbi, L.; Mounir, A.; Wafa, B.; Medina, A.; Abderrezak, K.; Chahine, T.; Henni, C.; Abdelghani, B.; Atmane, S. Implications of advanced oxidation protein products and vitamin E in atherosclerosis progression. Arch. Med. Sci.-Atheroscler. Dis. 2021, 6, 135–144. [Google Scholar] [CrossRef]
- Vinereanu, I.V.; Peride, I.; Niculae, A.; Tiron, A.T.; Caragheorgheopol, A.; Manda, D.; Checherita, I.A. The Relationship between Advanced Oxi-dation Protein Products, Vascular Calcifications and Arterial Stiffness in Predialysis Chronic Kidney Disease Patients. Medicina 2021, 57, 452. [Google Scholar] [CrossRef] [PubMed]
- Drüeke, T.; Witko-Sarsat, V.; Massy, Z.; Descamps-Latscha, B.; Guerin, A.P.; Marchais, S.J.; Gausson, V.; London, G.M. Iron therapy, advanced oxidation protein products, and carotid artery intima-media thickness in end-stage renal disease. Circulation 2002, 106, 2212–2217. [Google Scholar] [PubMed]
- Gonzalez, E.; Bajo, M.A.; Carrero, J.J.; Lindholm, B.; Grande, C.; Sánchez-Villanueva, R.; Del Peso, G.; Díaz-Almirón, M.; Iglesias, P.; Díez, J.J.; et al. An Increase of Plasma Advanced Oxidation Protein Products Levels Is Associated with Cardiovascular Risk in Incident Peritoneal Dialysis Patients: A Pilot Study. Oxidative Med. Cell. Longev. 2015, 2015, 219569. [Google Scholar]
- Xu, H.; Cabezas-Rodriguez, I.; Qureshi, A.R.; Heimburger, O.; Barany, P.; Snaedal, S.; Anderstam, B.; Helin, A.C.B.; Carrero, J.J.; Stenvinkel, P. Increased Levels of Modified Advanced Oxidation Protein Products Are Associated with Central and Peripheral Blood Pressure in Peritoneal Dialysis Patients. Perit. Dial. Int. J. Int. Soc. Perit. Dial. 2015, 35, 460–470. [Google Scholar]
- Kleinbongard, P.; Dejam, A.; Lauer, T.; Jax, T.; Kerber, S.; Gharini, P.; Balzer, J.; Zotz, R.B.; Scharf, R.E.; Willers, R.; et al. Plasma nitrite concentrations reflect the degree of endo-thelial dysfunction in humans. Free Radic. Biol. Med. 2006, 40, 295–302. [Google Scholar] [CrossRef]
- Hou, J.S.; Wang, C.H.; Lai, Y.H.; Kuo, C.H.; Lin, Y.L.; Hsu, B.G.; Tsai, J.P. Serum Malondialdehyde-Modified Low-Density Lipoprotein Is a Risk Factor for Central Arterial Stiffness in Maintenance Hemodialysis Patients. Nutrients 2020, 12, 2160. [Google Scholar] [CrossRef]
- Liu, W.N.; Hsu, Y.C.; Lu, C.W.; Lin, S.C.; Wu, T.J.; Lin, G.M. Serum Malondialdehyde-Modified Low-Density Lipoprotein as a Risk Marker for Peripheral Arterial Stiffness in Maintenance Hemodialysis Patients. Medicina 2024, 60, 697. [Google Scholar] [CrossRef]
- Jung, H.H.; Choi, D.H.; Lee, S.H. Serum malondialdehyde and coronary artery disease in hemodialysis patients. Am. J. Nephrol. 2004, 24, 537–542. [Google Scholar] [CrossRef]
- Conti, G.; Caccamo, D.; Siligato, R.; Gembillo, G.; Satta, E.; Pazzano, D.; Carucci, N.; Carella, A.; Del Campo, G.; Salvo, A.; et al. Association of Higher Advanced Oxidation Protein Products (AOPPs) Levels in Patients with Diabetic and Hypertensive Nephropathy. Medicina 2019, 55, 675. [Google Scholar] [CrossRef]
- Furuya, R.; Kumagai, H.; Odamaki, M.; Takahashi, M.; Miyaki, A.; Hishida, A. Impact of residual renal function on plasma levels of advanced oxidation protein products and pentosidine in peritoneal dialysis patients. Nephron Clin. Pract. 2009, 112, c255–c261. [Google Scholar] [CrossRef]
- Izemrane, D.; Benziane, A.; Makrelouf, M.; Hamdis, N.; Rabia, S.H.; Boudjellaba, S.; Baz, A.; Benaziza, D. Living donors kidney transplantation and oxidative stress: Nitric oxide as a predictive marker of graft function. PLoS ONE 2024, 19, e0307824. [Google Scholar]
- Tomás-Simó, P.; D’marco, L.; Romero-Parra, M.; Tormos-Muñoz, M.C.; Sáez, G.; Torregrosa, I.; Estañ-Capell, N.; Miguel, A.; Gorriz, J.L.; Puchades, M.J. Oxidative Stress in Non-Dialysis-Dependent Chronic Kidney Disease Patients. Int. J. Environ. Res. Public Health 2021, 18, 7806. [Google Scholar] [CrossRef] [PubMed]
- Furukawa, S.; Suzuki, H.; Fujihara, K.; Kobayashi, K.; Iwasaki, H.; Sugano, Y.; Yatoh, S.; Sekiya, M.; Yahagi, N.; Shimano, H. Malondialdehyde-modified LDL-related variables are associated with diabetic kidney disease in type 2 diabetes. Diabetes Res. Clin. Pract. 2018, 141, 237–243. [Google Scholar] [PubMed]
- Fonseca, I.; Reguengo, H.; Almeida, M.; Dias, L.; Martins, L.S.; Pedroso, S.; Santos, J.; Lobato, L.; Henriques, A.C.; Mendonça, D. Oxidative Stress in Kidney Transplantation: Malondialdehyde Is an Early Predictive Marker of Graft Dysfunction. Transplantation 2014, 97, 1058–1065. [Google Scholar] [CrossRef]
- Kehm, R.; Baldensperger, T.; Raupbach, J.; Höhn, A. Protein oxidation—Formation mechanisms, detection and relevance as bi-omarkers in human diseases. Redox Biol. 2021, 42, 101901. [Google Scholar] [CrossRef]
- Spickett, C.M.; Pitt, A.R. Protein oxidation: Role in signalling and detection by mass spectrometry. Amino Acids 2012, 42, 5–21. [Google Scholar] [CrossRef]
- Witko-Sarsat, V.; Friedlander, M.; Capeillère-Blandin, C.; Nguyen-Khoa, T.; Nguyen, A.T.; Zingraff, J.; Jungers, P.; Descamps-Latscha, B. Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney Int. 1996, 49, 1304–1313. [Google Scholar]
- Bochi, G.V.; Torbitz, V.D.; Santos, R.C.V.; Cubillos-Rojas, M.; López, J.L.R.; Siebel, A.M.; Gomes, P.; de Oliveira, J.R.; Moresco, R.N. Fenton Reaction-Generated Advanced Oxidation Protein Products Induces Inflammation in Human Embryonic Kidney Cells. Inflammation 2016, 39, 1285–1290. [Google Scholar]
- Li, H.Y.; Hou, F.F.; Zhang, X.; Chen, P.Y.; Liu, S.X.; Feng, J.X.; Liu, Z.Q.; Shan, Y.X.; Wang, G.B.; Zhou, Z.M.; et al. Advanced oxidation protein products accelerate renal fibrosis in a remnant kidney model. J. Am. Soc. Nephrol. 2007, 18, 528–538. [Google Scholar] [CrossRef]
- Shi, X.Y.; Hou, F.F.; Niu, H.X.; Wang, G.B.; Xie, D.; Guo, Z.J.; Zhou, Z.M.; Yang, F.; Tian, J.W.; Zhang, X. Advanced oxidation protein products promote inflammation in diabetic kidney through activation of renal nicotinamide adenine dinucleotide phosphate oxidase. Endocrinology 2008, 149, 1829–1839. [Google Scholar]
- Kato, H.; Watanabe, H.; Imafuku, T.; Arimura, N.; Fujita, I.; Noguchi, I.; Tanaka, S.; Nakano, T.; Tokumaru, K.; Enoki, Y.; et al. Advanced oxidation protein products contribute to chronic kidney disease-induced muscle atrophy by inducing oxidative stress via CD36/NADPH oxidase pathway. J. Cachex-Sarcopenia Muscle 2021, 12, 1832–1847. [Google Scholar]
- Arimura, N.; Watanabe, H.; Kato, H.; Imafuku, T.; Nakano, T.; Sueyoshi, M.; Chikamatsu, M.; Tokumaru, K.; Nagasaki, T.; Maeda, H.; et al. Advanced Oxidation Protein Products Contribute to Chronic-Kidney-Disease-Induced Adipose Inflammation through Macrophage Activation. Toxins 2023, 15, 179. [Google Scholar] [CrossRef] [PubMed]
- Sung, C.C.; Hsu, Y.C.; Chen, C.C.; Lin, Y.F.; Wu, C.C. Oxidative Stress and Nucleic Acid Oxidation in Patients with Chronic Kidney Disease. Oxidative Med. Cell. Longev. 2013, 2013, 301982. [Google Scholar]
- Mohammedi, K.; Bellili-Muñoz, N.; Driss, F.; Roussel, R.; Seta, N.; Fumeron, F.; Hadjadj, S.; Marre, M.; Velho, G. Manganese superoxide dismutase (SOD2) polymorphisms, plasma advanced oxidation protein products (AOPP) concentration and risk of kidney complications in subjects with type 1 diabetes. PLoS ONE 2014, 9, e96916. [Google Scholar]
- Du, S.L.; Zeng, X.Z.; Tian, J.W.; Ai, J.; Wan, J.; He, J.X. Advanced oxidation protein products in predicting acute kidney injury following cardiac surgery. Biomarkers 2015, 20, 206–211. [Google Scholar] [CrossRef]
- Liang, X.; Chen, Y.; Zhuang, J.; Zhang, M.; Xiong, W.; Guo, H.; Jiang, F.; Hu, P.; Guo, D.; Shi, W. Advanced oxidation protein products as prognostic biomarkers for recovery from acute kidney injury after coronary artery bypass grafting. Biomarkers 2012, 17, 507–512. [Google Scholar]
- Lentini, P.; de Cal, M.; Cruz, D.; Chronopoulos, A.; Soni, S.; Nalesso, F.; Zanella, M.; Garzotto, F.; Brendolan, A.; Piccinni, P.; et al. The role of advanced oxidation protein products in intensive care unit patients with acute kidney injury. J. Crit. Care 2010, 25, 605–609. [Google Scholar]
- Witko-Sarsat, V.; Gausson, V.; Descamps-Latscha, B. Are advanced oxidation protein products potential uremic toxins? Kidney Int. 2003, 63, S11–S14. [Google Scholar]
- Colombo, G.; Reggiani, F.; Astori, E.; Altomare, A.; Finazzi, S.; Garavaglia, M.L.; Angelini, C.; Milzani, A.; Badalamenti, S.; Dalle-Donne, I. Advanced oxidation protein products in nondiabetic end stage renal disease patients on maintenance haemodialysis. Free Radic. Res. 2019, 53, 1114–1124. [Google Scholar]
- Kalousová, M.; Zima, T.; Tesař, V.; Sulková, S.; Fialová, L. Relationship between advanced glycoxidation end products, inflammatory markers/acute-phase reactants, and some autoantibodies in chronic hemodialysis patients. Kidney Int. 2003, 63, S62–S64. [Google Scholar]
- Zhou, Q.; Wu, S.; Jiang, J.; Tian, J.; Chen, J.; Yu, X.; Chen, P.; Mei, C.; Xiong, F.; Shi, W.; et al. Accumulation of circulating advanced oxidation protein products is an independent risk factor for ischaemic heart disease in maintenance haemodialysis patients. Nephrology 2012, 17, 642–649. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Zhang, Y.; Chen, J.; Mei, C.; Xiong, F.; Shi, W.; Zhou, W.; Liu, X.; Sun, S.; Tian, J.; et al. Association between serum advanced oxidation protein products and mortality risk in maintenance hemodialysis patients. J. Transl. Med. 2021, 19, 284. [Google Scholar] [CrossRef]
- Zuo, J.; Chaykovska, L.; Chu, C.; Chen, X.; Hasan, A.A.; Krämer, B.K.; Tepel, M.; Hocher, B. Head-to-Head Comparison of Oxidative Stress Biomarkers for All-Cause Mortality in Hemodialysis Patients. Antioxidants 2022, 11, 1975. [Google Scholar] [CrossRef] [PubMed]
- van Ypersele de Strihou, C.; Miyata, T. Advanced glycation and advanced oxidation protein products: The effect of peritoneal dialysis. Perit. Dial. Int. J. Int. Soc. Perit. Dial. 2006, 26, 185–187. [Google Scholar] [CrossRef]
- Furuya, R.; Odamaki, M.; Kumagai, H.; Hishida, A. Impact of angiotensin II receptor blocker on plasma levels of adiponectin and advanced oxidation protein products in peritoneal dialysis patients. Blood Purif. 2006, 24, 445–450. [Google Scholar] [CrossRef]
- Verma, S.; Singh, P.; Khurana, S.; Ganguly, N.K.; Kukreti, R.; Saso, L.; Rana, D.S.; Taneja, V.; Bhargava, V. Implications of oxidative stress in chronic kidney disease: A review on current concepts and therapies. Kidney Res. Clin. Pract. 2021, 40, 183–193. [Google Scholar] [CrossRef]
- Terawaki, H.; Murase, T.; Nakajima, A.; Aoyagi, K.; Fukushima, N.; Tani, Y.; Nakamura, T.; Kazama, J.J. The Relationship between Xanthine Oxidoreductase and Xanthine Oxidase Activities in Plasma and Kidney Dysfunction. J. Clin. Exp. Nephrol. 2017, 2, 31. [Google Scholar] [CrossRef]
- Terawaki, H.; Hayashi, T.; Murase, T.; Iijima, R.; Waki, K.; Tani, Y.; Nakamura, T.; Yoshimura, K.; Uchida, S.; Kazama, J.J. Relationship between Xanthine Oxidoreductase Redox and Oxidative Stress among Chronic Kidney Disease Patients. Oxidative Med. Cell. Longev. 2018, 2018, 9714710. [Google Scholar] [CrossRef]
- Gondouin, B.; Jourde-Chiche, N.; Sallee, M.; Dou, L.; Cerini, C.; Loundou, A.; Morange, S.; Berland, Y.; Burtey, S.; Brunet, P.; et al. Plasma Xanthine Oxidase Activity Is Predictive of Cardiovascular Disease in Patients with Chronic Kidney Disease, Independently of Uric Acid Levels. Nephron 2015, 131, 167–174. [Google Scholar] [CrossRef]
- Sun, M.; Hines, N.; Scerbo, D.; Buchanan, J.; Wu, C.; Ten Eyck, P.; Zepeda-Orozco, D.; Taylor, E.B.; Jalal, D.I. Allopurinol Lowers Serum Urate but Does Not Reduce Oxi-dative Stress in CKD. Antioxidants. 2022, 11, 1297. [Google Scholar] [CrossRef]
- Kim, Y.J.; Oh, S.H.; Ahn, J.S.; Yook, J.M.; Kim, C.D.; Park, S.H.; Cho, J.H.; Kim, Y.L. The Crucial Role of Xanthine Oxidase in CKD Progression Associated with Hypercholesterolemia. Int. J. Mol. Sci. 2020, 21, 7444. [Google Scholar] [CrossRef] [PubMed]
- Vanhoutte, P.M.; Zhao, Y.; Xu, A.; Leung, S.W.S. Thirty Years of Saying NO: Sources, Fate, Actions, and Misfortunes of the Endo-thelium-Derived Vasodilator Mediator. Circ. Res. 2016, 119, 375–396. [Google Scholar] [PubMed]
- Park, K.H.; Park, W.J. Endothelial Dysfunction: Clinical Implications in Cardiovascular Disease and Therapeutic Approaches. J. Korean Med. Sci. 2015, 30, 1213. [Google Scholar] [PubMed]
- Ollerstam, A.; Pittner, J.; E Persson, A.; Thorup, C. Increased blood pressure in rats after long-term inhibition of the neuronal isoform of nitric oxide synthase. J. Clin. Investig. 1997, 99, 2212–2218. [Google Scholar] [CrossRef]
- Klahr, S. The role of nitric oxide in hypertension and renal disease progression. Nephrol. Dial. Transplant. 2001, 16 (Suppl. S1), 60–62. [Google Scholar] [CrossRef]
- Prabhakar, S.; Starnes, J.; Shi, S.; Lonis, B.; Tran, R. Diabetic Nephropathy Is Associated with Oxidative Stress and Decreased Renal Nitric Oxide Production. J. Am. Soc. Nephrol. 2007, 18, 2945–2952. [Google Scholar] [PubMed]
- Kahveci, A.S.; Barnatan, T.T.; Kahveci, A.; Adrian, A.E.; Arroyo, J.; Eirin, A.; Harris, P.C.; Lerman, A.; Lerman, L.O.; Torres, V.E.; et al. Oxidative Stress and Mitochondrial Abnormalities Contribute to Decreased Endothelial Nitric Oxide Synthase Expression and Renal Disease Progression in Early Experimental Polycystic Kidney Disease. Int. J. Mol. Sci. 2020, 21, 1994. [Google Scholar] [CrossRef]
- Korish, A.A. Oxidative stress and nitric oxide deficiency in inflammation of chronic renal failure. Possible preventive role of L-arginine and multiple antioxidants. Saudi Med. J. 2009, 30, 1150–1157. [Google Scholar]
- Shirazi, M.K.; Azarnezhad, A.; Abazari, M.F.; Poorebrahim, M.; Ghoraeian, P.; Sanadgol, N.; Bokharaie, H.; Heydari, S.; Abbasi, A.; Kabiri, S.; et al. The role of nitric oxide signaling in renoprotective effects of hydrogen sulfide against chronic kidney disease in rats: Involvement of oxidative stress, autophagy and apoptosis. J. Cell. Physiol. 2019, 234, 11411–11423. [Google Scholar]
- Wang, D.; Strandgaard, S.; Iversen, J.; Wilcox, C.S. Asymmetric dimethylarginine, oxidative stress, and vascular nitric oxide synthase in essential hypertension. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2009, 296, R195–R200. [Google Scholar]
- Ahluwalia, A.; Gladwin, M.; Coleman, G.D.; Hord, N.; Howard, G.; Kim-Shapiro, D.B.; Lajous, M.; Larsen, F.J.; Lefer, D.J.; McClure, L.A.; et al. Dietary Nitrate and the Epidemiology of Cardiovascular Disease: Report From a National Heart, Lung, and Blood Institute Workshop. J. Am. Heart Assoc. 2016, 5, e003402. [Google Scholar] [PubMed]
- Carlstrom, M.; Montenegro, M.F. Therapeutic value of stimulating the nitrate-nitrite-nitric oxide pathway to attenuate oxidative stress and restore nitric oxide bioavailability in cardiorenal disease. J. Intern. Med. 2019, 285, 2–18. [Google Scholar] [CrossRef] [PubMed]
- Araujo, M.; Welch, W.J. Oxidative stress and nitric oxide in kidney function. Curr. Opin. Nephrol. Hypertens. 2006, 15, 72–77. [Google Scholar] [CrossRef]
- Bryan, N.S.; Torregrossa, A.C.; Mian, A.I.; Lindsey Berkson, D.; Westby, C.M.; Moncrief, J.W. Acute effects of hemodialysis on nitrite and nitrate: Potential cardiovascular implications in dialysis patients. Free Radic. Biol. Med. 2013, 58, 46–51. [Google Scholar]
- Gutiérrez-Prieto, J.A.; Soto-Vargas, J.; Parra-Michel, R.; Pazarín-Villaseñor, H.L.; García-Sánchez, A.; Miranda-Díaz, A.G. The Behavior of the Type of Peritoneal Transport in the Inflammatory and Oxidative Status in Adults Under Peritoneal Dialysis. Front. Med. 2019, 6, 210. [Google Scholar]
- Tripatara, P.; Patel, N.S.A.; Webb, A.; Rathod, K.; Lecomte, F.M.J.; Mazzon, E.; Cuzzocrea, S.; Yaqoob, M.M.; Ahluwalia, A.; Thiemermann, C. Nitrite-Derived Nitric Oxide Protects the Rat Kidney against Ischemia/Reperfusion Injury In Vivo: Role for Xanthine Oxidoreductase. J. Am. Soc. Nephrol. 2007, 18, 570–580. [Google Scholar] [CrossRef]
- Taso, O.V.; Philippou, A.; Moustogiannis, A.; Zevolis, E.; Koutsilieris, M. Lipid peroxidation products and their role in neurodegenerative diseases. Ann. Res. Hosp. 2019, 3, 2. [Google Scholar] [CrossRef]
- Cui, X.; Gong, J.; Han, H.; He, L.; Teng, Y.; Tetley, T.; Sinharay, R.; Chung, K.F.; Islam, T.; Gilliland, F.; et al. Relationship between free and total malondialdehyde, a well-established marker of oxidative stress, in various types of human biospecimens. J. Thorac. Dis. 2018, 10, 3088–3197. [Google Scholar]
- Tsikas, D. Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges. Anal. Biochem. 2017, 524, 13–30. [Google Scholar] [CrossRef]
- Niedernhofer, L.J.; Daniels, J.S.; Rouzer, C.A.; Greene, R.E.; Marnett, L.J. Malondialdehyde, a Product of Lipid Peroxidation, Is Muta-genic in Human Cells. J. Biol. Chem. 2003, 278, 31426–31433. [Google Scholar] [CrossRef]
- Lankin, V.Z.; Tikhaze, A.K.; Melkumyants, A.M. Malondialdehyde as an Important Key Factor of Molecular Mechanisms of Vascular Wall Damage under Heart Diseases Development. Int. J. Mol. Sci. 2022, 24, 128. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 2018, 9, 7204–7218. [Google Scholar] [CrossRef] [PubMed]
- Koppara, N.; Medooru, K.; Yadagiri, L.; Vishnubotla, S.; Rapur, R.; Bitla, A. A study of oxidative stress, inflammation, and endothelial dysfunction in diabetic and nondiabetic chronic kidney disease pre-dialysis patients. Indian J. Nephrol. 2023, 33, 420. [Google Scholar] [PubMed]
- Ozden, M.; Maral, H.; Akaydin, D.; Cetinalp, P.; Kalender, B. Erythrocyte glutathione peroxidase activity, plasma malondialdehyde and erythrocyte glutathione levels in hemodialysis and CAPD patients. Clin. Biochem. 2002, 35, 269–273. [Google Scholar] [CrossRef]
- Papadea, P.; Kalaitzopoulou, E.; Skipitari, M.; Varemmenou, A.; Papasotiriou, M.; Papachristou, E.; Goumenos, D.; Grune, T.; Georgiou, C.D. Novel oxidized LDL-based clinical markers in peritoneal dialysis patients for atherosclerosis risk assessment. Redox Biol. 2023, 64, 102762. [Google Scholar] [CrossRef]
- Ben Omrane Sioud, O.; El Ati, Z.; Bouzidi, H.; Kerkeni, M.; Hammami, M. Lipid and oxidative profile in hemodialysis patients: Clinical follow-up for three years. Tunis. Médicale 2019, 97, 551–555. [Google Scholar]
- Silveira-Silva, P.C.; Silva, R.E.; Santos, E.C.; Justino, P.B.I.; Santos, M.P.; Gonçalves, R.V.; Novaes, R.D. Advanced glycosylation end products as metabolic predictors of systemic pro-inflammatory and prooxidant status in patients with end-stage renal disease. Cytokine 2023, 166, 156189. [Google Scholar] [CrossRef]
- Sangeetha Lakshmi, B.; Harini Devi, N.; Suchitra, M.M.; Srinivasa Rao, P.V.L.N.; Siva Kumar, V. Changes in the inflammatory and oxidative stress markers during a single hemodialysis session in patients with chronic kidney disease. Ren. Fail. 2018, 40, 534–540. [Google Scholar] [CrossRef]
- Hultqvist, M.; Hegbrant, J.; Nilsson-Thorell, C.; Lindholm, T.; Nilsson, P.; Lindén, T.; Hultqvist-Bengtsson, U. Plasma concentrations of vitamin C, vitamin E and/or malondialdehyde as markers of oxygen free radical production during hemodialysis. Clin. Nephrol. 1997, 47, 37–46. [Google Scholar]
- Steghens, J.P.; Combarnous, F.; Arkouche, W.; Flourie, F.; Hadj-Aissa, A. Influence of hemodialysis on total and free malondialde-hyde measured by a new HPLC method. Nephrol. Ther. 2005, 1, 121–125. [Google Scholar] [CrossRef]
- Silva, Í.C.; Marizeiro, D.F.; De Francesco Daher, E.; Veras De Sandes-Freitas, T.; Meneses, G.C.; Bezerra, G.F.; Libório, A.B.; Martins, A.M.C.; Campos, N.G. Correlation between functional capacity and oxidative stress and inflammation in hemodialysis patients. J. Bodyw. Mov. Ther. 2021, 27, 339–343. [Google Scholar] [CrossRef] [PubMed]
- Azouaou, L.T.; Adnane, M.; Khelfi, A.; Ballouti, W.; Arab, M.; Toualbi, C.; Chader, H.; Tahae, R.; Seba, A. Oxidative stress accelerates the carotid atherosclerosis process in patients with chronic kidney disease. Arch. Med. Sci.-Atheroscler. Dis. 2020, 5, 245–254. [Google Scholar]
- George, J.; Aron, A.; Levy, Y.; Gilburd, B.; Ben-David, A.; Renaudineau, Y.; Zonana-Nachach, A.; Youinou, P.; Harats, D.; Shoenfeld, Y. Anti-cardiolipin, anti-endothelial-cell and anti-malondialdehyde-LDL antibodies in uremic patients undergoing hemodialysis: Relationship with vascular access thrombosis and thromboembolic events. Hum. Antibodies 1999, 9, 125–131. [Google Scholar] [CrossRef]
- Boaz, M.; Matas, Z.; Biro, A.; Katzir, Z.; Green, M.; Fainaru, M.; Smetana, S. Serum malondialdehyde and prevalent cardiovascular disease in hemodialysis. Kidney Int. 1999, 56, 1078–1083. [Google Scholar]
- Boaz, M.; Matas, Z.; Biro, A.; Katzir, Z.; Green, M.; Fainaru, M.; Smetana, S. Comparison of hemostatic factors and serum malondialdehyde as predictive factors for cardiovascular disease in hemodialysis patients. Am. J. Kidney Dis. Off. J. Natl. Kidney Found. 1999, 34, 438–444. [Google Scholar]
- Vida, C.; Oliva, C.; Yuste, C.; Ceprián, N.; Caro, P.J.; Valera, G.; de Pablos, I.G.; Morales, E.; Carracedo, J. Oxidative Stress in Patients with Advanced CKD and Renal Replacement Therapy: The Key Role of Peripheral Blood Leukocytes. Antioxidants 2021, 10, 1155. [Google Scholar] [CrossRef] [PubMed]
- Nannapaneni, S.S.; Nimmanapalli, H.D.; Lakshmi, A.Y.; Vishnubotla, S.K. Markers of Oxidative Stress, Inflammation, and Endothelial Dysfunction in Diabetic and Nondiabetic Patients with Chronic Kidney Disease on Peritoneal Dialysis. Saudi J. Kidney Dis. Transplant. 2022, 33, 361–372. [Google Scholar] [CrossRef]
- Stepanova, N.; Korol, L.; Burdeyna, O. Oxidative stress in peritoneal dialysis patients: Association with the dialysis adequacy and technique survival. Indian J. Nephrol. 2019, 29, 309. [Google Scholar] [CrossRef]
- Basso, A.; Baldini, P.; Bertoldi, G.; Driussi, G.; Caputo, I.; Bettin, E.; Cacciapuoti, M.; Calò, L.A. Oxidative stress reduction by icodextrin-based glucose-free solutions in peritoneal dialysis: Support for new promising approaches. Artif. Organs 2024, 48, 1031–1037. [Google Scholar] [CrossRef]
- Kamijo, Y.; Wang, L.; Matsumoto, A.; Nakajima, T.; Hashimoto, K.; Higuchi, M.; Kyogashima, M.; Aoyama, T.; Hara, A. Long-term improvement of oxidative stress via kidney transplantation ameliorates serum sulfatide levels. Clin. Exp. Nephrol. 2012, 16, 959–967. [Google Scholar] [CrossRef]
- Nguyen, T.T.U.; Kim, H.W.; Kim, W. Effects of Probiotics, Prebiotics, and Synbiotics on Uremic Toxins, Inflammation, and Oxidative Stress in Hemodialysis Patients: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Clin. Med. 2021, 10, 4456. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Xiao, M.; Tan, Q.; Lyu, J.; Lu, F. The effect of aerobic exercise on oxidative stress in patients with chronic kidney disease: A systematic review and meta-analysis with trial sequential analysis. Ren. Fail. 2023, 45, 2252093. [Google Scholar] [CrossRef]
- Fattman, C.L.; Schaefer, L.M.; Oury, T.D. Extracellular superoxide dismutase in biology and medicine. Free Radic. Biol. Med. 2003, 35, 236–256. [Google Scholar] [CrossRef]
- Brownlee, M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001, 414, 813–820. [Google Scholar] [CrossRef] [PubMed]
- Kashem, A.; Endoh, M.; Yamauchi, F.; Yano, N.; Nomoto, Y.; Sakai, H.; Pronai, L.; Tanaka, M.; Nakazawa, H. Superoxide dismutase activity in human glomerulonephritis. Am. J. Kidney Dis. 1996, 28, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Kitada, M.; Xu, J.; Ogura, Y.; Monno, I.; Koya, D. Manganese Superoxide Dismutase Dysfunction and the Pathogenesis of Kidney Disease. Front. Physiol. 2020, 11, 755. [Google Scholar] [CrossRef]
- Schneider, M.P.; Sullivan, J.C.; Wach, P.F.; Boesen, E.I.; Yamamoto, T.; Fukai, T.; Harrison, D.G.; Pollock, D.M.; Pollock, J.S. Protective role of extracellular superoxide dismutase in renal ischemia/reperfusion injury. Kidney Int. 2010, 78, 374–381. [Google Scholar] [CrossRef]
- Rodriguez-Iturbe, B.; Sepassi, L.; Quiroz, Y.; Ni, Z.; Vaziri, N.D. Association of mitochondrial SOD deficiency with salt-sensitive hypertension and accelerated renal senescence. J. Appl. Physiol. 2007, 102, 255–260. [Google Scholar] [CrossRef]
- Fujita, H.; Fujishima, H.; Chida, S.; Takahashi, K.; Qi, Z.; Kanetsuna, Y.; Breyer, M.D.; Harris, R.C.; Yamada, Y.; Takahashi, T. Reduction of Renal Superoxide Dismutase in Progressive Diabetic Nephropathy. J. Am. Soc. Nephrol. 2009, 20, 1303–1313. [Google Scholar] [CrossRef]
- González-Blázquez, R.; Somoza, B.; Gil-Ortega, M.; Martín Ramos, M.; Ramiro-Cortijo, D.; Vega-Martín, E.; Schulz, A.; Ruilope, L.M.; Kolkhof, P.; Kreutz, R.; et al. Finerenone Attenuates Endothelial Dysfunction and Albuminuria in a Chronic Kidney Disease Model by a Reduction in Oxidative Stress. Front. Pharmacol. 2018, 9, 1131. [Google Scholar] [CrossRef]
- Yu, X.; Xu, R.; Huang, W.; Lin, L.; Zheng, F.; Wu, X. Superoxide dismutase as a protective factor for microalbuminuria in hypertensive patients. Sci. Rep. 2022, 12, 20432. [Google Scholar]
- Krueger, K.; Shen, J.; Maier, A.; Tepel, M.; Scholze, A. Lower Superoxide Dismutase 2 (SOD2) Protein Content in Mononuclear Cells Is Associated with Better Survival in Patients with Hemodialysis Therapy. Oxidative Med. Cell. Longev. 2016, 2016, 7423249. [Google Scholar]
- Noleto Magalhães, R.C.; Guedes Borges de Araujo, C.; Batista de Sousa Lima, V.; Machado Moita Neto, J.; do Nascimento Nogueira, N.; do Nascimento Marreiro, D. Nutritional status of zinc and activity superoxide dismutase in chronic renal patients undergoing hemodialysis. Nutr. Hosp. 2011, 26, 1456–1461. [Google Scholar]
- Montazerifar, F.; Hashemi, M.; Karajibani, M.; Sanadgol, H.; Dikshit, M. Evaluation of lipid peroxidation and erythrocyte glutathione peroxidase and superoxide dismutase in hemodialysis patients. Saudi J. Kidney Dis. Transpl. Off. Publ. Saudi Cent. Organ. Transpl. Saudi Arab. 2012, 23, 274–279. [Google Scholar]
- Antunovic, T.; Stefanovic, A.; Ratkovic, M.; Gledovic, B.; Gligorovic-Barhanovic, N.; Bozovic, D.; Ivanisevic, J.; Prostran, M.; Stojanov, M. High uric acid and low superoxide dismutase as possible predictors of all-cause and cardiovascular mortality in hemodialysis patients. Int. Urol. Nephrol. 2013, 45, 1111–1119. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, M.; Ando, Y.; Sasada, K.; Haraoka, K.; Ueda, M.; Okabe, H.; Motomiya, Y. Role of extracellular superoxide dismutase in patients under maintenance hemodialysis. Nephron Clin. Pract. 2005, 101, c109–c115. [Google Scholar]
- De Rojas, A.H.; Mateo, M.C.M. Superoxide Dismutase and Catalase Activities in Patients Undergoing Hemodialysis and Contin-uous Ambulatory Peritoneal Dialysis. Ren. Fail. 1996, 18, 937–946. [Google Scholar] [CrossRef]
- Shainkin-Kestenbaum, R.; Caruso, C.; Berlyne, G.M. Reduced Superoxide Dismutase Activity in Erythrocytes of Dialysis Patients: A Possible Factor in the Etiology of Uremic Anemia. Nephron 1990, 55, 251–253. [Google Scholar]
- Supriyadi, R.; Rakhmawati Kurniaatmaja, E.; Huang, I.; Sukesi, L.; Makmun, A. The effect of superoxide dismutase supplementation on TNF-α and TGF-β levels in patients undergoing hemodialysis. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 893–898. [Google Scholar]
- Washio, K.; Inagaki, M.; Tsuji, M.; Morio, Y.; Akiyama, S.; Gotoh, H.; Gotoh, T.; Gotoh, Y.; Oguchi, K. Oral vitamin C supplementation in hemodialysis patients and its effect on the plasma level of oxidized ascorbic acid and Cu/Zn superoxide dismutase, an oxidative stress marker. Nephron Clin. Pract. 2008, 109, c49–c54. [Google Scholar]
- Akiyama, S.; Inagaki, M.; Tsuji, M.; Gotoh, H.; Gotoh, T.; Washio, K.; Gotoh, Y.; Oguchi, K. Comparison of effect of vitamin E-coated dialyzer and oral vitamin E on hemodialysis-induced Cu/Zn-superoxide dismutase. Am. J. Nephrol. 2005, 25, 500–506. [Google Scholar] [CrossRef] [PubMed]
- Carrillo-López, N.; Panizo, S.; Martín-Carro, B.; Barrallo, J.C.M.; Román-García, P.; García-Castro, R.; Fernández-Gómez, J.M.; Hevia-Suárez, M.Á.; Martín-Vírgala, J.; Fernández-Villabrille, S.; et al. Redox Metabolism and Vascular Calcification in Chronic Kidney Disease. Biomolecules 2023, 13, 1419. [Google Scholar] [CrossRef] [PubMed]
- Hishida, A.; Okada, R.; Naito, M.; Morita, E.; Wakai, K.; Hamajima, N.; Hosono, S.; Nanri, H.; Turin, T.C.; Suzuki, S.; et al. Polymorphisms in genes encoding antioxidant enzymes (SOD2, CAT, GPx, TXNRD, SEPP1, SEP15 and SELS) and risk of chronic kidney disease in Japanese-cross-sectional data from the J-MICC study. J. Clin. Biochem. Nutr. 2013, 53, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Martínez Arias, L.; Panizo García, S.; Carrillo López, N.; Barrio Vázquez, S.; Quirós González, I.; Román García, P.; Mora Valenciano, I.; Miguel Fernández, D.; Añón Álvarez, E.; Fernández Martín, J.L.; et al. Efecto de la enzima antioxidante catalasa en la calcificación vascular y desmineralización ósea. Rev. Osteoporos. Metab. Miner. 2017, 9, 13–19. [Google Scholar] [CrossRef]
- Nogueira, F.N.; Romero, A.C.; Pedrosa, M.D.S.; Ibuki, F.K.; Bergamaschi, C.T. Oxidative stress and the antioxidant system in salivary glands of rats with experimental chronic kidney disease. Arch. Oral. Biol. 2020, 113, 104709. [Google Scholar] [CrossRef]
- Kobayashi, M.; Sugiyama, H.; Wang, D.H.; Toda, N.; Maeshima, Y.; Yamasaki, Y.; Masuoka, N.; Yamada, M.; Kira, S.; Makino, H. Catalase deficiency renders remnant kidneys more susceptible to oxidant tissue injury and renal fibrosis in mice. Kidney Int. 2005, 68, 1018–1031. [Google Scholar] [CrossRef]
- Chen, J.X.; Zhou, J.F.; Shen, H.C. Oxidative stress and damage induced by abnormal free radical reactions and IgA nephropathy. J. Zhejiang Univ.-Sci. B 2005, 6, 61–68. [Google Scholar] [CrossRef]
- Rasool, M.; Ashraf, M.A.B.; Malik, A.; Waquar, S.; Khan, S.A.; Qazi, M.H.; Ahmad, W.; Asif, M.; Khan, S.U.; Zaheer, A.; et al. Comparative study of extrapolative factors linked with oxidative injury and anti-inflammatory status in chronic kidney disease patients experiencing cardiovascular distress. PLoS ONE 2017, 12, e0171561. [Google Scholar] [CrossRef]
- Dursun, B.; Varan, H.I.; Dursun, E.; Ozben, T.; Suleymanlar, G. Acute effects of hemodialysis on oxidative stress parameters in chronic uremic patients: Comparison of two dialysis membranes. Int. J. Nephrol. Renov. Dis. 2010, 3, 39–45. [Google Scholar] [CrossRef]
- Stępniewska, J.; Dołęgowska, B.; Cecerska-Heryć, E.; Gołembiewska, E.; Malinowska-Jędraszczyk, A.; Marchelek-Myśliwiec, M.; Ciechanowski, K. The activity of antioxidant enzymes in blood platelets in different types of renal replacement therapy: A cross-sectional study. Int. Urol. Nephrol. 2016, 48, 593–599. [Google Scholar] [CrossRef]
- Choi, H.S.; Mathew, A.P.; Uthaman, S.; Vasukutty, A.; Kim, I.J.; Suh, S.H.; Kim, C.S.; Ma, S.K.; Graham, S.A.; Kim, S.W.; et al. Inflammation-sensing catalase-mimicking nanozymes alleviate acute kidney injury via reversing local oxidative stress. J. Nanobiotechnol. 2022, 20, 205. [Google Scholar]
- Baltusnikiene, A.; Staneviciene, I.; Jansen, E. Beneficial and adverse effects of vitamin E on the kidney. Front. Physiol. 2023, 14, 1145216. [Google Scholar]
- Karamouzis, I.; Sarafidis, P.A.; Karamouzis, M.; Iliadis, S.; Haidich, A.B.; Sioulis, A.; Triantos, A.; Vavatsi-Christaki, N.; Grekas, D.M. Increase in Oxidative Stress but Not in Antioxidant Capacity with Advancing Stages of Chronic Kidney Disease. Am. J. Nephrol. 2008, 28, 397–404. [Google Scholar] [CrossRef] [PubMed]
- Tain, Y.L.; Freshour, G.; Dikalova, A.; Griendling, K.; Baylis, C. Vitamin E reduces glomerulosclerosis, restores renal neuronal NOS, and suppresses oxidative stress in the 5/6 nephrectomized rat. Am. J. Physiol.-Ren. Physiol. 2007, 292, F1404–F1410. [Google Scholar]
- Gæde, P.; Poulsen, H.E.; Parving, H.-H.; Pedersen, O. Double-blind, randomised study of the effect of combined treatment with vitamin C and E on albuminuria in Type 2 diabetic patients. Diabet. Med. 2001, 18, 756–760. [Google Scholar]
- Park, S.K.; Oh, C.M.; Kim, E.; Jung, J.Y. Dietary Intake of Antioxidant Vitamins and Its Relation to the Progression of Chronic Kidney Disease in Adults With Preserved Renal Function. J. Ren. Nutr. 2024, 34, 438–446. [Google Scholar]
- Galli, F.; Bonomini, M.; Bartolini, D.; Zatini, L.; Reboldi, G.; Marcantonini, G.; Gentile, G.; Sirolli, V.; Di Pietro, N. Vitamin E (Alpha-Tocopherol) Metabolism and Nutrition in Chronic Kidney Disease. Antioxidants 2022, 11, 989. [Google Scholar] [CrossRef]
- Rojo-Trejo, M.H.; Robles-Osorio, M.L.; Sabath, E. Liposoluble vitamins A and E in kidney disease. World J. Nephrol. 2022, 11, 96–104. [Google Scholar] [CrossRef]
- Mann, J.F.E.; Lonn, E.M.; Yi, Q.; Gerstein, H.C.; Hoogwerf, B.J.; Pogue, J.; Bosch, J.; Dagenais, G.R.; Yusuf, S. Effects of vitamin E on cardiovascular outcomes in people with mild-to-moderate renal insufficiency: Results of the HOPE Study. Kidney Int. 2004, 65, 1375–1380. [Google Scholar]
- Miller, E.R.; Pastor-Barriuso, R.; Dalal, D.; Riemersma, R.A.; Appel, L.J.; Guallar, E. Meta-Analysis: High-Dosage Vitamin E Supplementation May Increase All-Cause Mortality. Ann. Intern. Med. 2005, 142, 37. [Google Scholar]
- Boaz, M.; Smetana, S.; Weinstein, T.; Matas, Z.; Gafter, U.; Iaina, A.; Knecht, A.; Weissgarten, Y.; Brunner, D.; Fainaru, M.; et al. Secondary prevention with antioxidants of cardiovascular disease in endstage renal disease (SPACE): Randomised placebo-controlled trial. Lancet 2000, 356, 1213–1218. [Google Scholar] [CrossRef]
- Panagiotou, A.; Nalesso, F.; Zanella, M.; Brendolan, A.; de Cal, M.; Cruz, D.; Basso, F.; Floris, M.; Clementi, A.; Ronco, C. Antioxidant Dialytic Approach with Vitamin E-Coated Membranes. Contrib. Nephrol. 2011, 171, 101–106. [Google Scholar] [PubMed]
- Kirmizis, D.; Papagianni, A.; Belechri, A.M.; Memmos, D. Effects of vitamin E-coated membrane dialyser on markers of oxidative stress and inflammation in patients on chronic haemodialysis. Nephrol. Dial. Transplant. 2011, 26, 2296–2301. [Google Scholar] [CrossRef]
- D’Arrigo, G.; Baggetta, R.; Tripepi, G.; Galli, F.; Bolignano, D. Effects of Vitamin E-Coated versus Conventional Membranes in Chronic Hemodialysis Patients: A Systematic Review and Meta-Analysis. Blood Purif. 2017, 43, 101–122. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Yi, B.; Li, A.M.; Zhang, H. Effects of vitamin E-coated dialysis membranes on anemia, nutrition and dyslipidemia status in hemodialysis patients: A meta-analysis. Ren. Fail. 2015, 37, 398–407. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Ren, X.; Nie, Z.; You, Y.; Zhu, Y.; Chen, H.; Yu, H.; Mo, G.P.; Su, L.; Peng, Z.; et al. Dual-responsive renal injury cells targeting nanoparticles for vitamin E delivery to treat ischemia reperfusion-induced acute kidney injury. J. Nanobiotechnol. 2024, 22, 626. [Google Scholar]
- Silvestrini, A.; Meucci, E.; Ricerca, B.M.; Mancini, A. Total Antioxidant Capacity: Biochemical Aspects and Clinical Significance. Int. J. Mol. Sci. 2023, 24, 10978. [Google Scholar] [CrossRef]
- Mozaffari, H.; Daneshzad, E.; Surkan, P.J.; Azadbakht, L. Dietary Total Antioxidant Capacity and Cardiovascular Disease Risk Factors: A Systematic Review of Observational Studies. J. Am. Coll. Nutr. 2018, 37, 533–545. [Google Scholar] [CrossRef]
- Moludi, J.; Tandorost, A.; Kamari, N.; Abdollahzad, H.; Pakzad, R.; Najafi, F.; Pasdar, Y. Dietary total antioxidant capacity and its association with renal function and kidney stones: Results of a RaNCD cohort study. Food Sci. Nutr. 2022, 10, 1442–1450. [Google Scholar] [CrossRef]
- Abbasi, M.; Daneshpour, M.S.; Hedayati, M.; Mottaghi, A.; Pourvali, K.; Azizi, F. Dietary Total Antioxidant Capacity and the Risk of Chronic Kidney Disease in Patients With Type 2 Diabetes: A Nested Case-Control Study in the Tehran Lipid Glucose Study. J. Ren. Nutr. 2019, 29, 394–398. [Google Scholar] [CrossRef]
- Asghari, G.; Yuzbashian, E.; Shahemi, S.; Gaeini, Z.; Mirmiran, P.; Azizi, F. Dietary total antioxidant capacity and incidence of chronic kidney disease in subjects with dysglycemia: Tehran Lipid and Glucose Study. Eur. J. Nutr. 2018, 57, 2377–2385. [Google Scholar] [PubMed]
- Ghorbaninejad, P.; Mohammadpour, S.; Djafari, F.; Tajik, S.; Shab-Bidar, S. Dietary Total Antioxidant Capacity and Its Association with Renal Function and Progression of Chronic Kidney Disease in Older Adults: A Report from a Developing Country. Clin. Nutr. Res. 2020, 9, 296. [Google Scholar] [PubMed]
- Li, Y.; Ling, G.C.; Ni, R.B.; Ni, S.H.; Sun, S.N.; Liu, X.; Deng, J.P.; Ou-Yang, X.L.; Li, J.; Xian, S.X.; et al. Association of dietary total antioxidant capacity with all-cause and cardiovascular mortality in patients with chronic kidney disease: Based on two retrospective cohort studies of NHANES. Ren. Fail. 2023, 45, 2205950. [Google Scholar] [CrossRef]
- Clermont, G.; Lecour, S.; Lahet, J.J.; Siohan, P.; Vergely, C.; Chevet, D.; Rifle, G.; Rochette, L. Alteration in plasma antioxidant capacities in chronic renal failure and hemodialysis patients: A possible explanation for the increased cardiovascular risk in these patients. Cardiovasc. Res. 2000, 47, 618–623. [Google Scholar] [PubMed]
- Sovatzidis, A.; Chatzinikolaou, A.; Fatouros, I.G.; Panagoutsos, S.; Draganidis, D.; Nikolaidou, E.; Avloniti, A.; Michailidis, Y.; Mantzouridis, I.; Batrakoulis, A.; et al. Intradialytic Cardiovascular Exercise Training Alters Redox Status, Reduces Inflammation and Improves Physical Performance in Patients with Chronic Kidney Disease. Antioxidants 2020, 9, 868. [Google Scholar] [CrossRef]
- Ezeriņa, D.; Takano, Y.; Hanaoka, K.; Urano, Y.; Dick, T.P. N-Acetyl Cysteine Functions as a Fast-Acting Antioxidant by Triggering Intracellular H2S and Sulfane Sulfur Production. Cell Chem. Biol. 2018, 25, 447–459.e4. [Google Scholar] [CrossRef]
- Sharp, A.J.; Patel, N.; Reeves, B.C.; Angelini, G.D.; Fiorentino, F. Pharmacological interventions for the prevention of contrast-induced acute kidney injury in high-risk adult patients undergoing coronary angiography: A systematic review and meta-analysis of randomised controlled trials. Open Heart 2019, 6, e000864. [Google Scholar]
- Medipally, A.; Xiao, M.; Satoskar, A.A.; Biederman, L.; Dasgupta, A.; Ivanov, I.; Mikhalina, G.; Rovin, B.; Brodsky, S.V. N-acetylcysteine ameliorates hematuria-associated tubulointerstitial injury in 5/6 nephrectomy mice. Physiol. Rep. 2023, 11, e15767. [Google Scholar]
- Yalçın, A.; Gürel, A. Effects of N-acetylcysteine on kidney tissue, matrix metalloproteinase-2, irisin and oxidative stress in a dia-betes mellitus model. Biotech. Histochem. 2021, 96, 616–622. [Google Scholar]
- Allen, M.R.; Wallace, J.; McNerney, E.; Nyman, J.; Avin, K.; Chen, N.; Moe, S. N-acetylcysteine (NAC), an anti-oxidant, does not improve bone mechanical properties in a rat model of progressive chronic kidney disease-mineral bone disorder. PLoS ONE 2020, 15, e0230379. [Google Scholar]
- Chiu, A.H.; Wang, C.J.; Lin, Y.L.; Wang, C.L.; Chiang, T.I. N-Acetylcysteine Alleviates the Progression of Chronic Kidney Disease: A Three-Year Cohort Study. Medicina 2023, 59, 1983. [Google Scholar] [CrossRef]
- Renke, M.; Tylicki, L.; Rutkowski, P.; Larczyński, W.; Aleksandrowicz, E.; Łysiak-Szydłowska, W.; Rutkowski, B. The effect of N-acetylcysteine on proteinuria and markers of tubular injury in non-diabetic patients with chronic kidney disease. A placebo-controlled, randomized, open, cross-over study. Kidney Blood Press. Res. 2008, 31, 404–410. [Google Scholar] [CrossRef] [PubMed]
- Ye, M.; Lin, W.; Zheng, J.; Lin, S. N-acetylcysteine for chronic kidney disease: A systematic review and meta-analysis. Am. J. Transl. Res. 2021, 13, 2472–2485. [Google Scholar] [PubMed]
- Witko-Sarsat, V.; Gausson, V.; Nguyen, A.T.; Touam, M.; Drüeke, T.; Santangelo, F.; Descamps-Latscha, B. AOPP-induced activation of human neu-trophil and monocyte oxidative metabolism: A potential target for N-acetylcysteine treatment in dialysis patients. Kidney Int. 2003, 64, 82–91. [Google Scholar] [CrossRef]
- Trimarchi, H.; Mongitore, M.; Baglioni, P.; Forrester, M.; Freixas, E.A.R.; Schropp, M.; Pereyra, H.; Alonso, M. N-acetylcysteine reduces malondialdehyde levels in chronic hemodialysis patients—A pilot study. Clin. Nephrol. 2003, 59, 441–446. [Google Scholar] [CrossRef] [PubMed]
- Thaha, M.; Widodo Pranawa, W.; Yogiantoro, M.; Tomino, Y. Intravenous N-acetylcysteine during hemodialysis reduces asym-metric dimethylarginine level in end-stage renal disease patients. Clin. Nephrol. 2008, 69, 24–32. [Google Scholar] [CrossRef]
- Coombes, J.S.; Fassett, R.G. Antioxidant therapy in hemodialysis patients: A systematic review. Kidney Int. 2012, 81, 233–246. [Google Scholar] [CrossRef]
- Hsu, S.P.; Chiang, C.K.; Yang, S.Y.; Chien, C.T. N-acetylcysteine for the management of anemia and oxidative stress in hemodialysis patients. Nephron Clin. Pract. 2010, 116, c207–c216. [Google Scholar] [CrossRef]
- Tepel, M.; van der Giet, M.; Statz, M.; Jankowski, J.; Zidek, W. The antioxidant acetylcysteine reduces cardiovascular events in patients with end-stage renal failure. A randomized, controlled trial. Circulation 2003, 107, 992–995. [Google Scholar] [CrossRef]
- Lee, E.; Seo, E.Y.; Kwon, Y.; Ha, H. Rapid and Reliable Measurement for Evaluating Directly the Reactivity of N-Acetylcysteine with Glucose Degradation Products in Peritoneal Dialysis Fluids. Anal. Chem. 2011, 83, 1518–1522. [Google Scholar] [CrossRef]
- Hung, K.Y.; Liu, S.Y.; Yang, T.C.; Liao, T.L.; Kao, S.H. High-Dialysate-Glucose-Induced Oxidative Stress and Mitochondrial-Mediated Apoptosis in Human Peritoneal Mesothelial Cells. Oxidative Med. Cell. Longev. 2014, 2014, 642793. [Google Scholar]
- Kuo, H.T.; Lee, J.J.; Hsiao, H.H.; Chen, H.W.; Chen, H.C. N-Acetylcysteine Prevents Mitochondria from Oxidative Injury Induced by Conventional Peritoneal Dialysate in Human Peritoneal Mesothelial Cells. Am. J. Nephrol. 2009, 30, 179–185. [Google Scholar] [PubMed]
- Purwanto, B.; Prasetyo, D.H. Effect of oral N-acetylcysteine treatment on immune system in continuous ambulatory peritoneal dialysis patients. Acta Medica Indones. 2012, 44, 140–144. [Google Scholar]
- Najafi, F.; Mousavi-Roknabadi, R.S.; Pirdehghan, A.; Rahimian, M.; Nourimajalan, N. Effect of N-Acetylcysteine on hsCRP in Patients on Continues Ambulatory Peritoneal Dialysis: A Quasi-Experimental Study. Nephro-Urol. Mon. 2021, 13, e113990. [Google Scholar]
- Feldman, L.; Shani, M.; Efrati, S.; Beberashvili, I.; Yakov–Hai, I.; Abramov, E.; Sinuani, I.; Rosenberg, R.; Weissgarten, J. N-Acetylcysteine Improves Residual Renal Function in Peritoneal Dialysis Patients: A Pilot Study. Perit. Dial. Int. J. Int. Soc. Perit. Dial. 2011, 31, 545–550. [Google Scholar] [CrossRef]
- Nascimento, M.M.; Suliman, M.E.; Silva, M.; Chinaglia, T.; Marchioro, J.; Hayashi, S.Y.; Riella, M.C.; Lindholm, B.; Anderstam, B. Effect of Oral N-Acetylcysteine Treatment on Plasma Inflammatory and Oxidative Stress Markers in Peritoneal Dialysis Patients: A Placebo-Controlled Study. Perit. Dial. Int. J. Int. Soc. Perit. Dial. 2010, 30, 336–342. [Google Scholar]
Indices of CVD | Molecule | Study Type | Study Population | Outcome | Reference |
---|---|---|---|---|---|
CVD death | Fraction of HMA | Observational prospective | 86 HD patients | Patients with pre-HD f(HMA) < 40%: adj. OR 2.5, patients with post-HD f(HMA) < 60%: adj. OR 25.6 | Terawaki et al. [32] |
CVD death | HNA fraction of HSA | Observational prospective | 249 HD patients | HNA level > 51.16% is associated with 2.2-fold increase in CVD death risk | Lim et al. [33] |
IMT, atherosclerotic plaques | Plasma AOPPs | Observational prospective | 205 CKD patients/40 controls | Mean AOPP increased with IM diameter (<0.05) and was higher in patients with plaques (p < 0.05) | Azouaou Toualbi et al. [40] |
PWV | Plasma AOPPs | Cross-sectional | 46 pre-dialysis patients (stages G3–G5) | PWV and AOPP were positively correlated after adjusting for SCr (p = 0.01) and eGFR (p = 0.02) | Vinereanu et al. [41] |
IMT | Plasma AOPPs | Observational | 79 HD patients | IMT increased significantly with AOPP levels (r = 0.07, p = 0.02) | Drüeke et al. [42] |
CVD risk | Plasma AOPPs | Observational prospective | 48 PD patients | >50% AOPPs levels increased above baseline: 4.7× risk of later CVD | Gonzalez et al. [43] |
cSBP, cDBP, pSBP, pDBP | Plasma AOPPs | Cross-sectional | 75 PD patients | AOPPs correlated positively with cSBP (p < 0.05), cDBP (p < 0.001), pSBP (p < 0.01) and pDBP (p < 0.001) | Xu et al. [44] |
IMT, FMD | Plasma nitrite | Cross-sectional | 351 regular blood donors/20 healthy individuals | Plasma nitrite levels were positively correlated with FMD (p = 0.001) and inversely correlated with IMT (p < 0.01) | Kleinbongard et al. [45] |
AS, cfPWV | Serum MDA-LDL | Observational | 155 HD patients: 68 AS sufferers, 87 controls | MDA-LDL was independent risk factor for developing AS (OR: 1.014, p < 0.001) | Hou et al. [46] |
PAS, baPWV | Serum MDA-LDL | Cross-sectional | 100 HD patients: PAS group: 52, control group: 48 | Higher serum MDA-LDL levels were independently associated with PAS in HD patients (OR = 1.014, p = 0.009) | Liu et al. [47] |
CAC | Pre-HD MDA | Observational | 39 HD patients | Patients in highest tertile of MDA were 4× more likely to have severe CAC | Jung et al. [48] |
Indices of Kidney Function | Molecule | Study Type | Study Population | Outcome | Reference |
---|---|---|---|---|---|
eGFR | Saliva IMA | Observational | 24 CKD children/24 healthy children | In CKD children, IMA was negatively correlated with eGFR (p ≤ 0.0001) | Szulimowska et al. [38] |
Proteinuria in SSNS | Serum IMA | Cross-sectional | 70 children with SSNS/45 healthy controls | IMA was significantly higher in SSNS-relapse group vs. SSNS-remission and control groups (p < 0.05) | Cakirca et al. [39] |
UACR | Plasma AOPPs | Observational | 62 type 2 diabetic patients/30 healthy controls | AOPPs levels were significantly higher in DM microalbuminuric patients (p < 0.05 vs. DM, p < 0.0001 vs. controls) | Conti et al. [49] |
Serum creatinine | Plasma AOPPs | Observational | 56 hypertensive patients/30 healthy controls | AOPPs levels were significantly higher in HT patients (p < 0.01) and CKD secondary to HT patients (p < 0.0001) vs. controls | Conti et al. [49] |
Creatinine clearance | Plasma AOPPs | Observational, prospective | 31 PD patients | Renal CrCl was inversely correlated with AOPP (p < 0.05) | Furuya et al. [50] |
eGFR/graft function | NO | Prospective | 32 transplant recipients | NO at day six predicted graft function at six months and eGFR at day 6, day 21 and 3 months post-Tx | Izemrane et al. [51] |
eGFR | MDA in MN cells | Cross-sectional | 155 CKD patients (stages 3–5)/45 healthy controls | MDA differences were statistically significant (p < 0.001) between all groups, except between CKD 4 and 5 (p = 1000) | Tomás-Simó et al. [52] |
Albuminuria | Serum MDA-LDL | Retroactive cross-sectional | 402 type 2 diabetic patients | MDA-LDL levels were significantly increased with increases in albuminuria (p = 0.02) | Furukawa et al. [53] |
DGF | Plasma MDA | Prospective | 40 transplant recipients | MDA levels on day 7 were independent predictors of 1-year graft function (p = 0.003) | Fonseca et al. [54] |
Molecule | Study Population | Mean Value | Reference |
---|---|---|---|
plasma AOPPs | 62 type 2 diabetic patients/30 healthy controls | microalbuminuric DM: 252, DM: 155, controls: 124 (μmol/L) | Conti et al. [49] |
plasma AOPPs | 56 hypertensive patients/30 healthy controls | HT: 175, CKD for HT: 217, controls: 124 (μmol/L) | Conti et al. [49] |
MN cells MDA | 155 CKD patients (stages 3–5)/45 healthy controls | controls: 0.11, stage 3A: 0.57, stage 3B: 0.74, stage 4: 0.92, stage 5: 0.96 (nmol/mg protein) | Tomás-Simó et al. [52] |
serum MDA-LDL | 402 type 2 diabetic patients categorized according to eGFR and albuminuria levels | UAER (mg/d) < 30: 103, UAER 30–300: 109, UAER > 300: 135, eGFR > 90: 108, eGFR 60–90: 197, eGFR 60–30: 100, eGFR < 30: 141 (U/L) | Furukawa et al. [53] |
plasma MDA | 20 HD patients/16 CAPD patients/20 healthy controls | controls: 0.72, pre-HD: 0.83, post-HD: 1.39, CAPD: 1.26 (nmol/mL) | Ozden et al. [104] |
plasma AOPPs | 205 CKD stage 2–5 patients/40 controls | control: 24.9, stage 2: 38.5, stage 3: 50.5, stage 4: 58.4, stage 5: 68.2, stage 5D: 78.8 (μmol/L) | Azouaou Toualbi et al. [40] |
plasma AOPPs | 79 HD patients | total subjects: 149 (μmol/L) | Drüeke et al. [42] |
plasma AOPPs | 48 PD patients | baseline: 76.6, 1 year: 95.2 (μmol/L) | Gonzalez et al. [43] |
plasma nitrite | 351 regular blood donors/20 healthy individuals | controls: 351, one CVD risk factor (RF): 261, two CVD RFs: 253, three CVD RFs: 222, four CVD RFs: 171 (nmol/L) | Kleinbongard et al. [45] |
apoB100-MDA | 39 PD patients/40 healthy controls/61 HD patients | control: 14.4, PD: 17.11, HD: 15.68 (pmolMDA/mg apoB100) | Papadea et al. [105] |
serum MDA-LDL | 155 HD patients: 68 AS sufferers, 87 controls | AS sufferers: 120.63, controls: 72.65 (mg/dL) | Hou et al. [46] |
serum MDA-LDL | 100 HD patients: 52 PAS sufferers, 48 controls | PAS group: 119.67, controls: 78.38 (mg/dL) | Liu et al. [47] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsinari, A.; Roumeliotis, S.; Neofytou, I.E.; Varouktsi, G.; Veljkovic, A.; Stamou, A.; Leivaditis, K.; Liakopoulos, V. The Clinical Utility and Plausibility of Oxidative and Antioxidant Variables in Chronic and End-Stage Kidney Disease: A Review of the Literature. Int. J. Mol. Sci. 2025, 26, 3376. https://doi.org/10.3390/ijms26073376
Tsinari A, Roumeliotis S, Neofytou IE, Varouktsi G, Veljkovic A, Stamou A, Leivaditis K, Liakopoulos V. The Clinical Utility and Plausibility of Oxidative and Antioxidant Variables in Chronic and End-Stage Kidney Disease: A Review of the Literature. International Journal of Molecular Sciences. 2025; 26(7):3376. https://doi.org/10.3390/ijms26073376
Chicago/Turabian StyleTsinari, Ariti, Stefanos Roumeliotis, Ioannis E. Neofytou, Garyfallia Varouktsi, Andrej Veljkovic, Aikaterini Stamou, Konstantinos Leivaditis, and Vassilios Liakopoulos. 2025. "The Clinical Utility and Plausibility of Oxidative and Antioxidant Variables in Chronic and End-Stage Kidney Disease: A Review of the Literature" International Journal of Molecular Sciences 26, no. 7: 3376. https://doi.org/10.3390/ijms26073376
APA StyleTsinari, A., Roumeliotis, S., Neofytou, I. E., Varouktsi, G., Veljkovic, A., Stamou, A., Leivaditis, K., & Liakopoulos, V. (2025). The Clinical Utility and Plausibility of Oxidative and Antioxidant Variables in Chronic and End-Stage Kidney Disease: A Review of the Literature. International Journal of Molecular Sciences, 26(7), 3376. https://doi.org/10.3390/ijms26073376