Emerging Insights into Brain Inflammation: Stem-Cell-Based Approaches for Regenerative Medicine
Abstract
1. Introduction
2. Microglia and BAMs’ Role in Neurological Disorders
2.1. Microglia
2.1.1. Alzheimer’s Disease
2.1.2. Parkinson Disease
2.1.3. Stroke
2.2. Border-Associated Macrophages (BAM)
2.2.1. Alzheimer’s Disease
2.2.2. Parkinson’s Disease
2.2.3. Stroke
3. The Dual Role of Neuroinflammation in Shaping Neurogenesis
4. Modulating Neuroinflammation
4.1. Anti-Inflammatory Bioactive Substances
4.1.1. Glycolysis and Lactate Modulation
4.1.2. Chemical and Metabolic Compounds
4.1.3. Pharmacological Drugs
4.1.4. Cytokines and Peptides
4.1.5. Plant Based Compounds
4.1.6. Ultrasound
4.2. Priming, Training the Immunity
4.3. Exosomes
4.4. Biomaterials for Controlled Inflammation
5. Stem Cell-Derived Models for Neuroinflammation
5.1. Two-Dimensional Cultures
5.2. Three-Dimensional Models
6. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sweeney, M.D.; Zhao, Z.; Montagne, A.; Nelson, A.R.; Zlokovic, B.V. Blood-Brain Barrier: From Physiology to Disease and Back. Physiol. Rev. 2019, 99, 21–78. [Google Scholar] [CrossRef] [PubMed]
- Rhea, E.M.; Banks, W.A. Role of the Blood-Brain Barrier in Central Nervous System Insulin Resistance. Front. Neurosci. 2019, 13, 521. [Google Scholar] [CrossRef]
- Yu, X.; Ji, C.; Shao, A. Neurovascular Unit Dysfunction and Neurodegenerative Disorders. Front. Neurosci. 2020, 14, 334. [Google Scholar] [CrossRef]
- Zlokovic, B.V. Neurovascular Pathways to Neurodegeneration in Alzheimer’s Disease and Other Disorders. Nat. Rev. Neurosci. 2011, 12, 723–738. [Google Scholar] [CrossRef]
- Knox, E.G.; Aburto, M.R.; Clarke, G.; Cryan, J.F.; O’Driscoll, C.M. The Blood-Brain Barrier in Aging and Neurodegeneration. Mol. Psychiatry 2022, 27, 2659–2673. [Google Scholar] [CrossRef]
- Sun, R.; Jiang, H. Border-Associated Macrophages in the Central Nervous System. J. Neuroinflamm. 2024, 21, 67. [Google Scholar] [CrossRef]
- Adamu, A.; Li, S.; Gao, F.; Xue, G. The Role of Neuroinflammation in Neurodegenerative Diseases: Current Understanding and Future Therapeutic Targets. Front. Aging Neurosci. 2024, 16, 1347987. [Google Scholar] [CrossRef]
- Patabendige, A.; Janigro, D. The Role of the Blood–Brain Barrier during Neurological Disease and Infection. Biochem. Soc. Trans. 2023, 51, 613–626. [Google Scholar] [CrossRef]
- Zhang, Z.; Duan, Z.; Cui, Y. CD8+ T Cells in Brain Injury and Neurodegeneration. Front. Cell Neurosci. 2023, 17, 1281763. [Google Scholar]
- Zhang, J.; Zhang, Y.; Wang, J.; Xia, Y.; Zhang, J.; Chen, L. Recent Advances in Alzheimer’s Disease: Mechanisms, Clinical Trials and New Drug Development Strategies. Signal Transduct. Target. Ther. 2024, 9, 211. [Google Scholar] [CrossRef]
- Qin, J.; Ma, Z.; Chen, X.; Shu, S. Microglia Activation in Central Nervous System Disorders: A Review of Recent Mechanistic Investigations and Development Efforts. Front. Neurol. 2023, 14, 1103416. [Google Scholar] [CrossRef] [PubMed]
- Borst, K.; Dumas, A.A.; Prinz, M. Microglia: Immune and Non-Immune Functions. Immunity 2021, 54, 2194–2208. [Google Scholar] [CrossRef] [PubMed]
- Machhi, J.; Kevadiya, B.D.; Muhammad, I.K.; Herskovitz, J.; Olson, K.E.; Mosley, R.L.; Gendelman, H.E. Harnessing Regulatory T Cell Neuroprotective Activities for Treatment of Neurodegenerative Disorders. Mol. Neurodegener. 2020, 15, 32. [Google Scholar] [CrossRef]
- Koh, C.-H.; Lee, S.; Kwak, M.; Kim, B.-S.; Chung, Y. CD8 T-Cell Subsets: Heterogeneity, Functions, and Therapeutic Potential. Exp. Mol. Med. 2023, 55, 2287–2299. [Google Scholar] [CrossRef]
- Martins-Ferreira, R.; Calafell-Segura, J.; Leal, B.; Rodríguez-Ubreva, J.; Martínez-Saez, E.; Mereu, E.; Pinho E Costa, P.; Laguna, A.; Ballestar, E. The Human Microglia Atlas (HuMicA) Unravels Changes in Disease-Associated Microglia Subsets across Neurodegenerative Conditions. Nat. Commun. 2025, 16, 739. [Google Scholar] [CrossRef]
- Valiukas, Z.; Tangalakis, K.; Apostolopoulos, V.; Feehan, J. Microglial Activation States and Their Implications for Alzheimer’s Disease. J. Prev. Alzheimers Dis. 2025, 12, 100013. [Google Scholar] [CrossRef]
- Zheng, Q.; Wang, X. Alzheimer’s Disease: Insights into Pathology, Molecular Mechanisms, and Therapy. Protein Cell 2025, 16, 83–120. [Google Scholar] [CrossRef]
- DeKosky, S.T.; Scheff, S.W. Synapse Loss in Frontal Cortex Biopsies in Alzheimer’s Disease: Correlation with Cognitive Severity. Ann. Neurol. 1990, 27, 457–464. [Google Scholar] [CrossRef] [PubMed]
- Terry, R.D.; Masliah, E.; Salmon, D.P.; Butters, N.; DeTeresa, R.; Hill, R.; Hansen, L.A.; Katzman, R. Physical Basis of Cognitive Alterations in Alzheimer’s Disease: Synapse Loss Is the Major Correlate of Cognitive Impairment. Ann. Neurol. 1991, 30, 572–580. [Google Scholar] [CrossRef]
- Hong, S.; Beja-Glasser, V.F.; Nfonoyim, B.M.; Frouin, A.; Li, S.; Ramakrishnan, S.; Merry, K.M.; Shi, Q.; Rosenthal, A.; Barres, B.A.; et al. Complement and Microglia Mediate Early Synapse Loss in Alzheimer Mouse Models. Science 2016, 352, 712–716. [Google Scholar] [CrossRef]
- Ni, W.; Ding, J.; Gong, P.; Tan, X.; Li, J. Inhibition of Kv1.1 Channels Ameliorates Cu(II)-Induced Microglial Activation and Cognitive Impairment in Mice. Neurochem. Int. 2025, 183, 105936. [Google Scholar] [CrossRef]
- Chen, L.-L.; Fan, Y.-G.; Zhao, L.-X.; Zhang, Q.; Wang, Z.-Y. The Metal Ion Hypothesis of Alzheimer’s Disease and the Anti-Neuroinflammatory Effect of Metal Chelators. Bioorg. Chem. 2023, 131, 106301. [Google Scholar] [CrossRef]
- Ejaz, H.W.; Wang, W.; Lang, M. Copper Toxicity Links to Pathogenesis of Alzheimer’s Disease and Therapeutics Approaches. Int. J. Mol. Sci. 2020, 21, 7660. [Google Scholar] [CrossRef]
- Lim, S.L.; Rodriguez-Ortiz, C.J.; Hsu, H.-W.; Wu, J.; Zumkehr, J.; Kilian, J.; Vidal, J.; Ayata, P.; Kitazawa, M. Chronic Copper Exposure Directs Microglia towards Degenerative Expression Signatures in Wild-Type and J20 Mouse Model of Alzheimer’s Disease. J. Trace Elem. Med. Biol. 2020, 62, 126578. [Google Scholar] [CrossRef]
- Fremuth, L.E.; Hu, H.; van de Vlekkert, D.; Annunziata, I.; Weesner, J.A.; d′Azzo, A. Neuraminidase 1 Regulates Neuropathogenesis by Governing the Cellular State of Microglia via Modulation of Trem2 Sialylation. Cell Rep. 2025, 44, 115204. [Google Scholar] [CrossRef]
- Sha, X.; Lin, J.; Wu, K.; Lu, J.; Yu, Z. The TRPV1-PKM2-SREBP1 Axis Maintains Microglial Lipid Homeostasis in Alzheimer’s Disease. Cell Death Dis. 2025, 16, 14. [Google Scholar] [CrossRef]
- Mhyre, T.R.; Boyd, J.T.; Hamill, R.W.; Maguire-Zeiss, K.A. Parkinson’s Disease. In Protein Aggregation and Fibrillogenesis in Cerebral and Systemic Amyloid Disease. Subcellular Biochemistry; Springer: Dordrecht, The Netherlands, 2012; pp. 389–455. [Google Scholar]
- Balestrino, R.; Schapira, A.H.V. Parkinson Disease. Eur. J. Neurol. 2020, 27, 27–42. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Federoff, H.J.; Maguire-Zeiss, K.A. Mutant Alpha-Synuclein Overexpression Mediates Early Proinflammatory Activity. Neurotox. Res. 2009, 16, 238–254. [Google Scholar] [CrossRef]
- Zhang, Z.; Niu, K.; Huang, T.; Guo, J.; Xarbat, G.; Gong, X.; Gao, Y.; Liu, F.; Cheng, S.; Su, W.; et al. Microglia Depletion Reduces Neurodegeneration and Remodels Extracellular Matrix in a Mouse Parkinson’s Disease Model Triggered by α-Synuclein Overexpression. NPJ Park. Dis. 2025, 11, 15. [Google Scholar] [CrossRef]
- Torrente, D.; Su, E.J.; Citalán-Madrid, A.F.; Schielke, G.P.; Magaoay, D.; Warnock, M.; Stevenson, T.; Mann, K.; Lesept, F.; Delétage, N.; et al. The Interaction of TPA with NMDAR1 Drives Neuroinflammation and Neurodegeneration in α-Synuclein-Mediated Neurotoxicity. J. Neuroinflamm. 2025, 22, 8. [Google Scholar] [CrossRef]
- Yu, H.; Chang, Q.; Sun, T.; He, X.; Wen, L.; An, J.; Feng, J.; Zhao, Y. Metabolic Reprogramming and Polarization of Microglia in Parkinson’s Disease: Role of Inflammasome and Iron. Ageing Res. Rev. 2023, 90, 102032. [Google Scholar] [CrossRef] [PubMed]
- Geng, L.; Gao, W.; Saiyin, H.; Li, Y.; Zeng, Y.; Zhang, Z.; Li, X.; Liu, Z.; Gao, Q.; An, P.; et al. MLKL Deficiency Alleviates Neuroinflammation and Motor Deficits in the α-Synuclein Transgenic Mouse Model of Parkinson’s Disease. Mol. Neurodegener. 2023, 18, 94. [Google Scholar] [CrossRef]
- Zhou, Q.; Zhang, Y.; Lu, L.; Zhang, H.; Zhao, C.; Pu, Y.; Yin, L. Copper Induces Microglia-Mediated Neuroinflammation through ROS/NF-ΚB Pathway and Mitophagy Disorder. Food Chem. Toxicol. 2022, 168, 113369. [Google Scholar] [CrossRef] [PubMed]
- Galindo, A.N.; Frey Rubio, D.A.; Hettiaratchi, M.H. Biomaterial Strategies for Regulating the Neuroinflammatory Response. Mater. Adv. 2024, 5, 4025–4054. [Google Scholar] [CrossRef]
- Xie, M.; Hao, Y.; Feng, L.; Wang, T.; Yao, M.; Li, H.; Ma, D.; Feng, J. Neutrophil Heterogeneity and Its Roles in the Inflammatory Network after Ischemic Stroke. Curr. Neuropharmacol. 2023, 21, 621–650. [Google Scholar] [CrossRef] [PubMed]
- Kunz, A.; Iadecola, C. Chapter 14 Cerebral Vascular Dysregulation in the Ischemic Brain. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2008; pp. 283–305. [Google Scholar]
- Santos Samary, C.; Pelosi, P.; Leme Silva, P.; Rieken Macedo Rocco, P. Immunomodulation after Ischemic Stroke: Potential Mechanisms and Implications for Therapy. Crit. Care 2016, 20, 391. [Google Scholar] [CrossRef]
- Chamorro, Á.; Meisel, A.; Planas, A.M.; Urra, X.; van de Beek, D.; Veltkamp, R. The Immunology of Acute Stroke. Nat. Rev. Neurol. 2012, 8, 401–410. [Google Scholar] [CrossRef]
- Dziedzic, T. Systemic Inflammation as a Therapeutic Target in Acute Ischemic Stroke. Expert. Rev. Neurother. 2015, 15, 523–531. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, Y.; Li, R.; Huang, T.; Li, Y.; Xie, W.; Chen, C.; Chen, W.; Wan, J.; Yu, W.; et al. Novel CH25H+ and OASL+ Microglia Subclusters Play Distinct Roles in Cerebral Ischemic Stroke. J. Neuroinflamm. 2023, 20, 115. [Google Scholar] [CrossRef]
- Yang, T.; Guo, R.; Zhang, F. Brain Perivascular Macrophages: Recent Advances and Implications in Health and Diseases. CNS Neurosci. Ther. 2019, 25, 1318–1328. [Google Scholar] [CrossRef]
- Jeong, H.-W.; Diéguez-Hurtado, R.; Arf, H.; Song, J.; Park, H.; Kruse, K.; Sorokin, L.; Adams, R.H. Single-Cell Transcriptomics Reveals Functionally Specialized Vascular Endothelium in Brain. eLife 2022, 11, e57520. [Google Scholar] [CrossRef]
- Karam, M.; Janbon, H.; Malkinson, G.; Brunet, I. Heterogeneity and Developmental Dynamics of LYVE-1 Perivascular Macrophages Distribution in the Mouse Brain. J. Cereb. Blood Flow. Metab. 2022, 42, 1797–1812. [Google Scholar] [CrossRef] [PubMed]
- Drieu, A.; Du, S.; Storck, S.E.; Rustenhoven, J.; Papadopoulos, Z.; Dykstra, T.; Zhong, F.; Kim, K.; Blackburn, S.; Mamuladze, T.; et al. Parenchymal Border Macrophages Regulate the Flow Dynamics of the Cerebrospinal Fluid. Nature 2022, 611, 585–593. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.; Li, T.; Ma, X.; Liu, S.; Li, C.; Huang, Z.; Lin, Y.; Wu, R.; Wang, S.; Lu, D.; et al. Macrophage Lineage Cells-Derived Migrasomes Activate Complement-Dependent Blood-Brain Barrier Damage in Cerebral Amyloid Angiopathy Mouse Model. Nat. Commun. 2023, 14, 3945. [Google Scholar] [CrossRef] [PubMed]
- Taylor, X.; Clark, I.M.; Fitzgerald, G.J.; Oluoch, H.; Hole, J.T.; DeMattos, R.B.; Wang, Y.; Pan, F. Amyloid-β (Aβ) Immunotherapy Induced Microhemorrhages Are Associated with Activated Perivascular Macrophages and Peripheral Monocyte Recruitment in Alzheimer’s Disease Mice. Mol. Neurodegener. 2023, 18, 59. [Google Scholar] [CrossRef]
- Park, L.; Uekawa, K.; Garcia-Bonilla, L.; Koizumi, K.; Murphy, M.; Pistik, R.; Younkin, L.; Younkin, S.; Zhou, P.; Carlson, G.; et al. Brain Perivascular Macrophages Initiate the Neurovascular Dysfunction of Alzheimer Aβ Peptides. Circ. Res. 2017, 121, 258–269. [Google Scholar] [CrossRef]
- Faraco, G.; Sugiyama, Y.; Lane, D.; Garcia-Bonilla, L.; Chang, H.; Santisteban, M.M.; Racchumi, G.; Murphy, M.; Van Rooijen, N.; Anrather, J.; et al. Perivascular Macrophages Mediate the Neurovascular and Cognitive Dysfunction Associated with Hypertension. J. Clin. Investig. 2016, 126, 4674–4689. [Google Scholar] [CrossRef]
- Santisteban, M.M.; Ahn, S.J.; Lane, D.; Faraco, G.; Garcia-Bonilla, L.; Racchumi, G.; Poon, C.; Schaeffer, S.; Segarra, S.G.; Körbelin, J.; et al. Endothelium-Macrophage Crosstalk Mediates Blood-Brain Barrier Dysfunction in Hypertension. Hypertension 2020, 76, 795–807. [Google Scholar] [CrossRef]
- Drieu, A.; Du, S.; Kipnis, M.; Bosch, M.E.; Herz, J.; Lee, C.; Jiang, H.; Manis, M.; Ulrich, J.D.; Kipnis, J.; et al. Parenchymal Border Macrophages Regulate Tau Pathology and Tau-Mediated Neurodegeneration. Life Sci. Alliance 2023, 6, e202302087. [Google Scholar] [CrossRef]
- De Schepper, S.; Ge, J.Z.; Crowley, G.; Ferreira, L.S.S.; Garceau, D.; Toomey, C.E.; Sokolova, D.; Rueda-Carrasco, J.; Shin, S.-H.; Kim, J.-S.; et al. Perivascular Cells Induce Microglial Phagocytic States and Synaptic Engulfment via SPP1 in Mouse Models of Alzheimer’s Disease. Nat. Neurosci. 2023, 26, 406–415. [Google Scholar] [CrossRef]
- Schonhoff, A.M.; Figge, D.A.; Williams, G.P.; Jurkuvenaite, A.; Gallups, N.J.; Childers, G.M.; Webster, J.M.; Standaert, D.G.; Goldman, J.E.; Harms, A.S. Border-Associated Macrophages Mediate the Neuroinflammatory Response in an Alpha-Synuclein Model of Parkinson Disease. Nat. Commun. 2023, 14, 3754. [Google Scholar] [CrossRef] [PubMed]
- Pedragosa, J.; Salas-Perdomo, A.; Gallizioli, M.; Cugota, R.; Miró-Mur, F.; Briansó, F.; Justicia, C.; Pérez-Asensio, F.; Marquez-Kisinousky, L.; Urra, X.; et al. CNS-Border Associated Macrophages Respond to Acute Ischemic Stroke Attracting Granulocytes and Promoting Vascular Leakage. Acta Neuropathol. Commun. 2018, 6, 76. [Google Scholar] [CrossRef]
- Alshoubaki, Y.K.; Nayer, B.; Das, S.; Martino, M.M. Modulation of the Activity of Stem and Progenitor Cells by Immune Cells. Stem Cells Transl. Med. 2022, 11, 248–258. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zhao, Y.; Xie, A.; Kim, T.-Y.; Terentyeva, R.; Liu, M.; Shi, G.; Feng, F.; Choi, B.-R.; Terentyev, D.; et al. Interleukin-1β, Oxidative Stress, and Abnormal Calcium Handling Mediate Diabetic Arrhythmic Risk. JACC Basic. Transl. Sci. 2021, 6, 42–52. [Google Scholar] [CrossRef] [PubMed]
- Soung, A.L.; Davé, V.A.; Garber, C.; Tycksen, E.D.; Vollmer, L.L.; Klein, R.S. IL-1 Reprogramming of Adult Neural Stem Cells Limits Neurocognitive Recovery after Viral Encephalitis by Maintaining a Proinflammatory State. Brain Behav. Immun. 2022, 99, 383–396. [Google Scholar] [CrossRef]
- Arranz, L.; Arriero, M.d.M.; Villatoro, A. Interleukin-1β as Emerging Therapeutic Target in Hematological Malignancies and Potentially in Their Complications. Blood Rev. 2017, 31, 306–317. [Google Scholar] [CrossRef]
- Carrero, R.; Cerrada, I.; Lledó, E.; Dopazo, J.; García-García, F.; Rubio, M.-P.; Trigueros, C.; Dorronsoro, A.; Ruiz-Sauri, A.; Montero, J.A.; et al. IL1β Induces Mesenchymal Stem Cells Migration and Leucocyte Chemotaxis Through NF-ΚB. Stem Cell Rev. Rep. 2012, 8, 905–916. [Google Scholar] [CrossRef]
- Sullivan, C.B.; Porter, R.M.; Evans, C.H.; Ritter, T.; Shaw, G.; Barry, F.; Murphy, J.M. TNFα and IL-1β Influence the Differentiation and Migration of Murine MSCs Independently of the NF-ΚB Pathway. Stem Cell Res. Ther. 2014, 5, 104. [Google Scholar] [CrossRef]
- Colombini, A.; Libonati, F.; Cangelosi, D.; Lopa, S.; De Luca, P.; Coviello, D.A.; Moretti, M.; de Girolamo, L. Inflammatory Priming with IL-1β Promotes the Immunomodulatory Behavior of Adipose Derived Stem Cells. Front. Bioeng. Biotechnol. 2022, 10, 1000879. [Google Scholar] [CrossRef]
- Zeng, Y.-X.; Chou, K.-Y.; Hwang, J.-J.; Wang, H.-S. The Effects of IL-1β Stimulated Human Umbilical Cord Mesenchymal Stem Cells on Polarization and Apoptosis of Macrophages in Rheumatoid Arthritis. Sci. Rep. 2023, 13, 10612. [Google Scholar] [CrossRef]
- Park, S.-Y.; Kang, M.-J.; Han, J.-S. Interleukin-1 Beta Promotes Neuronal Differentiation through the Wnt5a/RhoA/JNK Pathway in Cortical Neural Precursor Cells. Mol. Brain 2018, 11, 39. [Google Scholar] [CrossRef]
- Williams, J.L.; Patel, J.R.; Daniels, B.P.; Klein, R.S. Targeting CXCR7/ACKR3 as a Therapeutic Strategy to Promote Remyelination in the Adult Central Nervous System. J. Exp. Med. 2014, 211, 791–799. [Google Scholar] [CrossRef] [PubMed]
- McCandless, E.E.; Piccio, L.; Woerner, B.M.; Schmidt, R.E.; Rubin, J.B.; Cross, A.H.; Klein, R.S. Pathological Expression of CXCL12 at the Blood-Brain Barrier Correlates with Severity of Multiple Sclerosis. Am. J. Pathol. 2008, 172, 799–808. [Google Scholar] [CrossRef] [PubMed]
- Turrin, N.P.; Rivest, S. Tumor Necrosis Factor α But Not Interleukin 1β Mediates Neuroprotection in Response to Acute Nitric Oxide Excitotoxicity. J. Neurosci. 2006, 26, 143–151. [Google Scholar] [CrossRef]
- Fontaine, V.; Mohand-Said, S.; Hanoteau, N.; Fuchs, C.; Pfizenmaier, K.; Eisel, U. Neurodegenerative and Neuroprotective Effects of Tumor Necrosis Factor (TNF) in Retinal Ischemia: Opposite Roles of TNF Receptor 1 and TNF Receptor 2. J. Neurosci. 2002, 22, RC216. [Google Scholar] [CrossRef] [PubMed]
- Belenguer, G.; Duart-Abadia, P.; Jordán-Pla, A.; Domingo-Muelas, A.; Blasco-Chamarro, L.; Ferrón, S.R.; Morante-Redolat, J.M.; Fariñas, I. Adult Neural Stem Cells Are Alerted by Systemic Inflammation through TNF-α Receptor Signaling. Cell Stem Cell 2021, 28, 285–299.e9. [Google Scholar] [CrossRef]
- Dorronsoro, A.; Ferrin, I.; Salcedo, J.M.; Jakobsson, E.; Fernández-Rueda, J.; Lang, V.; Sepulveda, P.; Fechter, K.; Pennington, D.; Trigueros, C. Human Mesenchymal Stromal Cells Modulate T-cell Responses through TNF-α-mediated Activation of NF-κB. Eur. J. Immunol. 2014, 44, 480–488. [Google Scholar] [CrossRef]
- Wang, J.; Xu, L.; Peng, D.; Zhu, Y.; Gu, Z.; Yao, Y.; Li, H.; Cao, X.; Fu, C.; Zheng, M.; et al. IFN-γ-STAT1-Mediated CD8+ T-Cell-Neural Stem Cell Cross Talk Controls Astrogliogenesis after Spinal Cord Injury. Inflamm. Regen. 2023, 43, 12. [Google Scholar] [CrossRef]
- Hu, S.; Rotschafer, J.H.; Lokensgard, J.R.; Cheeran, M.C.-J. Activated CD8+ T Lymphocytes Inhibit Neural Stem/Progenitor Cell Proliferation: Role of Interferon-Gamma. PLoS ONE 2014, 9, e105219. [Google Scholar] [CrossRef]
- Rotschafer, J.H.; Hu, S.; Little, M.; Erickson, M.; Low, W.C.; Cheeran, M.C.J. Modulation of Neural Stem/Progenitor Cell Proliferation during Experimental Herpes Simplex Encephalitis Is Mediated by Differential FGF-2 Expression in the Adult Brain. Neurobiol. Dis. 2013, 58, 144–155. [Google Scholar] [CrossRef]
- Kummer, K.K.; Zeidler, M.; Kalpachidou, T.; Kress, M. Role of IL-6 in the Regulation of Neuronal Development, Survival and Function. Cytokine 2021, 144, 155582. [Google Scholar] [CrossRef] [PubMed]
- Kerkis, I.; Silva, Á.P.d.; Araldi, R.P. The Impact of Interleukin-6 (IL-6) and Mesenchymal Stem Cell-Derived IL-6 on Neurological Conditions. Front. Immunol. 2024, 15, 1400533. [Google Scholar] [CrossRef]
- Hwang, I.; Tang, D.; Paik, J. Oxidative Stress Sensing and Response in Neural Stem Cell Fate. Free Radic. Biol. Med. 2021, 169, 74–83. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Khanna, P.; Ee Wong, B.S.; Lin Heng, Z.S.; Subhramanyam, C.S.; Thanga, L.Z.; Sing Tan, S.W.; Baeg, G.H. Oxidative Stress Promotes Exit from the Stem Cell State and Spontaneous Neuronal Differentiation. Oncotarget 2018, 9, 4223–4238. [Google Scholar] [CrossRef] [PubMed]
- Liguori, C.; Stefani, A.; Sancesario, G.; Sancesario, G.M.; Marciani, M.G.; Pierantozzi, M. CSF Lactate Levels, τ Proteins, Cognitive Decline: A Dynamic Relationship in Alzheimer’s Disease. J. Neurol. Neurosurg. Psychiatry 2015, 86, 655–659. [Google Scholar] [CrossRef]
- Schirinzi, T.; Di Lazzaro, G.; Sancesario, G.M.; Summa, S.; Petrucci, S.; Colona, V.L.; Bernardini, S.; Pierantozzi, M.; Stefani, A.; Mercuri, N.B.; et al. Young-Onset and Late-Onset Parkinson’s Disease Exhibit a Different Profile of Fluid Biomarkers and Clinical Features. Neurobiol. Aging 2020, 90, 119–124. [Google Scholar] [CrossRef]
- Qin, Q.; Wang, D.; Qu, Y.; Li, J.; An, K.; Mao, Z.; Li, J.; Xiong, Y.; Min, Z.; Xue, Z. Enhanced Glycolysis-Derived Lactate Promotes Microglial Activation in Parkinson’s Disease via Histone Lactylation. NPJ Park. Dis. 2025, 11, 3. [Google Scholar] [CrossRef]
- Pan, R.-Y.; He, L.; Zhang, J.; Liu, X.; Liao, Y.; Gao, J.; Liao, Y.; Yan, Y.; Li, Q.; Zhou, X.; et al. Positive Feedback Regulation of Microglial Glucose Metabolism by Histone H4 Lysine 12 Lactylation in Alzheimer’s Disease. Cell Metab. 2022, 34, 634–648.e6. [Google Scholar] [CrossRef]
- Gu, R.; Zhang, F.; Chen, G.; Han, C.; Liu, J.; Ren, Z.; Zhu, Y.; Waddington, J.L.; Zheng, L.T.; Zhen, X. Clk1 Deficiency Promotes Neuroinflammation and Subsequent Dopaminergic Cell Death through Regulation of Microglial Metabolic Reprogramming. Brain Behav. Immun. 2017, 60, 206–219. [Google Scholar] [CrossRef]
- Luo, G.; Wang, X.; Cui, Y.; Cao, Y.; Zhao, Z.; Zhang, J. Metabolic Reprogramming Mediates Hippocampal Microglial M1 Polarization in Response to Surgical Trauma Causing Perioperative Neurocognitive Disorders. J. Neuroinflamm. 2021, 18, 267. [Google Scholar] [CrossRef]
- Si, W.-Y.; Yang, C.-L.; Wei, S.-L.; Du, T.; Li, L.-K.; Dong, J.; Zhou, Y.; Li, H.; Zhang, P.; Liu, Q.-J.; et al. Therapeutic Potential of Microglial SMEK1 in Regulating H3K9 Lactylation in Cerebral Ischemia-Reperfusion. Commun. Biol. 2024, 7, 1701. [Google Scholar] [CrossRef]
- Castillo, X.; Rosafio, K.; Wyss, M.T.; Drandarov, K.; Buck, A.; Pellerin, L.; Weber, B.; Hirt, L. A Probable Dual Mode of Action for Both L- and D-Lactate Neuroprotection in Cerebral Ischemia. J. Cereb. Blood Flow. Metab. 2015, 35, 1561–1569. [Google Scholar] [CrossRef] [PubMed]
- Berthet, C.; Lei, H.; Thevenet, J.; Gruetter, R.; Magistretti, P.J.; Hirt, L. Neuroprotective Role of Lactate after Cerebral Ischemia. J. Cereb. Blood Flow. Metab. 2009, 29, 1780–1789. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, S.; Yang, L.; Zhang, Y.; Cheng, Y.; Jia, P.; Lv, Y.; Wang, K.; Fan, P.; Zhang, P.; et al. Lactate Modulates Microglial Inflammatory Responses through HIF-1α-Mediated CCL7 Signaling after Cerebral Ischemia in Mice. Int. Immunopharmacol. 2025, 146, 113801. [Google Scholar] [CrossRef]
- Gentili, V.; Schiuma, G.; Dilliraj, L.N.; Beltrami, S.; Rizzo, S.; Lara, D.; Giovannini, P.P.; Marti, M.; Bortolotti, D.; Trapella, C.; et al. DAG-MAG-ΒHB: A Novel Ketone Diester Modulates NLRP3 Inflammasome Activation in Microglial Cells in Response to Beta-Amyloid and Low Glucose AD-like Conditions. Nutrients 2024, 17, 149. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Y.; Liu, L.; Zhang, M.; Zhang, X.; Deng, J.; Zhao, F.; Lin, Q.; Zheng, X.; Fu, B.; et al. Chemerin-9 Is Neuroprotective in APP/PS1 Transgenic Mice by Inhibiting NLRP3 Inflammasome and Promoting Microglial Clearance of Aβ. J. Neuroinflamm. 2025, 22, 5. [Google Scholar] [CrossRef]
- Sarkar, S.; Nguyen, H.M.; Malovic, E.; Luo, J.; Langley, M.; Palanisamy, B.N.; Singh, N.; Manne, S.; Neal, M.; Gabrielle, M.; et al. Kv1.3 Modulates Neuroinflammation and Neurodegeneration in Parkinson’s Disease. J. Clin. Investig. 2020, 130, 4195–4212. [Google Scholar] [CrossRef]
- Peng, D.; Xu, S.; Zou, T.; Wang, Y.; Ouyang, W.; Zhang, Y.; Dong, C.; Li, D.; Guo, J.; Shen, Q.; et al. Safety, Tolerability, Pharmacokinetics and Effects of Diet on AD16, a Novel Neuroinflammatory Inhibitor for Alzheimer’s Disease: A Randomized Phase 1 Study. BMC Med. 2023, 21, 459. [Google Scholar] [CrossRef]
- Huang, Z.; Luo, Z.; Ovcjak, A.; Wan, J.; Chen, N.; Hu, W.; Sun, H.-S.; Feng, Z.-P. AD-16 Protects Against Hypoxic-Ischemic Brain Injury by Inhibiting Neuroinflammation. Neurosci. Bull. 2022, 38, 857–870. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, G.; Luo, Z.; Yu, Z.; Liu, G.; Su, G.; Tang, X.; Yuan, Z.; Huang, C.; Sun, H.-S.; et al. AD16 Attenuates Neuroinflammation Induced by Cerebral Ischemia through Down-Regulating Astrocytes A1 Polarization. Biomed. Pharmacother. 2024, 178, 117209. [Google Scholar] [CrossRef]
- Bianchetti, M.E.; Ferreira, A.F.F.; Britto, L.R.G. Inhibition of Neuroinflammation by GIBH-130 (AD-16) Reduces Neurodegeneration, Motor Deficits, and Proinflammatory Cytokines in a Hemiparkinsonian Model. Front. Neuroanat. 2024, 18, 1511951. [Google Scholar] [CrossRef]
- Guan, X.; Zhu, S.; Song, J.; Liu, K.; Liu, M.; Xie, L.; Wang, Y.; Wu, J.; Xu, X.; Pang, T. Microglial CMPK2 Promotes Neuroinflammation and Brain Injury after Ischemic Stroke. Cell Rep. Med. 2024, 5, 101522. [Google Scholar] [CrossRef] [PubMed]
- Smyth, P.; Sasiwachirangkul, J.; Williams, R.; Scott, C.J. Cathepsin S (CTSS) Activity in Health and Disease—A Treasure Trove of Untapped Clinical Potential. Mol. Asp. Med. 2022, 88, 101106. [Google Scholar] [CrossRef]
- Pišlar, A.; Kos, J. Cysteine Cathepsins in Neurological Disorders. Mol. Neurobiol. 2014, 49, 1017–1030. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Zhang, S.; Huang, L.; Peng, Z.; Lu, H.; He, Q.; Chen, R.; Hu, L.; Wang, B.; Sun, B.; et al. Single-Cell RNA Sequencing of Peripheral Blood Reveals That Monocytes with High Cathepsin S Expression Aggravate Cerebral Ischemia–Reperfusion Injury. Brain Behav. Immun. 2023, 107, 330–344. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, L.; Gan, Y.; Zhao, C.; Zhou, C.; Chen, J.; Yin, Y.; Xia, S.; Yang, H.; Bao, X.; et al. Benzydamine Attenuates Microglia-Mediated Neuroinflammation and Ischemic Brain Injury by Targeting Cathepsin s. Int. Immunopharmacol. 2025, 146, 113824. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Xu, P.; Shen, N.; Li, W.; Li, R.; Tao, C.; Wang, G.; Zhang, Y.; Sun, W.; Hu, W.; et al. STING Orchestrates Microglia Polarization via Interaction with LC3 in Autophagy after Ischemia. Cell Death Dis. 2024, 15, 824. [Google Scholar] [CrossRef]
- Liu, Z.; Qin, Q.; Wang, S.; Kang, X.; Liu, Y.; Wei, L.; Lu, Z.; Cai, W.; Hu, M. STING Activation in Macrophages and Microglia Drives Poststroke Inflammation: Implications for Neuroinflammatory Mechanisms and Therapeutic Interventions. CNS Neurosci. Ther. 2024, 30, e70106. [Google Scholar] [CrossRef]
- Sui, H.; Sun, Z.; Liu, C.; Xi, H. Ferritinophagy Promotes Microglia Ferroptosis to Aggravate Neuroinflammation Induced by Cerebral Ischemia-Reperfusion Injury via Activation of the CGAS-STING Signaling Pathway. Neurochem. Int. 2025, 183, 105920. [Google Scholar] [CrossRef]
- Bido, S.; Nannoni, M.; Muggeo, S.; Gambarè, D.; Ruffini, G.; Bellini, E.; Passeri, L.; Iaia, S.; Luoni, M.; Provinciali, M.; et al. Microglia-Specific IL-10 Gene Delivery Inhibits Neuroinflammation and Neurodegeneration in a Mouse Model of Parkinson’s Disease. Sci. Transl. Med. 2024, 16, eadm8563. [Google Scholar] [CrossRef]
- Zhou, K.-G.; Huang, Y.-B.; Zhu, Z.-W.; Jiang, M.; Jin, L.-J.; Guan, Q.; Tian, L.-L.; Zhang, J.-X. Mesencephalic Astrocyte-Derived Neurotrophic Factor Inhibits Neuroinflammation through Autophagy-Mediated α-Synuclein Degradation. Arch. Gerontol. Geriatr. 2025, 131, 105738. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Liu, F.; Zhu, L.; Lin, P.; Han, F.; Wang, X.; Tan, X.; Lin, L.; Xiong, Y. FGF21 Alleviates Neuroinflammation Following Ischemic Stroke by Modulating the Temporal and Spatial Dynamics of Microglia/Macrophages. J. Neuroinflamm. 2020, 17, 257. [Google Scholar] [CrossRef]
- Yang, X.; Hui, Q.; Yu, B.; Huang, Z.; Zhou, P.; Wang, P.; Wang, Z.; Pang, S.; Li, J.; Wang, H.; et al. Design and Evaluation of Lyophilized Fibroblast Growth Factor 21 and Its Protection against Ischemia Cerebral Injury. Bioconjug. Chem. 2018, 29, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Bi, Y.; Xie, Z.; Cao, X.; Ni, H.; Xia, S.; Bao, X.; Huang, Q.; Xu, Y.; Zhang, Q. Cedrol Attenuates Acute Ischemic Injury through Inhibition of Microglia-Associated Neuroinflammation via ERβ-NF-ΚB Signaling Pathways. Brain Res. Bull. 2024, 218, 111102. [Google Scholar] [CrossRef]
- Chen, X.; Shen, J.; Zhao, J.; Guan, J.; Li, W.; Xie, Q.; Zhao, Y. Cedrol Attenuates Collagen-Induced Arthritis in Mice and Modulates the Inflammatory Response in LPS-Mediated Fibroblast-like Synoviocytes. Food Funct. 2020, 11, 4752–4764. [Google Scholar] [CrossRef]
- Gao, J.; Su, G.; Liu, J.; Song, J.; Chen, W.; Chai, M.; Xie, X.; Wang, M.; Liu, J.; Zhang, Z. A Novel Compound Ligusticum Cycloprolactam Alleviates Neuroinflammation After Ischemic Stroke via the FPR1/NLRP3 Signaling Axis. CNS Neurosci. Ther. 2024, 30. [Google Scholar] [CrossRef]
- Sun, X.; Wang, S.; Sheng, H.; Lv, X.; Li, J.; Han, B.; Wang, S.; Liu, K.; Zhang, C.; Zhang, W.; et al. Study on the Mechanism of Stir-Fried Fructus Tribuli in Enhancing the Essential Hypertension Treatment by an Integrated “Spectrum-Effect Relationship-Network Pharmacology-Metabolomics” Strategy. Biomed. Pharmacother. 2023, 165, 115160. [Google Scholar] [CrossRef]
- Yan, A.; Liu, Z.; Song, L.; Wang, X.; Zhang, Y.; Wu, N.; Lin, J.; Liu, Y.; Liu, Z. Idebenone Alleviates Neuroinflammation and Modulates Microglial Polarization in LPS-Stimulated BV2 Cells and MPTP-Induced Parkinson’s Disease Mice. Front. Cell Neurosci. 2019, 12, 529. [Google Scholar] [CrossRef]
- Cai, M.; Zhuang, W.; Lv, E.; Liu, Z.; Wang, Y.; Zhang, W.; Fu, W. Kaemperfol Alleviates Pyroptosis and Microglia-Mediated Neuroinflammation in Parkinson’s Disease via Inhibiting P38MAPK/NF-ΚB Signaling Pathway. Neurochem. Int. 2022, 152, 105221. [Google Scholar] [CrossRef]
- Zhao, Y.; Kuca, K.; Wu, W.; Wang, X.; Nepovimova, E.; Musilek, K.; Wu, Q. Hypothesis: JNK Signaling Is a Therapeutic Target of Neurodegenerative Diseases. Alzheimer’s Dement. 2022, 18, 152–158. [Google Scholar] [CrossRef]
- Li, W.-H.; Cheng, X.; Yang, Y.-L.; Liu, M.; Zhang, S.-S.; Wang, Y.-H.; Du, G.-H. Kaempferol Attenuates Neuroinflammation and Blood Brain Barrier Dysfunction to Improve Neurological Deficits in Cerebral Ischemia/Reperfusion Rats. Brain Res. 2019, 1722, 146361. [Google Scholar] [CrossRef]
- Katsipis, G.; Lavrentiadou, S.N.; Geromichalos, G.D.; Tsantarliotou, M.P.; Halevas, E.; Litsardakis, G.; Pantazaki, A.A. Evaluation of the Anti-Amyloid and Anti-Inflammatory Properties of a Novel Vanadium(IV)-Curcumin Complex in Lipopolysaccharides-Stimulated Primary Rat Neuron-Microglia Mixed Cultures. Int. J. Mol. Sci. 2024, 26, 282. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Wu, Y.; Liu, G.; Cui, R.; Xu, Y. Advances of Ultrasound in Tumor Immunotherapy. Int. Immunopharmacol. 2024, 134, 112233. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-M.; Wu, C.-T.; Yang, T.-H.; Liu, S.-H.; Yang, F.-Y. Preventive Effect of Low Intensity Pulsed Ultrasound against Experimental Cerebral Ischemia/Reperfusion Injury via Apoptosis Reduction and Brain-Derived Neurotrophic Factor Induction. Sci. Rep. 2018, 8, 5568. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Teng, X.; Yang, C.; Wang, Y.; Wang, L.; Dai, Y.; Sun, H.; Li, J. Ultrasound Controlled Anti-Inflammatory Polarization of Platelet Decorated Microglia for Targeted Ischemic Stroke Therapy. Angew. Chem. Int. Ed. 2021, 60, 5083–5090. [Google Scholar] [CrossRef]
- Hong, Z.; Zuo, Z.; Zhao, Y.; Ai, Y.; Zhang, L.; Li, L.; He, X.; Luo, J.; Xu, J.; Yang, X.; et al. Transcranial Focused Ultrasound Stimulation Alleviates NLRP3-Related Neuroinflammation Induced by Ischemic Stroke via Regulation of the Nespas/MiR-383-3p/SHP2 Pathway. Int. Immunopharmacol. 2025, 144, 113680. [Google Scholar] [CrossRef]
- Wang, J.; Li, G.; Deng, L.; Mamtilahun, M.; Jiang, L.; Qiu, W.; Zheng, H.; Sun, J.; Xie, Q.; Yang, G.-Y. Transcranial Focused Ultrasound Stimulation Improves Neurorehabilitation after Middle Cerebral Artery Occlusion in Mice. Aging Dis. 2021, 12, 50. [Google Scholar] [CrossRef]
- Wattananit, S.; Tornero, D.; Graubardt, N.; Memanishvili, T.; Monni, E.; Tatarishvili, J.; Miskinyte, G.; Ge, R.; Ahlenius, H.; Lindvall, O.; et al. Monocyte-Derived Macrophages Contribute to Spontaneous Long-Term Functional Recovery after Stroke in Mice. J. Neurosci. 2016, 36, 4182–4195. [Google Scholar] [CrossRef]
- Noronha, N.d.C.; Mizukami, A.; Caliári-Oliveira, C.; Cominal, J.G.; Rocha, J.L.M.; Covas, D.T.; Swiech, K.; Malmegrim, K.C.R. Priming Approaches to Improve the Efficacy of Mesenchymal Stromal Cell-Based Therapies. Stem Cell Res. Ther. 2019, 10, 131. [Google Scholar] [CrossRef]
- Ge, R.; Tornero, D.; Hirota, M.; Monni, E.; Laterza, C.; Lindvall, O.; Kokaia, Z. Choroid Plexus-Cerebrospinal Fluid Route for Monocyte-Derived Macrophages after Stroke. J. Neuroinflamm. 2017, 14, 153. [Google Scholar] [CrossRef]
- Tolstova, T.; Dotsenko, E.; Luzgina, N.; Rusanov, A. Preconditioning of Mesenchymal Stem Cells Enhances the Neuroprotective Effects of Their Conditioned Medium in an Alzheimer’s Disease In Vitro Model. Biomedicines 2024, 12, 2243. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Yahaya, B.H.; Ng, W.H.; Yusoff, N.M.; Lin, J. Conditioned Medium of Human Menstrual Blood-Derived Endometrial Stem Cells Protects Against MPP+-Induced Cytotoxicity in Vitro. Front. Mol. Neurosci. 2019, 12, 80. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wei, J.; Zhang, Z.; Li, J.; Ma, Y.; Zhang, P.; Lin, J. Menstrual Blood-Derived Endometrial Stem Cells Alleviate Neuroinflammation by Modulating M1/M2 Polarization in Cell and Rat Parkinson’s Disease Models. Stem Cell Res. Ther. 2023, 14, 85. [Google Scholar] [CrossRef]
- Fričová, D.; Korchak, J.A.; Zubair, A.C. Challenges and Translational Considerations of Mesenchymal Stem/Stromal Cell Therapy for Parkinson’s Disease. NPJ Regen. Med. 2020, 5, 20. [Google Scholar] [CrossRef] [PubMed]
- Mehrabadi, S.; Motevaseli, E.; Sadr, S.S.; Moradbeygi, K. Hypoxic-Conditioned Medium from Adipose Tissue Mesenchymal Stem Cells Improved Neuroinflammation through Alternation of Toll like Receptor (TLR) 2 and TLR4 Expression in Model of Alzheimer’s Disease Rats. Behav. Brain Res. 2020, 379, 112362. [Google Scholar] [CrossRef]
- Yamazaki, H.; Jin, Y.; Tsuchiya, A.; Kanno, T.; Nishizaki, T. Adipose-Derived Stem Cell-Conditioned Medium Ameliorates Antidepression-Related Behaviors in the Mouse Model of Alzheimer’s Disease. Neurosci. Lett. 2015, 609, 53–57. [Google Scholar] [CrossRef]
- Wan, Z.; Mah, D.; Simtchouk, S.; Kluftinger, A.; Little, J. Human Adipose Tissue Conditioned Media from Lean Subjects Is Protective against H2O2 Induced Neurotoxicity in Human SH-SY5Y Neuronal Cells. Int. J. Mol. Sci. 2015, 16, 1221–1231. [Google Scholar] [CrossRef]
- Alidoust, L.; Akhoondian, M.; Atefi, A.H.; Keivanlou, M.-H.; Hedayati Ch, M.; Jafari, A. Stem Cell-Conditioned Medium Is a Promising Treatment for Alzheimer’s Disease. Behav. Brain Res. 2023, 452, 114543. [Google Scholar] [CrossRef]
- Shin, J.Y.; Kim, D.-Y.; Lee, J.; Shin, Y.J.; Kim, Y.S.; Lee, P.H. Priming Mesenchymal Stem Cells with α-Synuclein Enhances Neuroprotective Properties through Induction of Autophagy in Parkinsonian Models. Stem Cell Res. Ther. 2022, 13, 483. [Google Scholar] [CrossRef]
- Zhuo, Y.; Li, W.-S.; Lu, W.; Li, X.; Ge, L.-T.; Huang, Y.; Gao, Q.-T.; Deng, Y.-J.; Jiang, X.-C.; Lan, Z.-W.; et al. TGF-Β1 Mediates Hypoxia-Preconditioned Olfactory Mucosa Mesenchymal Stem Cells Improved Neural Functional Recovery in Parkinson’s Disease Models and Patients. Mil. Med. Res. 2024, 11, 48. [Google Scholar] [CrossRef]
- Lin, Y.-Y.; Chuang, D.-M.; Chi, C.-Y.; Hung, S.-Y. Intranasal Administration of Mesenchymal Stem Cells Overexpressing FGF21 Demonstrates Therapeutic Potential in Experimental Parkinson’s Disease. Neurotherapeutics 2024, 22, e00501. [Google Scholar] [CrossRef] [PubMed]
- Behzadifard, M.; Aboutaleb, N.; Dolatshahi, M.; Khorramizadeh, M.; Mirshekari Jahangiri, H.; Kord, Z.; Nazarinia, D. Neuroprotective Effects of Conditioned Medium of Mesenchymal Stem Cells (MSC-CM) as a Therapy for Ischemic Stroke Recovery: A Systematic Review. Neurochem. Res. 2023, 48, 1280–1292. [Google Scholar] [CrossRef] [PubMed]
- Xin, H.; Li, Y.; Liu, Z.; Wang, X.; Shang, X.; Cui, Y.; Zhang, Z.G.; Chopp, M. MiR-133b Promotes Neural Plasticity and Functional Recovery After Treatment of Stroke with Multipotent Mesenchymal Stromal Cells in Rats Via Transfer of Exosome-Enriched Extracellular Particles. Stem Cells 2013, 31, 2737–2746. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Y.; Lv, Q.; Gao, J.; Hu, L.; He, Z. MicroRNA-21 Overexpression Promotes the Neuroprotective Efficacy of Mesenchymal Stem Cells for Treatment of Intracerebral Hemorrhage. Front. Neurol. 2018, 9, 931. [Google Scholar] [CrossRef]
- Razavi-Toosi, S.; Asadi, Y.; Aboutaleb, N.; Faezi, M. Conditioned Medium Derived from the Human Amniotic Membrane Prevents Brain Damage Against Cerebral Ischemia/Reperfusion in Subacute, Acute, and Chronic Phases in a Rat Model of Stroke. Basic Clin. Neurosci. J. 2023, 14, 843–856. [Google Scholar] [CrossRef]
- Redondo-Castro, E.; Cunningham, C.; Miller, J.; Martuscelli, L.; Aoulad-Ali, S.; Rothwell, N.J.; Kielty, C.M.; Allan, S.M.; Pinteaux, E. Interleukin-1 Primes Human Mesenchymal Stem Cells towards an Anti-Inflammatory and pro-Trophic Phenotype In Vitro. Stem Cell Res. Ther. 2017, 8, 79. [Google Scholar] [CrossRef]
- Wong, R.; Smith, C.J.; Allan, S.M.; Pinteaux, E. Preconditioning with Interleukin-1 Alpha Is Required for the Neuroprotective Properties of Mesenchymal Stem Cells after Ischemic Stroke in Mice. J. Cereb. Blood Flow. Metab. 2023, 43, 2040–2048. [Google Scholar] [CrossRef]
- Cunningham, C.J.; Wong, R.; Barrington, J.; Tamburrano, S.; Pinteaux, E.; Allan, S.M. Systemic Conditioned Medium Treatment from Interleukin-1 Primed Mesenchymal Stem Cells Promotes Recovery after Stroke. Stem Cell Res. Ther. 2020, 11, 32. [Google Scholar] [CrossRef]
- Jashire Nezhad, N.; Safari, A.; Namavar, M.R.; Nami, M.; Karimi-Haghighi, S.; Pandamooz, S.; Dianatpour, M.; Azarpira, N.; Khodabandeh, Z.; Zare, S.; et al. Short-Term Beneficial Effects of Human Dental Pulp Stem Cells and Their Secretome in a Rat Model of Mild Ischemic Stroke. J. Stroke Cerebrovasc. Dis. 2023, 32, 107202. [Google Scholar] [CrossRef]
- Yang, L.-Y.; Chen, Y.-R.; Lee, J.-E.; Chen, K.-W.; Luh, H.-T.; Chen, Y.-T.; Wang, K.-C.; Hsieh, S.-T. Dental Pulp Stem Cell-Derived Conditioned Medium Alleviates Subarachnoid Hemorrhage-Induced Microcirculation Impairment by Promoting M2 Microglia Polarization and Reducing Astrocyte Swelling. Transl. Stroke Res. 2023, 14, 688–703. [Google Scholar] [CrossRef]
- Hur, H.-J.; Lee, J.Y.; Kim, D.-H.; Cho, M.S.; Lee, S.; Kim, H.-S.; Kim, D.-W. Conditioned Medium of Human Pluripotent Stem Cell-Derived Neural Precursor Cells Exerts Neurorestorative Effects against Ischemic Stroke Model. Int. J. Mol. Sci. 2022, 23, 7787. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Chen, P.; Li, W.; Chen, Z. Exosomes in Stroke Management: A Promising Paradigm Shift in Stroke Therapy. Neural Regen. Res. 2024, ahead of print. [Google Scholar] [CrossRef]
- Zhang, K.; Cheng, K. Stem Cell-Derived Exosome versus Stem Cell Therapy. Nat. Rev. Bioeng. 2023, 1, 608–609. [Google Scholar] [CrossRef]
- Liang, Y.; Duan, L.; Lu, J.; Xia, J. Engineering Exosomes for Targeted Drug Delivery. Theranostics 2021, 11, 3183–3195. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Dong, H.; Cao, H.; Ji, X.; Luan, S.; Liu, J. Exosomes in Pathogenesis, Diagnosis, and Treatment of Alzheimer’s Disease. Med. Sci. Monit. 2019, 25, 3329–3335. [Google Scholar] [CrossRef]
- Hou, B.-R.; Jiang, C.; Wang, Z.-N.; Ren, H.-J. Exosome-Mediated Crosstalk between Microglia and Neural Stem Cells in the Repair of Brain Injury. Neural Regen. Res. 2020, 15, 1023. [Google Scholar] [CrossRef]
- Perez-Gonzalez, R.; Gauthier, S.A.; Kumar, A.; Levy, E. The Exosome Secretory Pathway Transports Amyloid Precursor Protein Carboxyl-Terminal Fragments from the Cell into the Brain Extracellular Space. J. Biol. Chem. 2012, 287, 43108–43115. [Google Scholar] [CrossRef] [PubMed]
- Rajendran, L.; Honsho, M.; Zahn, T.R.; Keller, P.; Geiger, K.D.; Verkade, P.; Simons, K. Alzheimer’s Disease β-Amyloid Peptides Are Released in Association with Exosomes. Proc. Natl. Acad. Sci. USA 2006, 103, 11172–11177. [Google Scholar] [CrossRef]
- Picca, A.; Guerra, F.; Calvani, R.; Coelho-Junior, H.; Bucci, C.; Marzetti, E. Circulating Extracellular Vesicles: Friends and Foes in Neurodegeneration. Neural Regen. Res. 2022, 17, 534. [Google Scholar] [CrossRef]
- Reza-Zaldivar, E.; Hernández-Sapiéns, M.; Gutiérrez-Mercado, Y.; Sandoval-Ávila, S.; Gomez-Pinedo, U.; Márquez-Aguirre, A.; Vázquez-Méndez, E.; Padilla-Camberos, E.; Canales-Aguirre, A. Mesenchymal Stem Cell-Derived Exosomes Promote Neurogenesis and Cognitive Function Recovery in a Mouse Model of Alzheimer’s Disease. Neural Regen. Res. 2019, 14, 1626. [Google Scholar] [CrossRef]
- Reza-Zaldivar, E.E.; Hernández-Sapiéns, M.A.; Minjarez, B.; Gutiérrez-Mercado, Y.K.; Márquez-Aguirre, A.L.; Canales-Aguirre, A.A. Potential Effects of MSC-Derived Exosomes in Neuroplasticity in Alzheimer’s Disease. Front. Cell Neurosci. 2018, 12, 317. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.I.; Jeong, E.S.; Khan, M.Z.; Shin, J.H.; Kim, J.D. Stem Cells-Derived Exosomes Alleviate Neurodegeneration and Alzheimer’s Pathogenesis by Ameliorating Neuroinflamation, and Regulating the Associated Molecular Pathways. Sci. Rep. 2023, 13, 15731. [Google Scholar] [CrossRef]
- Alvarez-Erviti, L.; Seow, Y.; Yin, H.; Betts, C.; Lakhal, S.; Wood, M.J.A. Delivery of SiRNA to the Mouse Brain by Systemic Injection of Targeted Exosomes. Nat. Biotechnol. 2011, 29, 341–345. [Google Scholar] [CrossRef]
- Ma, X.; Huang, M.; Zheng, M.; Dai, C.; Song, Q.; Zhang, Q.; Li, Q.; Gu, X.; Chen, H.; Jiang, G.; et al. ADSCs-Derived Extracellular Vesicles Alleviate Neuronal Damage, Promote Neurogenesis and Rescue Memory Loss in Mice with Alzheimer’s Disease. J. Control. Release 2020, 327, 688–702. [Google Scholar] [CrossRef]
- Sul, J.H.; Shin, S.; Kim, H.K.; Han, J.; Kim, J.; Son, S.; Lee, J.; Baek, S.H.; Cho, Y.; Lee, J.; et al. Dopamine-conjugated Extracellular Vesicles Induce Autophagy in Parkinson’s Disease. J. Extracell. Vesicles 2024, 13, e70018. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.-C.; Hu, X.-M.; Long, Y.-F.; Huang, H.-R.; He, Y.; Xu, Z.-R.; Qi, Z.-Q. Treatment of Parkinson’s Disease Model with Human Umbilical Cord Mesenchymal Stem Cell-Derived Exosomes Loaded with BDNF. Life Sci. 2024, 356, 123014. [Google Scholar] [CrossRef]
- Ye, J.; Sun, X.; Jiang, Q.; Gui, J.; Feng, S.; Qin, B.; Xie, L.; Guo, A.; Dong, J.; Sang, M. Umbilical Cord Blood-Derived Exosomes Attenuate Dopaminergic Neuron Damage of Parkinson’s Disease Mouse Model. J. Nanobiotechnol. 2024, 22, 567. [Google Scholar] [CrossRef]
- Chen, C.; Chang, Z.-H.; Yao, B.; Liu, X.-Y.; Zhang, X.-W.; Liang, J.; Wang, J.-J.; Bao, S.-Q.; Chen, M.-M.; Zhu, P.; et al. 3D Printing of Interferon γ-Preconditioned NSC-Derived Exosomes/Collagen/Chitosan Biological Scaffolds for Neurological Recovery after TBI. Bioact. Mater. 2024, 39, 375–391. [Google Scholar] [CrossRef]
- Gu, C.; Li, Y.; Liu, J.; Liu, S.; Long, J.; Zhang, Q.; Duan, W.; Feng, T.; Huang, J.; Qiu, Y.; et al. Neural Stem Cell-Derived Exosomes-Loaded Adhesive Hydrogel Controlled-Release Promotes Cerebral Angiogenesis and Neurological Function in Ischemic Stroke. Exp. Neurol. 2023, 370, 114547. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, T.; Li, Y.; Fan, Y.; Shang, H.; Zhao, H.; Sun, H.; Yu, Z.; Han, M.; Wan, C. Gelatin Methacryloyl Microneedle Loaded with 3D-MSC-Exosomes for the Protection of Ischemia-Reperfusion. Int. J. Biol. Macromol. 2024, 275, 133336. [Google Scholar] [CrossRef]
- Han, M.; Zhang, Z.; Liu, Z.; Liu, Y.; Zhao, H.; Wang, B.; Zhang, C.; Shang, H.; Li, Y.; Wang, S.; et al. Three-Dimensional-Cultured MSC-Derived Exosome with Hydrogel for Cerebral Ischemia Repair. Biomater. Adv. 2023, 149, 213396. [Google Scholar] [CrossRef]
- Kang, H.; Huang, Y.; Peng, H.; Zhang, X.; Liu, Y.; Liu, Y.; Xia, Y.; Liu, S.; Wu, Y.; Wang, S.; et al. Mesenchymal Stem Cell-Loaded Hydrogel Improves Surgical Treatment for Chronic Cerebral Ischemia. Transl. Stroke Res. 2024, ahead of print. [Google Scholar] [CrossRef]
- Cakir, B.; Kiral, F.R.; Park, I.-H. Advanced in Vitro Models: Microglia in Action. Neuron 2022, 110, 3444–3457. [Google Scholar] [CrossRef] [PubMed]
- Galatro, T.F.; Vainchtein, I.D.; Brouwer, N.; Boddeke, E.W.G.M.; Eggen, B.J.L. Isolation of Microglia and Immune Infiltrates from Mouse and Primate Central Nervous System. In Inflammation. Methods in Molecular Biology; Humana Press: New York, NY, USA, 2017; pp. 333–342. [Google Scholar]
- Gosselin, D.; Skola, D.; Coufal, N.G.; Holtman, I.R.; Schlachetzki, J.C.M.; Sajti, E.; Jaeger, B.N.; O’Connor, C.; Fitzpatrick, C.; Pasillas, M.P.; et al. An Environment-Dependent Transcriptional Network Specifies Human Microglia Identity. Science 2017, 356, eaal3222. [Google Scholar] [CrossRef]
- Burns, T.C.; Li, M.D.; Mehta, S.; Awad, A.J.; Morgan, A.A. Mouse Models Rarely Mimic the Transcriptome of Human Neurodegenerative Diseases: A Systematic Bioinformatics-Based Critique of Preclinical Models. Eur. J. Pharmacol. 2015, 759, 101–117. [Google Scholar] [CrossRef]
- Dolan, M.-J.; Therrien, M.; Jereb, S.; Kamath, T.; Gazestani, V.; Atkeson, T.; Marsh, S.E.; Goeva, A.; Lojek, N.M.; Murphy, S.; et al. Exposure of IPSC-Derived Human Microglia to Brain Substrates Enables the Generation and Manipulation of Diverse Transcriptional States In Vitro. Nat. Immunol. 2023, 24, 1382–1390. [Google Scholar] [CrossRef] [PubMed]
- Muffat, J.; Li, Y.; Yuan, B.; Mitalipova, M.; Omer, A.; Corcoran, S.; Bakiasi, G.; Tsai, L.-H.; Aubourg, P.; Ransohoff, R.M.; et al. Efficient Derivation of Microglia-like Cells from Human Pluripotent Stem Cells. Nat. Med. 2016, 22, 1358–1367. [Google Scholar] [CrossRef] [PubMed]
- Douvaras, P.; Sun, B.; Wang, M.; Kruglikov, I.; Lallos, G.; Zimmer, M.; Terrenoire, C.; Zhang, B.; Gandy, S.; Schadt, E.; et al. Directed Differentiation of Human Pluripotent Stem Cells to Microglia. Stem Cell Rep. 2017, 8, 1516–1524. [Google Scholar] [CrossRef]
- Abud, E.M.; Ramirez, R.N.; Martinez, E.S.; Healy, L.M.; Nguyen, C.H.H.; Newman, S.A.; Yeromin, A.V.; Scarfone, V.M.; Marsh, S.E.; Fimbres, C.; et al. IPSC-Derived Human Microglia-like Cells to Study Neurological Diseases. Neuron 2017, 94, 278–293.e9. [Google Scholar] [CrossRef]
- Banerjee, P.; Paza, E.; Perkins, E.M.; James, O.G.; Kenkhuis, B.; Lloyd, A.F.; Burr, K.; Story, D.; Yusuf, D.; He, X.; et al. Generation of Pure Monocultures of Human Microglia-like Cells from Induced Pluripotent Stem Cells. Stem Cell Res. 2020, 49, 102046. [Google Scholar] [CrossRef]
- Brownjohn, P.W.; Smith, J.; Solanki, R.; Lohmann, E.; Houlden, H.; Hardy, J.; Dietmann, S.; Livesey, F.J. Functional Studies of Missense TREM2 Mutations in Human Stem Cell-Derived Microglia. Stem Cell Rep. 2018, 10, 1294–1307. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Colonna, M. Microglia in Alzheimer’s Disease at Single-Cell Level. Are There Common Patterns in Humans and Mice? J. Exp. Med. 2021, 218, e20202717. [Google Scholar] [CrossRef]
- Grubman, A.; Choo, X.Y.; Chew, G.; Ouyang, J.F.; Sun, G.; Croft, N.P.; Rossello, F.J.; Simmons, R.; Buckberry, S.; Landin, D.V.; et al. Transcriptional Signature in Microglia Associated with Aβ Plaque Phagocytosis. Nat. Commun. 2021, 12, 3015. [Google Scholar] [CrossRef]
- Guttikonda, S.R.; Sikkema, L.; Tchieu, J.; Saurat, N.; Walsh, R.M.; Harschnitz, O.; Ciceri, G.; Sneeboer, M.; Mazutis, L.; Setty, M.; et al. Fully Defined Human Pluripotent Stem Cell-Derived Microglia and Tri-Culture System Model C3 Production in Alzheimer’s Disease. Nat. Neurosci. 2021, 24, 343–354. [Google Scholar] [CrossRef]
- Haenseler, W.; Sansom, S.N.; Buchrieser, J.; Newey, S.E.; Moore, C.S.; Nicholls, F.J.; Chintawar, S.; Schnell, C.; Antel, J.P.; Allen, N.D.; et al. A Highly Efficient Human Pluripotent Stem Cell Microglia Model Displays a Neuronal-Co-Culture-Specific Expression Profile and Inflammatory Response. Stem Cell Rep. 2017, 8, 1727–1742. [Google Scholar] [CrossRef]
- Konttinen, H.; Cabral-da-Silva, M.e.C.; Ohtonen, S.; Wojciechowski, S.; Shakirzyanova, A.; Caligola, S.; Giugno, R.; Ishchenko, Y.; Hernández, D.; Fazaludeen, M.F.; et al. PSEN1ΔE9, APPswe, and APOE4 Confer Disparate Phenotypes in Human IPSC-Derived Microglia. Stem Cell Rep. 2019, 13, 669–683. [Google Scholar] [CrossRef]
- Takata, K.; Kozaki, T.; Lee, C.Z.W.; Thion, M.S.; Otsuka, M.; Lim, S.; Utami, K.H.; Fidan, K.; Park, D.S.; Malleret, B.; et al. Induced-Pluripotent-Stem-Cell-Derived Primitive Macrophages Provide a Platform for Modeling Tissue-Resident Macrophage Differentiation and Function. Immunity 2017, 47, 183–198.e6. [Google Scholar] [CrossRef] [PubMed]
- Pandya, H.; Shen, M.J.; Ichikawa, D.M.; Sedlock, A.B.; Choi, Y.; Johnson, K.R.; Kim, G.; Brown, M.A.; Elkahloun, A.G.; Maric, D.; et al. Differentiation of Human and Murine Induced Pluripotent Stem Cells to Microglia-like Cells. Nat. Neurosci. 2017, 20, 753–759. [Google Scholar] [CrossRef]
- Ihnatovych, I.; Birkaya, B.; Notari, E.; Szigeti, K. IPSC-Derived Microglia for Modeling Human-Specific DAMP and PAMP Responses in the Context of Alzheimer’s Disease. Int. J. Mol. Sci. 2020, 21, 9668. [Google Scholar] [CrossRef]
- Rostami, J.; Mothes, T.; Kolahdouzan, M.; Eriksson, O.; Moslem, M.; Bergström, J.; Ingelsson, M.; O’Callaghan, P.; Healy, L.M.; Falk, A.; et al. Crosstalk between Astrocytes and Microglia Results in Increased Degradation of α-Synuclein and Amyloid-β Aggregates. J. Neuroinflamm. 2021, 18, 124. [Google Scholar] [CrossRef]
- Trudler, D.; Nazor, K.L.; Eisele, Y.S.; Grabauskas, T.; Dolatabadi, N.; Parker, J.; Sultan, A.; Zhong, Z.; Goodwin, M.S.; Levites, Y.; et al. Soluble α-Synuclein–Antibody Complexes Activate the NLRP3 Inflammasome in HiPSC-Derived Microglia. Proc. Natl. Acad. Sci. USA 2021, 118, e2025847118. [Google Scholar] [CrossRef] [PubMed]
- Fontainhas, A.M.; Wang, M.; Liang, K.J.; Chen, S.; Mettu, P.; Damani, M.; Fariss, R.N.; Li, W.; Wong, W.T. Microglial Morphology and Dynamic Behavior Is Regulated by Ionotropic Glutamatergic and GABAergic Neurotransmission. PLoS ONE 2011, 6, e15973. [Google Scholar] [CrossRef]
- Stogsdill, J.A.; Kim, K.; Binan, L.; Farhi, S.L.; Levin, J.Z.; Arlotta, P. Pyramidal Neuron Subtype Diversity Governs Microglia States in the Neocortex. Nature 2022, 608, 750–756. [Google Scholar] [CrossRef]
- Szepesi, Z.; Manouchehrian, O.; Bachiller, S.; Deierborg, T. Bidirectional Microglia–Neuron Communication in Health and Disease. Front. Cell Neurosci. 2018, 12, 323. [Google Scholar] [CrossRef]
- Stöberl, N.; Maguire, E.; Salis, E.; Shaw, B.; Hall-Roberts, H. Human IPSC-Derived Glia Models for the Study of Neuroinflammation. J. Neuroinflamm. 2023, 20, 231. [Google Scholar] [CrossRef]
- Bassil, R.; Shields, K.; Granger, K.; Zein, I.; Ng, S.; Chih, B. Improved Modeling of Human AD with an Automated Culturing Platform for IPSC Neurons, Astrocytes and Microglia. Nat. Commun. 2021, 12, 5220. [Google Scholar] [CrossRef]
- Choi, J.; Choi, H.K.; Lee, K. In Situ Detection of Neuroinflammation Using Multicellular 3D Neurovascular-Unit-on-a-Chip. Adv. Funct. Mater. 2023, 33, 2304382. [Google Scholar] [CrossRef]
- Pediaditakis, I.; Kodella, K.R.; Manatakis, D.V.; Le, C.Y.; Barthakur, S.; Sorets, A.; Gravanis, A.; Ewart, L.; Rubin, L.L.; Manolakos, E.S.; et al. A Microengineered Brain-Chip to Model Neuroinflammation in Humans. iScience 2022, 25, 104813. [Google Scholar] [CrossRef]
- Schwartz, M.P.; Hou, Z.; Propson, N.E.; Zhang, J.; Engstrom, C.J.; Costa, V.S.; Jiang, P.; Nguyen, B.K.; Bolin, J.M.; Daly, W.; et al. Human Pluripotent Stem Cell-Derived Neural Constructs for Predicting Neural Toxicity. Proc. Natl. Acad. Sci. USA 2015, 112, 12516–12521. [Google Scholar] [CrossRef]
- Berjaoui, C.; Kachouh, C.; Joumaa, S.; Hussein Ghayyad, M.; Abate Bekele, B.; Rita, A.; Al Maaz, Z.; Awde, S.; Wojtara, M.; Nazir, A.; et al. Neuroinflammation-on-a-Chip for Multiple Sclerosis Research: A Narrative Review. Ann. Med. Surg. 2024, 86, 4053–4059. [Google Scholar] [CrossRef]
- Amartumur, S.; Nguyen, H.; Huynh, T.; Kim, T.S.; Woo, R.-S.; Oh, E.; Kim, K.K.; Lee, L.P.; Heo, C. Neuropathogenesis-on-Chips for Neurodegenerative Diseases. Nat. Commun. 2024, 15, 2219. [Google Scholar] [CrossRef] [PubMed]
- Sabate-Soler, S.; Kurniawan, H.; Schwamborn, J.C. Advanced Brain Organoids for Neuroinflammation Disease Modeling. Neural Regen. Res. 2024, 19, 154–155. [Google Scholar] [CrossRef] [PubMed]
- Lancaster, M.A.; Knoblich, J.A. Generation of Cerebral Organoids from Human Pluripotent Stem Cells. Nat. Protoc. 2014, 9, 2329–2340. [Google Scholar] [CrossRef]
- Lancaster, M.A.; Renner, M.; Martin, C.-A.; Wenzel, D.; Bicknell, L.S.; Hurles, M.E.; Homfray, T.; Penninger, J.M.; Jackson, A.P.; Knoblich, J.A. Cerebral Organoids Model Human Brain Development and Microcephaly. Nature 2013, 501, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Velasco, S.; Kedaigle, A.J.; Simmons, S.K.; Nash, A.; Rocha, M.; Quadrato, G.; Paulsen, B.; Nguyen, L.; Adiconis, X.; Regev, A.; et al. Individual Brain Organoids Reproducibly Form Cell Diversity of the Human Cerebral Cortex. Nature 2019, 570, 523–527. [Google Scholar] [CrossRef]
- Eigenhuis, K.N.; Somsen, H.B.; van der Kroeg, M.; Smeenk, H.; Korporaal, A.L.; Kushner, S.A.; de Vrij, F.M.S.; van den Berg, D.L.C. A Simplified Protocol for the Generation of Cortical Brain Organoids. Front. Cell Neurosci. 2023, 17, 1114420. [Google Scholar] [CrossRef]
- Paşca, A.M.; Sloan, S.A.; Clarke, L.E.; Tian, Y.; Makinson, C.D.; Huber, N.; Kim, C.H.; Park, J.-Y.; O’Rourke, N.A.; Nguyen, K.D.; et al. Functional Cortical Neurons and Astrocytes from Human Pluripotent Stem Cells in 3D Culture. Nat. Methods 2015, 12, 671–678. [Google Scholar] [CrossRef]
- Miura, Y.; Li, M.-Y.; Birey, F.; Ikeda, K.; Revah, O.; Thete, M.V.; Park, J.-Y.; Puno, A.; Lee, S.H.; Porteus, M.H.; et al. Generation of Human Striatal Organoids and Cortico-Striatal Assembloids from Human Pluripotent Stem Cells. Nat. Biotechnol. 2020, 38, 1421–1430. [Google Scholar] [CrossRef]
- Mulder, L.A.; Depla, J.A.; Sridhar, A.; Wolthers, K.; Pajkrt, D.; Vieira de Sá, R. A Beginner’s Guide on the Use of Brain Organoids for Neuroscientists: A Systematic Review. Stem Cell Res. Ther. 2023, 14, 87. [Google Scholar] [CrossRef]
- Zhang, W.; Jiang, J.; Xu, Z.; Yan, H.; Tang, B.; Liu, C.; Chen, C.; Meng, Q. Microglia-Containing Human Brain Organoids for the Study of Brain Development and Pathology. Mol. Psychiatry 2023, 28, 96–107. [Google Scholar] [CrossRef]
- Chambers, S.M.; Fasano, C.A.; Papapetrou, E.P.; Tomishima, M.; Sadelain, M.; Studer, L. Highly Efficient Neural Conversion of Human ES and IPS Cells by Dual Inhibition of SMAD Signaling. Nat. Biotechnol. 2009, 27, 275–280. [Google Scholar] [CrossRef]
- Cakir, B.; Xiang, Y.; Tanaka, Y.; Kural, M.H.; Parent, M.; Kang, Y.-J.; Chapeton, K.; Patterson, B.; Yuan, Y.; He, C.-S.; et al. Engineering of Human Brain Organoids with a Functional Vascular-like System. Nat. Methods 2019, 16, 1169–1175. [Google Scholar] [CrossRef]
- Sun, X.-Y.; Ju, X.-C.; Li, Y.; Zeng, P.-M.; Wu, J.; Zhou, Y.-Y.; Shen, L.-B.; Dong, J.; Chen, Y.-J.; Luo, Z.-G. Generation of Vascularized Brain Organoids to Study Neurovascular Interactions. eLife 2022, 11, e76707. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.H.; Kim, Y.H.; Hebisch, M.; Sliwinski, C.; Lee, S.; D’Avanzo, C.; Chen, H.; Hooli, B.; Asselin, C.; Muffat, J.; et al. A Three-Dimensional Human Neural Cell Culture Model of Alzheimer’s Disease. Nature 2014, 515, 274–278. [Google Scholar] [CrossRef] [PubMed]
- Raja, W.K.; Mungenast, A.E.; Lin, Y.-T.; Ko, T.; Abdurrob, F.; Seo, J.; Tsai, L.-H. Self-Organizing 3D Human Neural Tissue Derived from Induced Pluripotent Stem Cells Recapitulate Alzheimer’s Disease Phenotypes. PLoS ONE 2016, 11, e0161969. [Google Scholar] [CrossRef]
- Sreenivasamurthy, S.; Laul, M.; Zhao, N.; Kim, T.; Zhu, D. Current Progress of Cerebral Organoids for Modeling Alzheimer’s Disease Origins and Mechanisms. Bioeng. Transl. Med. 2023, 8, e10378. [Google Scholar] [CrossRef]
- Fernandes, S.; Revanna, J.; Pratt, J.; Hayes, N.; Marchetto, M.C.; Gage, F.H. Modeling Alzheimer’s Disease Using Human Cell Derived Brain Organoids and 3D Models. Front. Neurosci. 2024, 18, 1434945. [Google Scholar] [CrossRef]
- Park, J.-C.; Jang, S.-Y.; Lee, D.; Lee, J.; Kang, U.; Chang, H.; Kim, H.J.; Han, S.-H.; Seo, J.; Choi, M.; et al. A Logical Network-Based Drug-Screening Platform for Alzheimer’s Disease Representing Pathological Features of Human Brain Organoids. Nat. Commun. 2021, 12, 280. [Google Scholar] [CrossRef]
- Park, J.; Wetzel, I.; Marriott, I.; Dréau, D.; D’Avanzo, C.; Kim, D.Y.; Tanzi, R.E.; Cho, H. A 3D Human Triculture System Modeling Neurodegeneration and Neuroinflammation in Alzheimer’s Disease. Nat. Neurosci. 2018, 21, 941–951. [Google Scholar] [CrossRef]
- Pomeshchik, Y.; Klementieva, O.; Gil, J.; Martinsson, I.; Hansen, M.G.; de Vries, T.; Sancho-Balsells, A.; Russ, K.; Savchenko, E.; Collin, A.; et al. Human IPSC-Derived Hippocampal Spheroids: An Innovative Tool for Stratifying Alzheimer Disease Patient-Specific Cellular Phenotypes and Developing Therapies. Stem Cell Rep. 2020, 15, 256–273. [Google Scholar] [CrossRef]
- Cui, X.; Li, X.; Zheng, H.; Su, Y.; Zhang, S.; Li, M.; Hao, X.; Zhang, S.; Hu, Z.; Xia, Z.; et al. Human Midbrain Organoids: A Powerful Tool for Advanced Parkinson’s Disease Modeling and Therapy Exploration. NPJ Park. Dis. 2024, 10, 189. [Google Scholar] [CrossRef]
- Kim, H.; Park, H.J.; Choi, H.; Chang, Y.; Park, H.; Shin, J.; Kim, J.; Lengner, C.J.; Lee, Y.K.; Kim, J. Modeling G2019S-LRRK2 Sporadic Parkinson’s Disease in 3D Midbrain Organoids. Stem Cell Rep. 2019, 12, 518–531. [Google Scholar] [CrossRef]
- Smits, L.M.; Reinhardt, L.; Reinhardt, P.; Glatza, M.; Monzel, A.S.; Stanslowsky, N.; Rosato-Siri, M.D.; Zanon, A.; Antony, P.M.; Bellmann, J.; et al. Modeling Parkinson’s Disease in Midbrain-like Organoids. NPJ Park. Dis. 2019, 5, 5. [Google Scholar] [CrossRef]
- Kim, M.S.; Kim, D.-H.; Kang, H.K.; Kook, M.G.; Choi, S.W.; Kang, K.-S. Modeling of Hypoxic Brain Injury through 3D Human Neural Organoids. Cells 2021, 10, 234. [Google Scholar] [CrossRef]
- Wang, S.; Wang, Z.; Wang, X.; Zhang, X.; Xu, T.; Miao, C. Humanized Cerebral Organoids-Based Ischemic Stroke Model for Discovering of Potential Anti-Stroke Agents. Acta Pharmacol. Sin. 2023, 44, 513–523. [Google Scholar] [CrossRef]
Cytokines | Disease | Impact |
---|---|---|
IL-1β | Elevated in AD and MS Osteoarthritis Rheumatoid arthritis | Increases oxidative stress [56] Promotes a pro-inflammatory state by favoring pro-inflammatory astrogenesis [57] Acute IL-1β exposure contributes to hematopoietic stem cells (HSC) regeneration/chronic exposure promotes uncontrolled HSC division and exhaustion of the HSC pool [58] Induces MSC migration, adhesion and leukocytes chemotaxis migration via the NF-κβ [59] (human derived MSC) and independently from the NF-κβ pathway (murine derived MSC) [60] Enhances adipose and umbilical-cord-derived MSC ability to modulate macrophages toward an anti-inflammatory phenotype [61,62] Induces neuronal differentiation of neuronal precursor cells (NPCs) via the Wnt5a/RhoA/ROCK/JNK pathway [63] |
Microglia Macrophages Astrocytes | ||
CXCL12 | MS | Facilitates neurogenesis and tissue repair. Modulates NSC survival, proliferation, and migration [64] Chronic MS lesion: Promotes remyelination via CXCR4 activation on OPCs [64] Active MS lesions: CXCL12 depolarization at the BBB enhances leukocyte adherence to vessels and promotes leukocyte infiltration, thus promoting inflammation and demyelination [65] |
Astrocytes Endothelial cells | ||
Tumor Necrosis Factor alpha (TNF-α) | AD, Stroke, PD, ALS and MS | High concentrations of TNF-α can inhibit the proliferation of NSCs and impair their differentiation into neurons. Prolonged exposure to elevated levels of TNF-α is associated with increased apoptosis (programmed cell death) in NSCs [66,67] May play a dual role in the NSC quiescent and active state [68] During NO-induced neurotoxicity, early endogeneous TNF-α was found to be neuroprotective [66] Triggers the immunosuppressive function of MSCs in inhibiting T cell proliferation [69] |
Microglia (major source), neurons and astrocytes | ||
IFN-γ | Pro-inflammatory cytokine that drives NSCs away from a neurogenic fate and promotes glial differentiation, specifically astrocytosis [70] Chronic IFN-γ exposure leads to neurogenesis inhibition and impairs brain plasticity [71,72] | |
Cytotoxic T Lymphocytes (CTLs): CD8+ T cells | ||
IL-6 | Traumatic brain injury (TBI), Stroke, AD | In TBI: In contrast to its potentially beneficial effects at acute or low concentrations, chronic or elevated levels of IL-6 can result in neuronal death, impair NSC proliferation, and favor astrogliogenesis over neurogenesis [73] In stroke: IL-6 plays a complex role in ischemic stroke, promoting post-stroke angiogenesis, neurogenesis, and long-term recovery, while reducing excitotoxicity, inflammation, and neuronal death. However, its elevated levels are also associated with stroke severity [74] Dysregulated IL-6 weakens the BBB, aggravating neuroinflammation, resulting in peripheral immune cells entering the brain and causing neuronal damage [74] |
Microglia, Astrocytes, epithelial cells and neurons | ||
Reactive Oxygen Species (ROS) and Oxidative Stress | ROS levels play a dynamic role in determining the balance between NSC self-renewal, differentiation, and quiescence: High levels of ROS can induce NSPC death and quiescence. On the other hand, elevated ROS is associated with increased production of their immediate progenitors, NSC self-renewal and neurogenesis [75], and hESCs differentiation [76] | |
Mitochondria, peroxisomes, endoplasmic reticulum, and lysosomes as well as enzymatic reactions like those of NADPH oxidases (NOXs) and cyclooxygenase |
Bioactive Substances | In Vivo or In Vitro |
---|---|
Chemical and metabolic compounds | |
DAG-MAG-βHB | in vitro: HMC3 human microglia cell line primed with Aβ and low-glucose conditions (dose: 10mM) |
Chemerin-9 | in vivo: APP/PS1 mice (dose: 30 and 60 μg/kg body weight, daily for four weeks) in vitro: primary microglial cells collected from pups on post-natal day 1 (dose: (500 nΜ for 24 h) |
PAP-1 | in vivo: MitoPark, MPTP, and αSynPFF PD mouse model (dose: daily with 40 mg/kg, intraperitoneally) in vitro: primary microglia from neonatal mica (dose: 1 µL) |
Pharmacological drugs | |
AD-16 | in vivo: 6-hydroxydopamine (6-OHDA) mouse model of PD (dose: 1 mg/kg of AD-16 administered intraperitoneally) |
NDGA | in vivo: transient MCAO mouse model (dose: 5 mg/kg or 20 mg/kg injected intraperitoneally at 3 h, 6 h, 24 h, and 48 h after middle cerebral artery occlusion). in vitro: lipopolysaccharide (LPS)-primed NLRP3 inflammasome model in primary mouse microglia cells and human primary monocytes (inhibitory concentration of 5.958 μM to 10 μM). |
BA | in vivo: MCAO mouse model (dose: BA (10 mg/kg) intraperitoneally injected 5 h after middle cerebral artery occlusion). in vitro: LPS-stimulated pro-inflammatory responses of primary microglia BV2 cells (dose: high-dose 5 or 10 μM). |
H-151 | in vivo: transient MCAO mouse model (dose: 10 mg/kg administered intraperitoneally). in vitro: primary microglia isolated from mouse pups on post-natal days 1–3 (dose: 1 μmol/L for 48 h). |
Cytokines and peptides | |
IL-10 | in vivo: PD mouse model generated following human α-synuclein (LV:SNCA) lentiviral vector injections in the SN (dose: No precise LV:μgIL10 dosage was mentioned, but a volume of 1.5 µL of LVs (5 × 109 TU/mL) was administered to each hemisphere at a controlled flow rate of 0.25 µL/min). |
MANF | in vivo: rotenone-induced PD mouse model (dose: 0.5 μL of AAV8-MANF (1 × 1013 v.g/mL) injected into the SN at a rate of 1 μL/min). in vitro: BV2 cells (dose: 250, 500 ng/mL). |
RhFGF21 | in vivo: MCAO mouse model (dose: 1.5 mg/kg for 7 consecutive days) in vitro: primary rat microglia culture and BV2 cells (dose: 100 nM). |
Plant-based compounds | |
Cedrol | in vivo: MCAO mouse model (dose: 40 mg/kg intragastrically for 3 days) in vitro: primary microglia isolated from mouse pups on post-natal day 1 (dose: 5–50 μM for 2 h) |
Ligustilide | in vivo: transient MCAO mouse model (dose: 20 and 60 mg/kg was administered via oral gavage at 1, 24, and 48 h post-ischemia/reperfusion) in vitro: primary microglia isolated from Kunming mouse pups on post-natal days 3 (dose: 2.5, 5, 10 μM for 2 h). |
FT | in vivo: spontaneous hypertensive rat (dose: 10.8 g/kg given by gavage once daily for 5 weeks) |
KAE | in vivo:
|
Vanadium-curcumin | in vitro: primary mixed glia and neuronal cells isolated from rat pups on post-natal days 6–8 (dose: 2 µM to co-cultures for 30 min). |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karam, M.; Ortega-Gascó, A.; Tornero, D. Emerging Insights into Brain Inflammation: Stem-Cell-Based Approaches for Regenerative Medicine. Int. J. Mol. Sci. 2025, 26, 3275. https://doi.org/10.3390/ijms26073275
Karam M, Ortega-Gascó A, Tornero D. Emerging Insights into Brain Inflammation: Stem-Cell-Based Approaches for Regenerative Medicine. International Journal of Molecular Sciences. 2025; 26(7):3275. https://doi.org/10.3390/ijms26073275
Chicago/Turabian StyleKaram, Marie, Alba Ortega-Gascó, and Daniel Tornero. 2025. "Emerging Insights into Brain Inflammation: Stem-Cell-Based Approaches for Regenerative Medicine" International Journal of Molecular Sciences 26, no. 7: 3275. https://doi.org/10.3390/ijms26073275
APA StyleKaram, M., Ortega-Gascó, A., & Tornero, D. (2025). Emerging Insights into Brain Inflammation: Stem-Cell-Based Approaches for Regenerative Medicine. International Journal of Molecular Sciences, 26(7), 3275. https://doi.org/10.3390/ijms26073275