Genetic and Epigenetic Adaptation Mechanisms of Sheep Under Multi-Environmental Stress Environment
Abstract
1. Introduction
2. Diversity, Distribution, and Adaptation of Sheep Breeds
3. Methods for Studying Environmental Adaptation
4. Mechanisms of Adaptation in Sheep
4.1. Mechanisms of Hypoxia Adaptation
Pouplation | Genes | Function | References |
---|---|---|---|
Tibetan sheep | EPAS1, EGLN1, HIF1A, VEGFA, EPO, HBB | EPAS1, EGLN1, and HIF1A regulate the HIF pathway; VEGFA, HBB, HBA, and EPO enhance oxygen transport | [89,95,96] |
Andean sheep | HMOX1, NOS3, VEGFA | HMOX1 and NOS3 modulate CO and NO signaling to regulate pulmonary vascular tone; VEGFA promotes vascular remodeling | [97,98] |
Ethiopian sheep | PPP1R12A, RELN, PARP2, DNAH9, SDK1, ARMC3, PRDM16, COL6A3, COL25A1 | PPP1R12A, RELN, PARP2, and DNAH9 regulate respiratory system development, oxygen transport, and cellular responses to hypoxia; SDK1, ARMC3, PRDM16, COL6A3, and COL25A1 regulate oxygen transport, thermogenesis, and vascular remodeling to enhance hypoxia adaptation | [15,99] |
Mongolian sheep | DYSF, EPAS1, JAZF1, PDGFD, NF1 | Enhance hypoxia response, vascular function, and energy metabolism for high-altitude adaptation | [33] |
4.2. Molecular Adaptations to Ultraviolet Radiation
4.3. Adaptation Mechanisms to Temperature Variations
4.3.1. Cold Adaptation Mechanisms
Pouplation | Genes | Function | References |
---|---|---|---|
Tibetan sheep | FKBP5, PLSCR4, CDH8, HSPA1A, HSPB1, HSPD1, HSF4 | FKBP5, PLSCR4, and CDH8 contribute to thermogenesis; HSPA1A, HSPB1, and HSPD1 enhance cold and hypoxia tolerance | [7,103] |
Mongolian sheep | LEP, UCP1, PGC-1α, CIDEA, COX4, PM20D1 | LEP regulates metabolism; UCP1 drives WAT browning; PGC-1α enhances mitochondrial biogenesis; CIDEA and COX4 mark WAT browning; PM20D1 contributes to alternative thermogenic pathways | [20] |
Yakut sheep | UCP1, HSP90AA1, FOXO1 | UCP1 and HSP90AA1 support thermogenesis and cold protection; FOXO1 regulates energy metabolism and antioxidant responses | [119] |
Baikal sheep | DDB2, SOCS6 | DDB2 supports DNA repair, while SOCS6 regulates metabolism for cold adaptation | [22,23] |
Tuva sheep | GLIS1, AADACL3, GPR179 | GLIS1 regulates cell differentiation, AADACL3 promotes fat deposition for energy storage, and GPR179 contributes to visual adaptation in cold environments | [22,23] |
Changthangi sheep | UCP2, UCP3 | UCP2 and UCP3 enhance thermogenesis, lipid metabolism, and oxidative stress resistance | [21] |
Altay sheep | UCP1, ADRB3, ADORA2A, ATP2A1, RYR1, IP6K1 | UCP1, ADRB3, and ADORA2A drive thermogenesis and lipid metabolism, while ATP2A1, RYR1, and IP6K1 regulate calcium signaling and energy balance, ensuring cold adaptation. | [18] |
4.3.2. Heat Adaptation Mechanisms
4.3.3. Drought Adaptation Mechanisms
4.4. Integrated Environmental Adaptation Mechanisms
5. Main Findings and Discussion
5.1. Identification and Functional Analysis of Adaptive Genes
5.2. Integration of Signaling Pathways
5.3. Epigenetic and Microbiome Regulation
6. Conclusions and Future Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
HIF-1α | Hypoxia-Inducible Factor 1-Alpha |
EPAS1 | Endothelial PAS Domain Protein 1 |
UCP1 | Uncoupling Protein 1 |
SLC4A4 | Solute Carrier Family 4 Member 4 |
GPX3 | Glutathione Peroxidase 3 |
SOCS2 | Suppressor of Cytokine Signaling 2 |
SOD1 | Superoxide Dismutase 1 |
GPX4 | Glutathione Peroxidase 4 |
HSP70 | Heat Shock Protein 70 |
BMP2 | Bone Morphogenetic Protein 2 |
BMP4 | Bone Morphogenetic Protein 4 |
VEGFA | Vascular Endothelial Growth Factor A |
EGLN1 | Egl-9 Family Hypoxia-Inducible Factor 1 |
PPARGC1A | Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-Alpha |
GDF9 | Growth Differentiation Factor 9 |
BMPR1B | Bone Morphogenetic Protein Receptor Type 1B |
FSHR | Follicle-Stimulating Hormone Receptor |
MC1R | Melanocortin 1 Receptor |
MITF | Microphthalmia-Associated Transcription Factor |
LEF1 | Lymphoid Enhancer-Binding Factor 1 |
PRDM16 | PR/SET Domain 16 |
ATP2A1 | Sarcoplasmic/Endoplasmic Reticulum Calcium ATPase 1 |
ADRB3 | Beta-3 Adrenergic Receptor |
PPARγ | Peroxisome Proliferator-Activated Receptor Gamma |
AMPK | AMP-Activated Protein Kinase |
JAK/STAT | Janus Kinase/Signal Transducers and Activators of Transcription |
NF-κB | Nuclear Factor Kappa B |
mTOR | Mechanistic Target of Rapamycin |
AQP | Aquaporin |
FOXO1 | Forkhead Box O1 |
NOS3 | Nitric Oxide Synthase 3 |
PARP2 | Poly(ADP-Ribose) Polymerase 2 |
DNAH9 | Dynein Axonemal Heavy Chain 9 |
SDK1 | Sidekick Cell Adhesion Molecule 1 |
ARMC3 | Armadillo Repeat Containing 3 |
PRDM16 | PR/SET Domain 16 |
COL6A3 | Collagen Type VI Alpha 3 Chain |
COL25A1 | Collagen Type XXV Alpha 1 Chain |
HSPA1A | Heat Shock Protein Family A (Hsp70) Member 1A |
HSPB1 | Heat Shock Protein Family B (Small) Member 1 |
HSPD1 | Heat Shock Protein Family D (Hsp60) Member 1 |
HSF4 | Heat Shock Transcription Factor 4 |
PMEL | Premelanosome Protein |
MLANA | Melan-A |
DDB2 | Damage-Specific DNA Binding Protein 2 |
SOCS6 | Suppressor of Cytokine Signaling 6 |
GLIS1 | GLIS Family Zinc Finger 1 |
AADACL3 | Arylacetamide Deacetylase Like 3 |
GPR179 | G Protein-Coupled Receptor 179 |
References
- Daly, K.G.; Mullin, V.E.; Hare, A.J.; Halpin, Á.; Mattiangeli, V.; Teasdale, M.D.; Rossi, C.; Geiger, S.; Krebs, S.; Medugorac, I.; et al. Ancient Genomics and the Origin, Dispersal, and Development of Domestic Sheep. Science 2025, 387, 492–497. [Google Scholar] [CrossRef]
- Deng, J.; Xie, X.-L.; Wang, D.-F.; Zhao, C.; Lv, F.-H.; Li, X.; Yang, J.; Yu, J.-L.; Shen, M.; Gao, L.; et al. Paternal Origins and Migratory Episodes of Domestic Sheep. Curr. Biol. 2020, 30, 4085–4095.e6. [Google Scholar] [CrossRef] [PubMed]
- Alberto, F.J.; Boyer, F.; Orozco-terWengel, P.; Streeter, I.; Servin, B.; de Villemereuil, P.; Benjelloun, B.; Librado, P.; Biscarini, F.; Colli, L.; et al. Convergent Genomic Signatures of Domestication in Sheep and Goats. Nat. Commun. 2018, 9, 813. [Google Scholar] [CrossRef] [PubMed]
- Chessa, B.; Pereira, F.; Arnaud, F.; Amorim, A.; Goyache, F.; Mainland, I.; Kao, R.R.; Pemberton, J.M.; Beraldi, D.; Stear, M.J.; et al. Revealing the History of Sheep Domestication Using Retrovirus Integrations. Science 2009, 324, 532–536. [Google Scholar] [CrossRef]
- Zeder, M.A. Domestication and Early Agriculture in the Mediterranean Basin: Origins, Diffusion, and Impact. Proc. Natl. Acad. Sci. USA 2008, 105, 11597. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Yuan, C.; An, X.; Guo, T.; Zhang, W.; Lu, Z.; Liu, J. Genome-Wide Selection Signals Reveal Candidate Genes Associated with Plateau Adaptation in Tibetan Sheep. Animals 2024, 14, 3212. [Google Scholar] [CrossRef]
- Zhang, W.; Yuan, C.; An, X.; Guo, T.; Wei, C.; Lu, Z.; Liu, J. Genomic Insights into Tibetan Sheep Adaptation to Different Altitude Environments. Int. J. Mol. Sci. 2024, 25, 12394. [Google Scholar] [CrossRef]
- Li, X.; Yang, J.; Shen, M.; Xie, X.-L.; Liu, G.-J.; Xu, Y.-X.; Lv, F.-H.; Yang, H.; Yang, Y.-L.; Liu, C.-B.; et al. Whole-Genome Resequencing of Wild and Domestic Sheep Identifies Genes Associated with Morphological and Agronomic Traits. Nat. Commun. 2020, 11, 2815. [Google Scholar] [CrossRef]
- Caiye, Z.; Song, S.; Li, M.; Huang, X.; Luo, Y.; Fang, S. Genome-Wide DNA Methylation Analysis Reveals Different Methylation Patterns in Chinese Indigenous Sheep with Different Type of Tail. Front. Vet. Sci. 2023, 10, 1125262. [Google Scholar] [CrossRef]
- Yan, Z.; Yang, J.; Wei, W.-T.; Zhou, M.-L.; Mo, D.-X.; Wan, X.; Ma, R.; Wu, M.-M.; Huang, J.-H.; Liu, Y.-J.; et al. A Time-Resolved Multi-Omics Atlas of Transcriptional Regulation in Response to High-Altitude Hypoxia across Whole-Body Tissues. Nat. Commun. 2024, 15, 3970. [Google Scholar] [CrossRef]
- Zhang, D.; Cheng, J.; Li, X.; Huang, K.; Yuan, L.; Zhao, Y.; Xu, D.; Zhang, Y.; Zhao, L.; Yang, X.; et al. Comprehensive Multi-Tissue Epigenome Atlas in Sheep: A Resource for Complex Traits, Domestication, and Breeding. iMeta 2024, 3, e254. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Lu, Y.; Gao, Z.; Yue, D.; Hong, J.; Wu, J.; Xi, D.; Deng, W.; Chong, Y. Pan-Omics in Sheep: Unveiling Genetic Landscapes. Animals 2024, 14, 273. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Chen, B.; Langda, S.; Pu, P.; Zhu, X.; Zhou, S.; Kalds, P.; Zhang, K.; Bhati, M.; Leonard, A.; et al. Multi-Omic Analyses Shed Light on The Genetic Control of High-Altitude Adaptation in Sheep. Genom. Proteom. Bioinform. 2024, 22, qzae030. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhao, Y.; Li, C.; Wang, L.; Tian, F.; Jin, H. Physiological, Immune Response, Antioxidant Capacity and Lipid Metabolism Changes in Grazing Sheep during the Cold Season. Animals 2022, 12, 2332. [Google Scholar] [CrossRef]
- Edea, Z.; Dadi, H.; Dessie, T.; Kim, K.-S. Genomic Signatures of High-Altitude Adaptation in Ethiopian Sheep Populations. Genes Genom. 2019, 41, 973–981. [Google Scholar] [CrossRef]
- Zhu, M.; Yang, Y.; Yang, H.; Zhao, Z.; Zhang, H.; Blair, H.T.; Zheng, W.; Wang, M.; Fang, C.; Yu, Q.; et al. Whole-Genome Resequencing of the Native Sheep Provides Insights into the Microevolution and Identifies Genes Associated with Reproduction Traits. BMC Genom. 2023, 24, 392. [Google Scholar] [CrossRef]
- Wei, C.; Wang, H.; Liu, G.; Zhao, F.; Kijas, J.W.; Ma, Y.; Lu, J.; Zhang, L.; Cao, J.; Wu, M.; et al. Genome-Wide Analysis Reveals Adaptation to High Altitudes in Tibetan Sheep. Sci. Rep. 2016, 6, 26770. [Google Scholar] [CrossRef]
- Jiao, D.; Ji, K.; Liu, H.; Wang, W.; Wu, X.; Zhou, J.; Zhang, Y.; Zhou, H.; Hickford, J.G.H.; Degen, A.A.; et al. Transcriptome Analysis Reveals Genes Involved in Thermogenesis in Two Cold-Exposed Sheep Breeds. Genes 2021, 12, 375. [Google Scholar] [CrossRef]
- Wang, H.; Zhong, L.; Dong, Y.; Meng, L.; Ji, C.; Luo, H.; Fu, M.; Qi, Z.; Mi, L. Whole-Genome Resequencing Reveals Domestication and Signatures of Selection in Ujimqin, Sunit, and Wu Ranke Mongolian Sheep Breeds. Anim. Biosci. 2022, 35, 1303–1313. [Google Scholar] [CrossRef]
- Zhang, Y.-M. Role of White Adipose Tissue Browning in Cold Seasonal Acclimation in Grazing Mongolian Sheep (Ovis aries). J. Therm. Biol. 2022, 109, 103333. [Google Scholar] [CrossRef]
- Ahmad, S.F.; Mehrotra, A.; Charles, S.; Ganai, N.A. Analysis of Selection Signatures Reveals Important Insights into the Adaptability of High-Altitude Indian Sheep Breed Changthangi. Gene 2021, 799, 145809. [Google Scholar] [CrossRef]
- Yudin, N.S.; Larkin, D.M. Candidate Genes for Domestication and Resistance to Cold Climate According to Whole Genome Sequencing Data of Russian Cattle and Sheep Breeds. Vavilovskii Zhurnal Genet. Sel. 2023, 27, 463–470. [Google Scholar] [CrossRef]
- Sweet-Jones, J.; Yurchenko, A.A.; Igoshin, A.V.; Yudin, N.S.; Swain, M.T.; Larkin, D.M. Resequencing and Signatures of Selection Scan in Two Siberian Native Sheep Breeds Point to Candidate Genetic Variants for Adaptation and Economically Important Traits. Anim. Genet. 2021, 52, 126–131. [Google Scholar] [CrossRef] [PubMed]
- Baazaoui, I.; Bedhiaf-Romdhani, S.; Mastrangelo, S.; Ciani, E. Genome-Wide Analyses Reveal Population Structure and Identify Candidate Genes Associated with Tail Fatness in Local Sheep from a Semi-Arid Area. Animal 2021, 15, 100193. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.X.; Feng, X.P.; Wang, H.L.; Meng, C.H.; Zhang, J.; Qian, Y.; Zhong, J.F.; Cao, S.X. Transcriptome Analysis Reveals Corresponding Genes and Key Pathways Involved in Heat Stress in Hu Sheep. Cell Stress Chaperones 2019, 24, 1045–1054. [Google Scholar] [CrossRef]
- Ahbara, A.M.; Musa, H.H.; Robert, C.; Abebe, A.; Al-Jumaili, A.S.; Kebede, A.; Latairish, S.; Agoub, M.O.; Clark, E.; Hanotte, O.; et al. Natural Adaptation and Human Selection of Northeast African Sheep Genomes. Genomics 2022, 114, 110448. [Google Scholar] [CrossRef]
- Jaiswal, L.; De, S.; Singh, R.K.; Baithalu, R.K. Molecular Characterization and Protein Structure Prediction of Heat Shock Transcriptional Factors in Goat (Capra hircus) and Sheep (Ovis aries). Anim. Biotechnol. 2020, 31, 432–439. [Google Scholar] [CrossRef]
- Singh, K.M.; Singh, S.; Ganguly, I.; Nachiappan, R.K.; Ganguly, A.; Venkataramanan, R.; Chopra, A.; Narula, H.K. Association of Heat Stress Protein 90 and 70 Gene Polymorphism with Adaptability Traits in Indian Sheep (Ovis aries). Cell Stress Chaperones 2017, 22, 675–684. [Google Scholar] [CrossRef]
- Aboul-Naga, A.M.; Alsamman, A.M.; El Allali, A.; Elshafie, M.H.; Abdelal, E.S.; Abdelkhalek, T.M.; Abdelsabour, T.H.; Mohamed, L.G.; Hamwieh, A. Genome-Wide Analysis Identified Candidate Variants and Genes Associated with Heat Stress Adaptation in Egyptian Sheep Breeds. Front. Genet. 2022, 13, 898522. [Google Scholar] [CrossRef]
- Li, Y.; Kong, L.; Deng, M.; Lian, Z.; Han, Y.; Sun, B.; Guo, Y.; Liu, G.; Liu, D. Heat Stress-Responsive Transcriptome Analysis in the Liver Tissue of Hu Sheep. Genes 2019, 10, 395. [Google Scholar] [CrossRef]
- Song, Y.; Zhao, X.; Aihemaiti, A.; Haire, A.; Gao, Y.; Niu, C.; Yang, P.; Liu, G.; Jia, G.; Wusiman, A. The Mechanism of Heat Stress Resistance During Spermatogenesis in Turpan Black Sheep. Front. Vet. Sci. 2022, 9, 846981. [Google Scholar] [CrossRef] [PubMed]
- Patiabadi, Z.; Razmkabir, M.; EsmailizadehKoshkoiyeh, A.; Moradi, M.H.; Rashidi, A.; Mahmoudi, P. Whole-Genome Scan for Selection Signature Associated with Temperature Adaptation in Iranian Sheep Breeds. PLoS ONE 2024, 19, e0309023. [Google Scholar] [CrossRef] [PubMed]
- Jin, M.; Wang, H.; Liu, G.; Lu, J.; Yuan, Z.; Li, T.; Liu, E.; Lu, Z.; Du, L.; Wei, C. Whole-Genome Resequencing of Chinese Indigenous Sheep Provides Insight into the Genetic Basis Underlying Climate Adaptation. Genet. Sel. Evol. 2024, 56, 26. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Li, W.-R.; Lv, F.-H.; He, S.-G.; Tian, S.-L.; Peng, W.-F.; Sun, Y.-W.; Zhao, Y.-X.; Tu, X.-L.; Zhang, M.; et al. Whole-Genome Sequencing of Native Sheep Provides Insights into Rapid Adaptations to Extreme Environments. Mol. Biol. Evol. 2016, 33, 2576–2592. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, J.; Tuersuntuoheti, M.; Zhou, W.; Han, Z.; Li, X.; Yang, R.; Zhang, L.; Zheng, L.; Liu, S. Landscape Genomics Reveals Adaptive Divergence of Indigenous Sheep in Different Ecological Environments of Xinjiang, China. Sci. Total Environ. 2023, 904, 166698. [Google Scholar] [CrossRef]
- Mwacharo, J.M.; Kim, E.-S.; Elbeltagy, A.R.; Aboul-Naga, A.M.; Rischkowsky, B.A.; Rothschild, M.F. Genomic Footprints of Dryland Stress Adaptation in Egyptian Fat-Tail Sheep and Their Divergence from East African and Western Asia Cohorts. Sci. Rep. 2017, 7, 17647. [Google Scholar] [CrossRef] [PubMed]
- Guo, T.; Zhao, H.; Yuan, C.; Huang, S.; Zhou, S.; Lu, Z.; Niu, C.; Liu, J.; Zhu, S.; Yue, Y.; et al. Selective Sweeps Uncovering the Genetic Basis of Horn and Adaptability Traits on Fine-Wool Sheep in China. Front. Genet. 2021, 12, 604235. [Google Scholar] [CrossRef]
- Chen, C. Searching for Intellectual Turning Points: Progressive Knowledge Domain Visualization. Proc. Natl. Acad. Sci. USA 2004, 101 (Suppl. 1), 5303–5310. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Ibekwe-SanJuan, F.; Hou, J. The Structure and Dynamics of Cocitation Clusters: A Multiple-Perspective Cocitation Analysis. J. Am. Soc. Inf. Sci. Technol. 2010, 61, 1386–1409. [Google Scholar] [CrossRef]
- Chen, C.; Song, M. Visualizing a Field of Research: A Methodology of Systematic Scientometric Reviews. PLoS ONE 2019, 14, e0223994. [Google Scholar] [CrossRef]
- Niu, Y.; Li, Y.; Zhao, Y.; He, X.; Zhao, Q.; Pu, Y.; Ma, Y.; Jiang, L. Whole-Genome Sequencing Identifies Functional Genes for Environmental Adaptation in Chinese Sheep. J. Genet. Genom. 2024, 51, 1278–1285. [Google Scholar] [CrossRef]
- Woolley, S.A.; Salavati, M.; Clark, E.L. Recent Advances in the Genomic Resources for Sheep. Mamm. Genome 2023, 34, 545–558. [Google Scholar] [CrossRef] [PubMed]
- Kijas, J.W.; Lenstra, J.A.; Hayes, B.; Boitard, S.; Porto Neto, L.R.; San Cristobal, M.; Servin, B.; McCulloch, R.; Whan, V.; Gietzen, K.; et al. Genome-Wide Analysis of the World’s Sheep Breeds Reveals High Levels of Historic Mixture and Strong Recent Selection. PLoS Biol. 2012, 10, e1001258. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, D.; Yang, C.; Chen, Y.; Teng, J.; Zhang, X.; Cao, Z.; Wei, X.; Ning, C.; Yang, Q.; et al. Population Structure and Breed Identification of Chinese Indigenous Sheep Breeds Using Whole Genome SNPs and InDels. Genet. Sel. Evol. 2024, 56, 60. [Google Scholar] [CrossRef]
- Lv, F.-H.; Agha, S.; Kantanen, J.; Colli, L.; Stucki, S.; Kijas, J.W.; Joost, S.; Li, M.-H.; Ajmone Marsan, P. Adaptations to Climate-Mediated Selective Pressures in Sheep. Mol. Biol. Evol. 2014, 31, 3324–3343. [Google Scholar] [CrossRef] [PubMed]
- Buroker, N.E.; Ning, X.-H.; Zhou, Z.-N.; Li, K.; Cen, W.-J.; Wu, X.-F.; Zhu, W.-Z.; Scott, C.R.; Chen, S.-H. EPAS1 and EGLN1 Associations with High Altitude Sickness in Han and Tibetan Chinese at the Qinghai–Tibetan Plateau. Blood Cells Mol. Dis. 2012, 49, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Qiao, L.; An, L.; Wang, W.; Liu, J.; Ren, Y.; Pan, Y.; Jing, J.; Liu, W. Transcriptome Analysis of Adipose Tissues from Two Fat-Tailed Sheep Breeds Reveals Key Genes Involved in Fat Deposition. BMC Genom. 2018, 19, 338. [Google Scholar] [CrossRef]
- Fonseca, P.A.S.; Suárez-Vega, A.; Arranz, J.J.; Gutiérrez-Gil, B. Integration of Selective Sweeps across the Sheep Genome: Understanding the Relationship Between Production and Adaptation Traits. Genet. Sel. Evol. 2024, 56, 40. [Google Scholar] [CrossRef]
- Hanrahan, J.P.; Gregan, S.M.; Mulsant, P.; Mullen, M.; Davis, G.H.; Powell, R.; Galloway, S.M. Mutations in the Genes for Oocyte-Derived Growth Factors GDF9 and BMP15 Are Associated with Both Increased Ovulation Rate and Sterility in Cambridge and Belclare Sheep (Ovis aries). Biol. Reprod. 2004, 70, 900–909. [Google Scholar] [CrossRef]
- Joost, S.; Bonin, A.; Bruford, M.W.; Després, L.; Conord, C.; Erhardt, G.; Taberlet, P. A Spatial Analysis Method (SAM) to Detect Candidate Loci for Selection: Towards a Landscape Genomics Approach to Adaptation. Mol. Ecol. 2007, 16, 3955–3969. [Google Scholar] [CrossRef]
- Rellstab, C.; Gugerli, F.; Eckert, A.J.; Hancock, A.M.; Holderegger, R. A Practical Guide to Environmental Association Analysis in Landscape Genomics. Mol. Ecol. 2015, 24, 4348–4370. [Google Scholar] [CrossRef] [PubMed]
- Chedid, M.; Jaber, L.S.; Giger-Reverdin, S.; Duvaux-Ponter, C.; Hamadeh, S.K. Review: Water Stress in Sheep Raised Under Arid Conditions. Can. J. Anim. Sci. 2014, 94, 243–257. [Google Scholar] [CrossRef]
- Gebreselassie, G.; Liang, B.; Berihulay, H.; Islam, R.; Abied, A.; Jiang, L.; Zhao, Z.; Ma, Y. Genomic Mapping Identifies Two Genetic Variants in the MC1R Gene for Coat Colour Variation in Chinese Tan Sheep. PLoS ONE 2020, 15, e0235426. [Google Scholar] [CrossRef]
- Xu, Y.-X.; Wang, B.; Jing, J.-N.; Ma, R.; Luo, Y.-H.; Li, X.; Yan, Z.; Liu, Y.-J.; Gao, L.; Ren, Y.-L.; et al. Whole-Body Adipose Tissue Multi-Omic Analyses in Sheep Reveal Molecular Mechanisms Underlying Local Adaptation to Extreme Environments. Commun. Biol. 2023, 6, 159. [Google Scholar] [CrossRef]
- Li, X.; Han, B.; Liu, D.; Wang, S.; Wang, L.; Pei, Q.; Zhang, Z.; Zhao, J.; Huang, B.; Zhang, F.; et al. Whole-Genome Resequencing to Investigate the Genetic Diversity and Mechanisms of Plateau Adaptation in Tibetan Sheep. J. Anim. Sci. Biotechnol. 2024, 15, 164. [Google Scholar] [CrossRef]
- Betancur-Murillo, C.L.; Aguilar-Marín, S.B.; Jovel, J. Prevotella: A Key Player in Ruminal Metabolism. Microorganisms 2022, 11, 1. [Google Scholar] [CrossRef]
- Yang, Z. AlphaFold2 and Its Applications in the Fields of Biology and Medicine. Signal Transduct. Target. Ther. 2023, 8, 115. [Google Scholar]
- Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J.A.; Charpentier, E. A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity. Science 2012, 337, 816–821. [Google Scholar] [CrossRef]
- Zhang, D.; Yuan, C.; An, X.; Guo, T.; Lu, Z.; Liu, J. Transcriptome and Metabolome Revealed the Effects of Hypoxic Environment on Ovarian Development of Tibetan Sheep. Genomics 2025, 117, 110973. [Google Scholar] [CrossRef]
- Tian, D.; Zhang, W.; Wang, L.; Qi, J.; Xu, T.; Zuo, M.; Han, B.; Li, X.; Zhao, K. Proteo-Transcriptomic Profiles Reveal Genetic Mechanisms Underlying Primary Hair Follicle Development in Coarse Sheep Fetal Skin. J. Proteom. 2025, 310, 105327. [Google Scholar] [CrossRef]
- Zhao, B.; Luo, H.; Huang, X.; Wei, C.; Di, J.; Tian, Y.; Fu, X.; Li, B.; Liu, G.E.; Fang, L.; et al. Integration of a Single-Step Genome-Wide Association Study with a Multi-Tissue Transcriptome Analysis Provides Novel Insights into the Genetic Basis of Wool and Weight Traits in Sheep. Genet. Sel. Evol. 2021, 53, 56. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.; Li, F.; Wei, Z.; Ei-Samahy, M.A.; Feng, X.; Yang, F.; Wang, F. Integrative Genome-Wide DNA Methylome and Transcriptome Analysis of Ovaries from Hu Sheep with High and Low Prolific. Front. Cell Dev. Biol. 2022, 10, 820558. [Google Scholar] [CrossRef]
- Zhao, B.; Luo, H.; He, J.; Huang, X.; Chen, S.; Fu, X.; Zeng, W.; Tian, Y.; Liu, S.; Li, C.; et al. Comprehensive Transcriptome and Methylome Analysis Delineates the Biological Basis of Hair Follicle Development and Wool-Related Traits in Merino Sheep. BMC Biol. 2021, 19, 197. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Liu, Y.-J.; Wei, W.-T.; Huang, Q.-X.; Zhao, L.-P.; Luo, L.-Y.; Zhu, Q.; Zhang, L.; Chen, Y.; Ren, Y.-L.; et al. Single-Cell Transcriptome and Metagenome Profiling Reveals the Genetic Basis of Rumen Functions and Convergent Developmental Patterns in Ruminants. Genome Res. 2023, 33, 1690–1707. [Google Scholar] [CrossRef] [PubMed]
- Jin, M.; Fei, X.; Li, T.; Lu, Z.; Chu, M.; Di, R.; He, X.; Wang, X.; Wei, C. Transcriptome Study Digs out BMP2 Involved in Adipogenesis in Sheep Tails. BMC Genom. 2022, 23, 457. [Google Scholar] [CrossRef]
- Su, Y.; He, S.; Chen, Q.; Zhang, H.; Huang, C.; Zhao, Q.; Pu, Y.; He, X.; Jiang, L.; Ma, Y.; et al. Integrative ATAC-Seq and RNA-Seq Analysis of Myogenic Differentiation of Ovine Skeletal Muscle Satellite Cell. Genomics 2024, 116, 110851. [Google Scholar] [CrossRef]
- He, H.; Fang, C.; Liu, L.; Li, M.; Liu, W. Environmental Driving of Adaptation Mechanism on Rumen Microorganisms of Sheep Based on Metagenomics and Metabolomics Data Analysis. Int. J. Mol. Sci. 2024, 25, 10957. [Google Scholar] [CrossRef]
- Tian, D.; Han, B.; Li, X.; Liu, D.; Zhou, B.; Zhao, C.; Zhang, N.; Wang, L.; Pei, Q.; Zhao, K. Genetic Diversity and Selection of Tibetan Sheep Breeds Revealed by Whole-Genome Resequencing. Anim. Biosci. 2023, 36, 991–1002. [Google Scholar] [CrossRef]
- Jiang, J.; Cao, Y.; Shan, H.; Wu, J.; Song, X.; Jiang, Y. The GWAS Analysis of Body Size and Population Verification of Related SNPs in Hu Sheep. Front. Genet. 2021, 12, 642552. [Google Scholar] [CrossRef]
- Bao, G.; Li, S.; Zhao, F.; Wang, J.; Liu, X.; Hu, J.; Shi, B.; Wen, Y.; Zhao, L.; Luo, Y. Comprehensive Transcriptome Analysis Reveals the Role of lncRNA in Fatty Acid Metabolism in the Longissimus Thoracis Muscle of Tibetan Sheep at Different Ages. Front. Nutr. 2022, 9, 847077. [Google Scholar] [CrossRef]
- Wang, F.; Liu, J.; Zeng, Q.; Zhuoga, D. Comparative Analysis of Long Noncoding RNA and mRNA Expression Provides Insights into Adaptation to Hypoxia in Tibetan Sheep. Sci. Rep. 2022, 12, 6597. [Google Scholar] [CrossRef]
- Fei, X.; Jin, M.; Wang, Y.; Li, T.; Lu, Z.; Yuan, Z.; Wang, H.; Lu, J.; Quan, K.; Di, R.; et al. Transcriptome Reveals Key microRNAs Involved in Fat Deposition Between Different Tail Sheep Breeds. PLoS ONE 2022, 17, e0264804. [Google Scholar] [CrossRef]
- He, Z.; Li, S.; Zhao, F.; Sun, H.; Hu, J.; Wang, J.; Liu, X.; Li, M.; Zhao, Z.; Luo, Y. LncRNA and Protein Expression Profiles Reveal Heart Adaptation to High-Altitude Hypoxia in Tibetan Sheep. Int. J. Mol. Sci. 2023, 25, 385. [Google Scholar] [CrossRef]
- Miao, X.; Luo, Q. Genome-Wide Transcriptome Analysis between Small-Tail Han Sheep and the Surabaya Fur Sheep Using High-Throughput RNA Sequencing. Reproduction 2013, 145, 587–596. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Jin, X.; Hao, Z.; Wang, J.; Hu, J.; Liu, X.; Li, S.; Zhao, F.; Li, M.; Zhao, Z.; et al. Identification and Screening of Circular RNAs During Adipogenic Differentiation of Ovine Preadipocyte by RNA-Seq. J. Anim. Sci. 2024, 102, skae042. [Google Scholar] [CrossRef] [PubMed]
- Tian, D.; Pei, Q.; Jiang, H.; Guo, J.; Ma, X.; Han, B.; Li, X.; Zhao, K. Comprehensive Analysis of the Expression Profiles of mRNA, lncRNA, circRNA, and miRNA in Primary Hair Follicles of Coarse Sheep Fetal Skin. BMC Genom. 2024, 25, 574. [Google Scholar] [CrossRef]
- Chen, S.; Liu, S.; Shi, S.; Jiang, Y.; Cao, M.; Tang, Y.; Li, W.; Liu, J.; Fang, L.; Yu, Y.; et al. Comparative Epigenomics Reveals the Impact of Ruminant-Specific Regulatory Elements on Complex Traits. BMC Biol. 2022, 20, 273. [Google Scholar] [CrossRef]
- Chemonges, S.; Gupta, R.; Mills, P.C.; Kopp, S.R.; Sadowski, P. Characterisation of the Circulating Acellular Proteome of Healthy Sheep Using LC-MS/MS-Based Proteomics Analysis of Serum. Proteome Sci. 2016, 15, 11. [Google Scholar] [CrossRef]
- Coutu, A.N.; Taurozzi, A.J.; Mackie, M.; Jensen, T.Z.T.; Collins, M.J.; Sealy, J. Palaeoproteomics Confirm Earliest Domesticated Sheep in Southern Africa ca. 2000 BP. Sci. Rep. 2021, 11, 6631. [Google Scholar] [CrossRef]
- Han, J.; Guo, T.; Yue, Y.; Lu, Z.; Liu, J.; Yuan, C.; Niu, C.; Yang, M.; Yang, B. Quantitative Proteomic Analysis Identified Differentially Expressed Proteins with Tail/Rump Fat Deposition in Chinese Thin- and Fat-Tailed Lambs. PLoS ONE 2021, 16, e0246279. [Google Scholar] [CrossRef]
- Sousa, S.D.; Lucini, L.; Ajmone-Marsan, P.; van Tilburg, M.F.; Moura, A.A. Untargeted Metabolomic Profiling of Accessory Sex Gland Fluid from Morada Nova Rams. Mol. Reprod. Dev. 2020, 87, 409–418. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Meng, Z.; Deng, J.; Sun, X.; Liu, T.; Tang, Y.; Zhang, Z.; Liu, Y.; Zhu, W. Metabonomic Identification of Serum Biomarkers Related to Heat Stress Tolerance of Sheep. Anim. Sci. J. 2022, 93, e13792. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Zhao, F.; Hu, J.; Wang, J.; Liu, X.; Zhao, Z.; Xi, Q.; Sun, H.; Li, S.; Luo, Y. Physiology and Transcriptomics Analysis Reveal the Contribution of Lungs on High-Altitude Hypoxia Adaptation in Tibetan Sheep. Front. Physiol. 2022, 13, 885444. [Google Scholar] [CrossRef]
- Zhao, P.; Li, S.; He, Z.; Zhao, F.; Wang, J.; Liu, X.; Li, M.; Hu, J.; Zhao, Z.; Luo, Y. Physiology and Proteomic Basis of Lung Adaptation to High-Altitude Hypoxia in Tibetan Sheep. Animals. 2022, 12, 2134. [Google Scholar] [CrossRef] [PubMed]
- Xi, Q.; Zhao, F.; Hu, J.; Wang, J.; Liu, X.; Dang, P.; Luo, Y.; Li, S. Expression and Variations in EPAS1 Associated with Oxygen Metabolism in Sheep. Genes 2022, 13, 1871. [Google Scholar] [CrossRef]
- Wu, D.-D.; Yang, C.-P.; Wang, M.-S.; Dong, K.-Z.; Yan, D.-W.; Hao, Z.-Q.; Fan, S.-Q.; Chu, S.-Z.; Shen, Q.-S.; Jiang, L.-P.; et al. Convergent Genomic Signatures of High-Altitude Adaptation Among Domestic Mammals. Natl. Sci. Rev. 2020, 7, 952–963. [Google Scholar] [CrossRef]
- Hu, X.-J.; Yang, J.; Xie, X.-L.; Lv, F.-H.; Cao, Y.-H.; Li, W.-R.; Liu, M.-J.; Wang, Y.-T.; Li, J.-Q.; Liu, Y.-G.; et al. The Genome Landscape of Tibetan Sheep Reveals Adaptive Introgression from Argali and the History of Early Human Settlements on the Qinghai–Tibetan Plateau. Mol. Biol. Evol. 2019, 36, 283–303. [Google Scholar] [CrossRef]
- Qi, X.; Zhang, Q.; He, Y.; Yang, L.; Zhang, X.; Shi, P.; Yang, L.; Liu, Z.; Zhang, F.; Liu, F.; et al. The Transcriptomic Landscape of Yaks Reveals Molecular Pathways for High Altitude Adaptation. Genome Biol. Evol. 2019, 11, 72–85. [Google Scholar] [CrossRef]
- Zhao, P.; Ma, X.; Ren, J.; Zhang, L.; Min, Y.; Li, C.; Lu, Y.; Ma, Y.; Hou, M.; Jia, H. Variations in HBA Gene Contribute to High-Altitude Hypoxia Adaptation via Affected O2 Transfer in Tibetan Sheep. Front. Zool. 2024, 21, 30. [Google Scholar] [CrossRef]
- Li, B.; Jia, G.; Wen, D.; Zhao, X.; Zhang, J.; Xu, Q.; Zhao, X.; Jiang, N.; Liu, Z.; Wang, Y. Rumen Microbiota of Indigenous and Introduced Ruminants and Their Adaptation to the Qinghai–Tibetan Plateau. Front. Microbiol. 2022, 13, 1027138. [Google Scholar] [CrossRef]
- Fan, Q.; Cui, X.; Wang, Z.; Chang, S.; Wanapat, M.; Yan, T.; Hou, F. Rumen Microbiota of Tibetan Sheep (Ovis aries) Adaptation to Extremely Cold Season on the Qinghai-Tibetan Plateau. Front. Vet. Sci. 2021, 8, 673822. [Google Scholar] [CrossRef]
- Chen, Q.; Sha, Y.; Liu, X.; He, Y.; Chen, X.; Yang, W.; Gao, M.; Huang, W.; Wang, J.; He, J.; et al. Unique Rumen Micromorphology and Microbiota–Metabolite Interactions: Features and Strategies for Tibetan Sheep Adaptation to the Plateau. Front. Microbiol. 2024, 15, 1471732. [Google Scholar] [CrossRef]
- Tan, W.; Proudfoot, C.; Lillico, S.G.; Whitelaw, C.B.A. Gene Targeting, Genome Editing: From Dolly to Editors. Transgenic Res. 2016, 25, 273–287. [Google Scholar] [CrossRef]
- Han, B.; Tian, D.; Li, X.; Liu, S.; Tian, F.; Liu, D.; Wang, S.; Zhao, K. Multiomics Analyses Provide New Insight into Genetic Variation of Reproductive Adaptability in Tibetan Sheep. Mol. Biol. Evol. 2024, 41, msae058. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Xi, Q.; He, Z.; Sun, H.; Li, S. Expression and Variations in EPO Associated with Oxygen Metabolism in Tibetan Sheep. Animals 2024, 14, 535. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Liu, M.; Mfoundou, J.D.L.; Wang, X. Expression and Distribution Patterns of VEGF, TGF-Β1 and HIF-1α in the Ovarian Follicles of Tibetan Sheep. Vet. Med. Sci. 2022, 8, 2223–2229. [Google Scholar] [CrossRef]
- Llanos, A.J.; Ebensperger, G.; Herrera, E.A.; Reyes, R.V.; Cabello, G.; Díaz, M.; Giussani, D.A.; Parer, J.T. The Heme Oxygenase-Carbon Monoxide System in the Regulation of Cardiorespiratory Function at High Altitude. Respir. Physiol. Neurobiol. 2012, 184, 186–191. [Google Scholar] [CrossRef]
- Parraguez, V.H.; Atlagich, M.A.; Urquieta, B.; Galleguillos, M.; De Los Reyes, M.; Kooyman, D.L.; Araneda, S.; Raggi, L.A. Expression of Vascular Endothelial Growth Factor and Endothelial Nitric Oxide Synthase Is Increased in the Placenta of Sheep at High Altitude in the Andes. Can. J. Vet. Res. 2010, 74, 193–199. [Google Scholar]
- Wiener, P.; Robert, C.; Ahbara, A.; Salavati, M.; Abebe, A.; Kebede, A.; Wragg, D.; Friedrich, J.; Vasoya, D.; Hume, D.A.; et al. Whole-Genome Sequence Data Suggest Environmental Adaptation of Ethiopian Sheep Populations. Genome Biol. Evol. 2021, 13, evab014. [Google Scholar] [CrossRef]
- Vasu, M.; Ahlawat, S.; Chhabra, P.; Sharma, U.; Arora, R.; Sharma, R.; Mir, M.A.; Singh, M.K. Genetic Insights into Fiber Quality, Coat Color and Adaptation in Changthangi and Muzzafarnagri Sheep: A Comparative Skin Transcriptome Analysis. Gene 2024, 891, 147826. [Google Scholar] [CrossRef]
- Zhang, W.; Jin, M.; Lu, Z.; Li, T.; Wang, H.; Yuan, Z.; Wei, C. Whole Genome Resequencing Reveals Selection Signals Related to Wool Color in Sheep. Animals 2023, 13, 3265. [Google Scholar] [CrossRef] [PubMed]
- Le, L.; Escobar, I.E.; Ho, T.; Lefkovith, A.J.; Latteri, E.; Haltaufderhyde, K.D.; Dennis, M.K.; Plowright, L.; Sviderskaya, E.V.; Bennett, D.C.; et al. SLC45A2 Protein Stability and Regulation of Melanosome pH Determine Melanocyte Pigmentation. Mol. Biol. Cell 2020, 31, 2687–2702. [Google Scholar] [CrossRef] [PubMed]
- An, L.; Li, Y.; Yaq, L.; Wang, Y.; Dai, Q.; Du, S.; Ru, Y.; Zhoucuo, Q.; Wang, J. Transcriptome Analysis Reveals Molecular Regulation Mechanism of Tibet Sheep Tolerance to High Altitude Oxygen Environment. Anim. Biotechnol. 2023, 34, 5097–5112. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Luosang, C.; Yuan, C.; Guo, T.; Wei, C.; Liu, J.; Lu, Z. Selection Signatures of Wool Color in Gangba Sheep Revealed by Genome-Wide SNP Discovery. BMC Genom. 2024, 25, 606. [Google Scholar] [CrossRef]
- Liang, X.; Zhang, C.; Shen, L.; Ding, L.; Guo, H. Role of Non-Coding RNAs in UV-induced Radiation Effects (Review). Exp. Ther. Med. 2024, 27, 262. [Google Scholar] [CrossRef]
- Wang, H.; Xue, L.; Li, Y.; Zhao, B.; Chen, T.; Liu, Y.; Chang, L.; Wang, J. Distribution and Expression of SLC45A2 in the Skin of Sheep with Different Coat Colors. Folia Histochem. Cytobiol. 2016, 54, 143–150. [Google Scholar] [CrossRef]
- Tearle, R.G.; Chen, T.; Brien, F.D. A 3-Bp Deletion in the SLC45A2 Gene Is Associated with Loss of Fleece Pigmentation in Black-Fleeced Suffolk Sheep. Anim. Genet. 2025, 56, e13495. [Google Scholar] [CrossRef]
- Ouhrouch, A.; Boitard, S.; Boyer, F.; Servin, B.; Da Silva, A.; Pompanon, F.; Haddioui, A.; Benjelloun, B. Genomic Uniqueness of Local Sheep Breeds From Morocco. Front. Genet. 2021, 12, 723599. [Google Scholar] [CrossRef]
- Yang, G.L.; Fu, D.L.; Lang, X.; Ylan, Y.F.; Luo, Y.Z. Genetic Variation of 5 SNPs of MC1R Gene in Chinese Indigenous Sheep Breeds. Genetika 2014, 50, 1188–1199. [Google Scholar] [CrossRef]
- Ji, K.; Jiao, D.; Yang, G.; Degen, A.A.; Zhou, J.; Liu, H.; Wang, W.; Cong, H. Transcriptome Analysis Revealed Potential Genes Involved in Thermogenesis in Muscle Tissue in Cold-Exposed Lambs. Front. Genet. 2022, 13, 1017458. [Google Scholar] [CrossRef]
- Young, J.M.; Juengel, J.L.; Dodds, K.G.; Laird, M.; Dearden, P.K.; McNeilly, A.S.; McNatty, K.P.; Wilson, T. The Activin Receptor-like Kinase 6 Booroola Mutation Enhances Suppressive Effects of Bone Morphogenetic Protein 2 (BMP2), BMP4, BMP6 and Growth and Differentiation Factor-9 on FSH Release from Ovine Primary Pituitary Cell Cultures. J. Endocrinol. 2008, 196, 251–261. [Google Scholar] [CrossRef]
- Bal, N.C.; Periasamy, M. Uncoupling of Sarcoendoplasmic Reticulum Calcium ATPase Pump Activity by Sarcolipin as the Basis for Muscle Non-Shivering Thermogenesis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2020, 375, 20190135. [Google Scholar] [CrossRef]
- Wang, S.; Gopinath, T.; Larsen, E.K.; Weber, D.K.; Walker, C.; Uddigiri, V.R.; Mote, K.R.; Sahoo, S.K.; Periasamy, M.; Veglia, G. Structural Basis for Sarcolipin’s Regulation of Muscle Thermogenesis by the Sarcoplasmic Reticulum Ca2+-ATPase. Sci. Adv. 2021, 7, eabi7154. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; He, S.; Liu, M.; Liu, G.; Yuan, Z.; Liu, C.; Zhang, X.; Zhang, N.; Li, W. Molecular Cloning, Characterization, and Expression of Sheep FGF5 Gene. Gene 2015, 555, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Xu, Y.; Jin, X.; Wang, Z.; Mao, C.; Guo, S.; Yan, S.; Shi, B. Influence of Cold Environments on Growth, Antioxidant Status, Immunity and Expression of Related Genes in Lambs. Animals 2022, 12, 2535. [Google Scholar] [CrossRef] [PubMed]
- Rawash, R.A.A.; Sharaby, M.A.; Hassan, G.E.-D.A.; Elkomy, A.E.; Hafez, E.E.; Hafsa, S.H.A.; Salem, M.M.I. Expression Profiling of HSP 70 and Interleukins 2, 6 and 12 Genes of Barki Sheep during Summer and Winter Seasons in Two Different Locations. Int. J. Biometeorol. 2022, 66, 2047–2053. [Google Scholar] [CrossRef]
- Zhang, L.; Ren, W.; Bi, Y.; Zhang, J.; Cheng, Y.; Xu, X. Effects of Different Feeding Patterns on the Rumen Bacterial Community of Tan Lambs, Based on High-Throughput Sequencing of 16S rRNA Amplicons. Front. Microbiol. 2023, 14, 1228935. [Google Scholar] [CrossRef]
- Mi, H.; Hu, F.; Gebeyew, K.; Cheng, Y.; Du, R.; Gao, M.; He, Z.; Tan, Z. Genome Wide Transcriptome Analysis Provides Bases on Hepatic Lipid Metabolism Disorder Affected by Increased Dietary Grain Ratio in Fattening Lambs. BMC Genom. 2023, 24, 364. [Google Scholar] [CrossRef]
- Zhang, X.; Ge, L.; Jin, G.; Liu, Y.; Yu, Q.; Chen, W.; Chen, L.; Dong, T.; Miyagishima, K.J.; Shen, J.; et al. Cold-Induced FOXO1 Nuclear Transport Aids Cold Survival and Tissue Storage. Nat. Commun. 2024, 15, 2859. [Google Scholar] [CrossRef]
- Lu, Z.; Chu, M.; Li, Q.; Jin, M.; Fei, X.; Ma, L.; Zhang, L.; Wei, C. Transcriptomic Analysis Provides Novel Insights into Heat Stress Responses in Sheep. Animals 2019, 9, 387. [Google Scholar] [CrossRef]
- McManus, C.M.; Faria, D.A.; Lucci, C.M.; Louvandini, H.; Pereira, S.A.; Paiva, S.R. Heat Stress Effects on Sheep: Are Hair Sheep More Heat Resistant? Theriogenology 2020, 155, 157–167. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.; Hu, J.; Wang, J.; Liu, X.; Li, S.; Luo, Y. Effect of Glycolysis and Heat Shock Proteins on Hypoxia Adaptation of Tibetan Sheep at Different Altitude. Gene 2021, 803, 145893. [Google Scholar] [CrossRef] [PubMed]
- Marai, I.F.M.; El-Darawany, A.A.; Fadiel, A.; Abdel-Hafez, M.A.M. Physiological Traits as Affected by Heat Stress in Sheep—A Review. Small Rumin. Res. 2007, 71, 1–12. [Google Scholar] [CrossRef]
- Amini, A.; Pirmohammadi, R.; Khalilvandi, H.; Mazaheri-Khameneh, R. Effects of Heat Stress on in Vivo and in Vitro Ruminal Metabolism in Fat-Tailed Ewes. Anim. Prod. Sci. 2022, 62, 860–869. [Google Scholar] [CrossRef]
- Most, M.S.; Yates, D.T. Inflammatory Mediation of Heat Stress-Induced Growth Deficits in Livestock and Its Potential Role as a Target for Nutritional Interventions: A Review. Animals 2021, 11, 3539. [Google Scholar] [CrossRef]
- Shi, L.; Xu, Y.; Mao, C.; Wang, Z.; Guo, S.; Jin, X.; Yan, S.; Shi, B. Effects of Heat Stress on Antioxidant Status and Immune Function and Expression of Related Genes in Lambs. Int. J. Biometeorol. 2020, 64, 2093–2104. [Google Scholar] [CrossRef]
- van Wettere, W.H.E.J.; Kind, K.L.; Gatford, K.L.; Swinbourne, A.M.; Leu, S.T.; Hayman, P.T.; Kelly, J.M.; Weaver, A.C.; Kleemann, D.O.; Walker, S.K. Review of the Impact of Heat Stress on Reproductive Performance of Sheep. J. Anim. Sci. Biotechnol. 2021, 12, 26. [Google Scholar] [CrossRef]
- Berihulay, H.; Abied, A.; He, X.; Jiang, L.; Ma, Y. Adaptation Mechanisms of Small Ruminants to Environmental Heat Stress. Animals 2019, 9, 75. [Google Scholar] [CrossRef]
- Belhadj Slimen, I.; Najar, T.; Ghram, A.; Abdrrabba, M. Heat Stress Effects on Livestock: Molecular, Cellular and Metabolic Aspects, a Review. J. Anim. Physiol. Anim. Nutr. 2016, 100, 401–412. [Google Scholar] [CrossRef]
- Kim, H.R.; Seong, P.; Seol, K.-H.; Park, J.-E.; Kim, H.; Park, W.; Cho, J.H.; Lee, S.D. Effects of Heat Stress on Growth Performance, Physiological Responses, and Carcass Traits in Broilers. J. Therm. Biol. 2024, 127, 103994. [Google Scholar] [CrossRef]
- Wei, C.; Wang, H.; Liu, G.; Wu, M.; Cao, J.; Liu, Z.; Liu, R.; Zhao, F.; Zhang, L.; Lu, J.; et al. Genome-Wide Analysis Reveals Population Structure and Selection in Chinese Indigenous Sheep Breeds. BMC Genom. 2015, 16, 194. [Google Scholar] [CrossRef]
- Tsartsianidou, V.; Sánchez-Molano, E.; Kapsona, V.V.; Basdagianni, Z.; Chatziplis, D.; Arsenos, G.; Triantafyllidis, A.; Banos, G. A Comprehensive Genome-Wide Scan Detects Genomic Regions Related to Local Adaptation and Climate Resilience in Mediterranean Domestic Sheep. Genet. Sel. Evol. 2021, 53, 90. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Li, X.; Wu, Z.; Zhang, G.; Wang, N.; Dou, M.; Liu, S.; Yang, C.; Meng, G.; Sun, H.; et al. Convergent Molecular Evolution of Thermogenesis and Circadian Rhythm in Arctic Ruminants. Proc. R. Soc. B Biol. Sci. 2023, 290, 20230538. [Google Scholar] [CrossRef]
- Ahmad, H.I.; Mahmood, S.; Hassan, M.; Sajid, M.; Ahmed, I.; Shokrollahi, B.; Shahzad, A.H.; Abbas, S.; Raza, S.; Komal, K.; et al. Genomic Insights into Yak (Bos grunniens) Adaptations for Nutrient Assimilation in High-Altitudes. Sci. Rep. 2024, 14, 5650. [Google Scholar]
- Arero, G.B.; Ozmen, O. Effects of Heat Stress on Reproduction and Gene Expression in Sheep. Anim. Reprod. 2025, 22, e20240067. [Google Scholar] [CrossRef]
- Rochus, C.M.; Westberg Sunesson, K.; Jonas, E.; Mikko, S.; Johansson, A.M. Mutations in ASIP and MC1R: Dominant Black and Recessive Black Alleles Segregate in Native Swedish Sheep Populations. Anim. Genet. 2019, 50, 712–717. [Google Scholar] [CrossRef]
- Bertolini, F.; Moscatelli, G.; Schiavo, G.; Bovo, S.; Ribani, A.; Ballan, M.; Bonacini, M.; Prandi, M.; Dall’Olio, S.; Fontanesi, L. Signatures of Selection Are Present in the Genome of Two Close Autochthonous Cattle Breeds Raised in the North of Italy and Mainly Distinguished for Their Coat Colours. J. Anim. Breed. Genet. 2022, 139, 307–319. [Google Scholar] [CrossRef]
- Lee, F.S. Hypoxia Inducible Factor Pathway Proteins in High-Altitude Mammals. Trends Biochem. Sci. 2024, 49, 79–92. [Google Scholar] [CrossRef]
- Li, Y.; Yang, Y.; Yu, B.; Gao, R.; Wang, X. Transcriptome and Metabolome Analyses Reveal High-Altitude Adaptation Mechanism of Epididymis Sperm Maturation in Tibetan Sheep. Animals 2024, 14, 3117. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.; Cao, Y.; Xiao, C.; Liu, Y.; Jin, H.; Cao, Y. Effect of the ACAA1 Gene on Preadipocyte Differentiation in Sheep. Front. Genet. 2021, 12, 649140. [Google Scholar] [CrossRef]
- Chen, B.; Yuan, C.; Guo, T.; Liu, J.; Yang, B.; Lu, Z. Molecular Mechanism of m6A Methylation Modification Genes METTL3 and FTO in Regulating Heat Stress in Sheep. Int. J. Mol. Sci. 2023, 24, 11926. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.; Wang, L.; Xiao, C.; Zhou, M.; Li, M.; Li, H. miR136 Regulates Proliferation and Differentiation of Small Tail Han Sheep Preadipocytes. Adipocyte 2023, 12, 2173966. [Google Scholar] [CrossRef]
- Huang, Z.; Wang, J.; Qi, D.; Li, X.; Wang, J.; Zhou, J.; Ruan, Y.; Laer, Y.; Baqian, Z.; Yang, C. Uncovering the Genetic Diversity and Adaptability of Butuo Black Sheep through Whole-Genome Re-Sequencing. PLoS ONE 2024, 19, e0303419. [Google Scholar] [CrossRef] [PubMed]
- He, T.; Guo, W.; Yang, G.; Su, H.; Dou, A.; Chen, L.; Ma, T.; Su, J.; Liu, M.; Su, B.; et al. A Single-Cell Atlas of an Early Mongolian Sheep Embryo. Vet. Sci. 2023, 10, 543. [Google Scholar] [CrossRef]
- Gera, R.; Arora, R.; Chhabra, P.; Sharma, U.; Parsad, R.; Ahlawat, S.; Mir, M.A.; Singh, M.K.; Kumar, R. Exploring Transcriptomic Mechanisms Underlying Pulmonary Adaptation to Diverse Environments in Indian Rams. Mol. Biol. Rep. 2024, 51, 1111. [Google Scholar] [CrossRef] [PubMed]
- Viola, I.; Accornero, P.; Manenti, I.; Miretti, S.; Baratta, M.; Toschi, P. mTOR Is an Essential Gate in Adapting the Functional Response of Ovine Trophoblast Cells Under Stress-Inducing Environments. Placenta 2024, 158, 14–22. [Google Scholar] [CrossRef]
- Pan, Z.; Wang, X.; Di, R.; Liu, Q.; Hu, W.; Cao, X.; Guo, X.; He, X.; Lv, S.; Li, F.; et al. A 5-Methylcytosine Site of Growth Differentiation Factor 9 (GDF9) Gene Affects Its Tissue-Specific Expression in Sheep. Animals 2018, 8, 200. [Google Scholar] [CrossRef]
- Wang, W.; Liu, S.; Li, F.; Pan, X.; Li, C.; Zhang, X.; Ma, Y.; La, Y.; Xi, R.; Li, T. Polymorphisms of the Ovine BMPR-IB, BMP-15 and FSHR and Their Associations with Litter Size in Two Chinese Indigenous Sheep Breeds. Int. J. Mol. Sci. 2015, 16, 11385. [Google Scholar] [CrossRef]
Research Method | Combined Description | References |
---|---|---|
Genome + Transcriptome | Identified genes linked to morphological and agronomic traits | [8] |
Transcriptome + Metabolome | Genetic and metabolic mechanisms of Tibetan sheep’s high-altitude adaptation | [59] |
Transcriptome + Proteomics | DEPs and transcriptomic profiles reveal hair follicle development mechanisms | [60] |
GWAS + Transcriptomics | Multi-tissue transcriptomes reveal the genetic basis of wool and growth traits | [61] |
Genome + Transcriptome + Population Genomics | β-globin A boosts O2 affinity; EGLN1 aids hypoxia adaptation | [13] |
Genome + Transcriptome + Land Genomics | Selective sweeps reveal drought, hypoxia, and cold tolerance in Xinjiang | [35] |
Epigenomics + Transcriptome | DNA methylation regulates ovarian gene expression and prolificacy in Hu sheep | [62] |
Transcriptome + Epigenomics + GWAS | Gene regulation and methylation shape wool traits; epigenome reveals domestication | [11,63] |
Single-cell Transcriptomics + Metagenomics | Rumen microbiome reveals the genetic basis of fermentation | [64] |
Transcriptomics + Metabolomics | DEGs and pathways in sheep fat tails reveal BMP2’s role in adipogenesis and metabolism regulation | [65] |
ATAC-seq + RNA-seq | Key pathways and genes regulating SMSC differentiation | [66] |
WGS + RNA-Seq + ATAC-Seq + scRNA-Seq | Time-resolved multi-omics analysis reveals gene regulation in response to high-altitude hypoxia | [10] |
Metagenomics + Metabolomics | 3580 microorganisms, 732 metabolites identified; key metabolites: 4,6-isocanedione; adaptation in Hu sheep | [67] |
WGS | Discovered adaptive mutations in EPAS1, EGLN1 genes | [17,33,68] |
GWAS | SNPs associated with body size traits in Hu sheep were identified and verified through luciferase reporter assays | [69] |
Lnc RNA-miRNA | Highlighted hypoxia-induced lncRNA and miRNA roles | [70,71,72,73] |
mRNA | Reveals prolificacy-related genes in high- and low-fecundity | [74] |
circRNAs-miRNAs-mRNA | Regulates ovine hair follicle morphogenesis and adipogenic differentiation | [75,76] |
ChIP-Seq + Methylation profiling | Unveiled epigenetic mechanisms in environmental adaptation | [77] |
LC-MS/MS proteomics | Identified 245 proteins in ovine serum, used ZooMS marker for early domesticated sheep | [78,79] |
DEPs in tail adipose | Regulate fat deposition via metabolic and PPAR pathways. | [80] |
GC-MS + LC-MS metabolomics | 372 metabolites identified in AGF; key pathways include amino acid and CoA metabolism | [81] |
metabolites | 107 metabolites; Hu sheep show better heat tolerance with key biomarkers | [82] |
Pouplation | Genes | Function | References |
---|---|---|---|
Changthangi sheep | TYR, TYRP1, DCT, SLC45A2, PMEL, MLANA | Regulate melanin biosynthesis and pigmentation, enhancing UV protection in high-altitude | [21,100] |
Tibetan sheep | MC1R, LEF1, MITF, GPX1, COL3A1, and CYPI7B1 | MC1R and MITF control pigmentation; LEF1, GPX1, and CYPI7B1 enhance UV protection; COL3A1 maintains skin elasticity and repairs UV damage | [17,68,104,109] |
Ouled Jellal sheep | SDF4 | SDF4 protects against UV damage and supports cell proliferation | [108] |
Egyptian fat-tail sheep | RCC3, TGM3, RAD54L, CHEK2, MUTYH, CMPK1, TP53INP1 and PRDX1 | UV adaptation, facilitating skin barrier formation, DNA repair, and oxidative stress defense under prolonged UV exposure | [36] |
Pouplation | Genes | Function | References |
---|---|---|---|
Indian sheep | HSP70, HSP90 | Enhance thermotolerance by stabilizing proteins and reducing heat stress | [28] |
Turpan black sheep | SYCP2, TDRD9, BRDT, CEP120, BRCA1 | Regulate spermatogenesis and DNA repair | [31] |
Hu sheep | Lnc_001782, APOA4, APOA5, oar-miR-411a-5p, SMAD2 | Lnc_001782 regulates APOA4 and APOA5 in lipid metabolism and liver function under heat stress, while oar-miR-411a-5p targets SMAD2 to promote muscle growth and heat tolerance | [30] |
Egyptian Sheep | MYO5A, PRKG1, GSTCD, RTN1, ST3GAL3, PLCB1, STEAP3, KSR2, UNC13C, PEBP4, GPAT2 | MYO5A, PRKG1, GSTCD, RTN1 regulate thermoregulation and oxidative stress; ST3GAL3 enhances heat tolerance; PLCB1, STEAP3, KSR2, UNC13C, PEBP4, GPAT2 support metabolic and stress adaptation in hot climates | [29] |
Macheri sheep | HSF-2, HSF-5 | Regulate heat shock response and protein homeostasis | [27] |
Iranian sheep | MC1R, FOXN1, AZIN2, PPP1CC, CHMP1A | Regulate coat color, cardiovascular function, and heat adaptation | [32] |
Pouplation | Genes | Function | References |
---|---|---|---|
Kazakh sheep | TBXT, TG, HOXA1 | Regulate skeletal and developmental adaptations for drought-prone environments | [33] |
Egyptian fat-tail sheep | BMP7, MKNK1, PCK1, ACAA2, MAP3K2, PRDX1, TP53INP1 | These genes are crucial for water conservation, metabolic adaptation, and oxidative stress resistance, ensuring survival in dryland environments | [36] |
Sheep in the Taklimakan desert region | GPX3, GPX7, ANXA6, PTGS2, CPA3, CPVL, ECE1, CALM2, CACNA2D1, KCNJ5, COX2, AP1A, SLC4A4, CPA3, CPB1 | These genes collectively regulate water–salt metabolism, renal vasodilation, oxidative stress resistance, osmotic balance, and nutrient absorption, enhancing sheep adaptation to desert environments. | [34] |
Indigenous sheep in Xinjiang | SUCLG2, BMP2, TSHR, BANK1 | SUCLG2 and BMP2 support metabolic and skeletal adaptations to drought, while TSHR and BANK1 enhance heat tolerance and feed efficiency. | [35] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, L.; Tang, L.; Zhang, K.; Nie, H.; Gou, X.; Kong, X.; Deng, W. Genetic and Epigenetic Adaptation Mechanisms of Sheep Under Multi-Environmental Stress Environment. Int. J. Mol. Sci. 2025, 26, 3261. https://doi.org/10.3390/ijms26073261
Zhu L, Tang L, Zhang K, Nie H, Gou X, Kong X, Deng W. Genetic and Epigenetic Adaptation Mechanisms of Sheep Under Multi-Environmental Stress Environment. International Journal of Molecular Sciences. 2025; 26(7):3261. https://doi.org/10.3390/ijms26073261
Chicago/Turabian StyleZhu, Li, Lin Tang, Kang Zhang, Hongyu Nie, Xiao Gou, Xiaoyan Kong, and Weidong Deng. 2025. "Genetic and Epigenetic Adaptation Mechanisms of Sheep Under Multi-Environmental Stress Environment" International Journal of Molecular Sciences 26, no. 7: 3261. https://doi.org/10.3390/ijms26073261
APA StyleZhu, L., Tang, L., Zhang, K., Nie, H., Gou, X., Kong, X., & Deng, W. (2025). Genetic and Epigenetic Adaptation Mechanisms of Sheep Under Multi-Environmental Stress Environment. International Journal of Molecular Sciences, 26(7), 3261. https://doi.org/10.3390/ijms26073261