Repulsive Guidance Molecule-A as a Therapeutic Target Across Neurological Disorders: An Update
Abstract
1. Introduction
2. Stroke
3. Spinal Cord Injury
4. Multiple Sclerosis
5. Neuromyelitis Optica Spectrum Disorder
6. Neurodegenerative Disorders
7. Vascular Dementia
8. Auditory Neuropathy
9. Epilepsy
10. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, L.; Tang, S.; Ma, Y.; Liu, J.; Monnier, P.; Li, H.; Zhang, R.; Yu, G.; Zhang, M.; Li, Y.; et al. RGMa Participates in the Blood-Brain Barrier Dysfunction Through BMP/BMPR/YAP Signaling in Multiple Sclerosis. Front. Immunol. 2022, 13, 861486. [Google Scholar]
- Tang, J.; Zeng, X.; Li, H.; Ju, L.; Feng, J.; Yang, J. Repulsive Guidance Molecule-a and Central Nervous System Diseases. BioMed Res. Int. 2021, 2021, 5532116. [Google Scholar]
- Parray, A.; Akhtar, N.; Pir, G.J.; Pananchikkal, S.V.; Ayadathil, R.; Mir, F.A.; Francis, R.; Own, A.; Shuaib, A. Increase in repulsive guidance molecule-a (RGMa) in lacunar and cortical stroke patients is related to the severity of the insult. Sci. Rep. 2022, 12, 20788. [Google Scholar]
- Kubo, T.; Tokita, S.; Yamashita, T. Repulsive guidance molecule-a and demyelination: Implications for multiple sclerosis. J. Neuroimmune Pharmacol. 2012, 7, 524–528. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, H.; Ninomiya, T.; Yamashita, T.; Takada, M. Treatment with the Neutralizing Antibody Against Repulsive Guidance Molecule-a Promotes Recovery From Impaired Manual Dexterity in a Primate Model of Spinal Cord Injury. Cereb. Cortex 2019, 29, 561–572. [Google Scholar]
- Muramatsu, R.; Kubo, T.; Mori, M.; Nakamura, Y.; Fujita, Y.; Akutsu, T.; Okuno, T.; Taniguchi, J.; Kumanogoh, A.; Yoshida, M.; et al. RGMa modulates T cell responses and is involved in autoimmune encephalomyelitis. Nat. Med. 2011, 17, 488–494. [Google Scholar]
- Demicheva, E.; Cui, Y.F.; Bardwell, P.; Barghorn, S.; Kron, M.; Meyer, A.H.; Schmidt, M.; Gerlach, B.; Leddy, M.; Barlow, E.; et al. Targeting repulsive guidance molecule A to promote regeneration and neuroprotection in multiple sclerosis. Cell Rep. 2015, 10, 1887–1898. [Google Scholar]
- Tanabe, S.; Fujita, Y.; Ikuma, K.; Yamashita, T. Inhibiting repulsive guidance molecule-a suppresses secondary progression in mouse models of multiple sclerosis. Cell Death Dis. 2018, 9, 1061. [Google Scholar] [CrossRef]
- Hirata, T.; Itokazu, T.; Sasaki, A.; Sugihara, F.; Yamashita, T. Humanized Anti-RGMa Antibody Treatment Promotes Repair of Blood-Spinal Cord Barrier Under Autoimmune Encephalomyelitis in Mice. Front. Immunol. 2022, 13, 870126. [Google Scholar] [CrossRef]
- Kalluri, H.V.; Rosebraugh, M.R.; Misko, T.P.; Ziemann, A.; Liu, W.; Cree, B.A.C. Phase 1 Evaluation of Elezanumab (Anti-Repulsive Guidance Molecule A Monoclonal Antibody) in Healthy and Multiple Sclerosis Participants. Ann. Neurol. 2023, 93, 285–296. [Google Scholar]
- Cree, B.A.; Ziemann, A.; Pfleeger, K.; Schwefel, B.; Wundes, A.; Freedman, M.S. Safety and Efficacy of Elezanumab in Relapsing and Progressive Forms of Multiple Sclerosis: Results from Two Phase 2 Studies, RADIUS-R and RADIUS-P | Cochrane Library. 2021. Available online: https://www.cochranelibrary.com/es/central/doi/10.1002/central/CN-02342859/full (accessed on 19 February 2025).
- Harada, K.; Fujita, Y.; Okuno, T.; Tanabe, S.; Koyama, Y.; Mochizuki, H.; Yamashita, T. Inhibition of RGMa alleviates symptoms in a rat model of neuromyelitis optica. Sci. Rep. 2018, 8, 34. [Google Scholar] [CrossRef] [PubMed]
- Iwamoto, S.; Itokazu, T.; Sasaki, A.; Kataoka, H.; Tanaka, S.; Hirata, T.; Miwa, K.; Suenaga, T.; Takai, Y.; Misu, T.; et al. RGMa Signal in Macrophages Induces Neutrophil-Related Astrocytopathy in NMO. Ann. Neurol. 2022, 91, 532–547. [Google Scholar] [CrossRef]
- Katsu, M.; Sekine-Tanaka, M.; Tanaka, M.; Horai, Y.; Akatsuka, A.; Suga, M.; Kiyohara, K.; Fujita, T.; Sasaki, A.; Yamashita, T. Inhibition of repulsive guidance molecule-a ameliorates compromised blood-spinal cord barrier integrity associated with neuromyelitis optica in rats. J. Neuroimmunol. 2024, 388, 578297. [Google Scholar] [CrossRef]
- Shabanzadeh, A.P.; Tassew, N.G.; Szydlowska, K.; Tymianski, M.; Banerjee, P.; Vigouroux, R.J.; Eubanks, J.H.; Huang, L.; Geraerts, M.; Koeberle, P.D.; et al. Uncoupling Neogenin association with lipid rafts promotes neuronal survival and functional recovery after stroke. Cell Death Dis. 2015, 6, e1744. [Google Scholar] [CrossRef] [PubMed]
- Cheng, R.; Luo, X.; Wu, X.; Wang, Z.; Chen, Z.; Zhang, S.; Xiao, H.; Zhong, J.; Zhang, R.; Cao, Y.; et al. Artificial Microglia Nanoplatform Loaded with Anti-RGMa in Acoustic/Magnetic Feld for Recanalization and Neuroprotection in Acute Ischemic Stroke. Adv. Sci. 2024, 11, e2410529. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, S.; Cheng, R.; Jiang, A.; Qin, X. Knockdown of RGMA improves ischemic stroke via Reprogramming of Neuronal Metabolism. Free Radic Biol. Med. 2024, 218, 41–56. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, P.B.; Mothe, A.; Levy, A.; Krakovsky, M.; Hooker, B.A.; Zhang, X.; Mollon, J.; Mordashova, Y.; Droescher, M.; Weiss, S.; et al. Neutralizing RGMa with Elezanumab Promotes Cerebroprotection and Recovery in Rabbit Middle Cerebral Artery Occlusion. Transl. Stroke Res. 2024, 15, 805–817. [Google Scholar] [CrossRef]
- Mothe, A.J.; Tassew, N.G.; Shabanzadeh, A.P.; Penheiro, R.; Vigouroux, R.J.; Huang, L.; Grinnell, C.; Cui, Y.-F.; Fung, E.; Monnier, P.P.; et al. RGMa inhibition with human monoclonal antibodies promotes regeneration, plasticity and repair, and attenuates neuropathic pain after spinal cord injury. Sci. Rep. 2017, 7, 10529. [Google Scholar] [CrossRef]
- Mothe, A.J.; Coelho, M.; Huang, L.; Monnier, P.P.; Cui, Y.F.; Mueller, B.K.; Jacobson, P.B.; Tator, C.H. Delayed administration of the human anti-RGMa monoclonal antibody elezanumab promotes functional recovery including spontaneous voiding after spinal cord injury in rats. Neurobiol. Dis. 2020, 143, 104995. [Google Scholar] [CrossRef]
- Mothe, A.J.; Jacobson, P.B.; Caprelli, M.; Ulndreaj, A.; Rahemipour, R.; Huang, L.; Monnier, P.P.; Fehlings, M.G.; Tator, C.H. Delayed administration of elezanumab, a human anti-RGMa neutralizing monoclonal antibody, promotes recovery following cervical spinal cord injury. Neurobiol. Dis. 2022, 172, 105812. [Google Scholar] [CrossRef]
- Nakanishi, T.; Fujita, Y.; Tanaka, T.; Yamashita, T. Anti-repulsive guidance molecule-a antibody treatment and repetitive transcranial magnetic stimulation have synergistic effects on motor recovery after spinal cord injury. Neurosci. Lett. 2019, 709, 134329. [Google Scholar] [PubMed]
- Jacobson, P.B.; Goody, R.; Lawrence, M.; Mueller, B.K.; Zhang, X.; Hooker, B.A.; Pfleeger, K.; Ziemann, A.; Locke, C.; Barraud, Q.; et al. Elezanumab, a human anti-RGMa monoclonal antibody, promotes neuroprotection, neuroplasticity, and neurorecovery following a thoracic hemicompression spinal cord injury in non-human primates. Neurobiol. Dis. 2021, 155, 105385. [Google Scholar]
- Yamanaka, H.; Takata, Y.; Nakagawa, H.; Isosaka-Yamanaka, T.; Yamashita, T.; Takada, M. An enhanced therapeutic effect of repetitive transcranial magnetic stimulation combined with antibody treatment in a primate model of spinal cord injury. PLoS ONE 2021, 16, e0252023. [Google Scholar]
- Nevoux, J.; Alexandru, M.; Bellocq, T.; Tanaka, L.; Hayashi, Y.; Watabe, T.; Lahlou, H.; Tani, K.; Edge, A.S.B. An antibody to RGMa promotes regeneration of cochlear synapses after noise exposure. Sci. Rep. 2021, 11, 2937. [Google Scholar]
- Yamamoto, M.; Itokazu, T.; Uno, H.; Maki, T.; Shibuya, N.; Yamashita, T. Anti-RGMa neutralizing antibody ameliorates vascular cognitive impairment in mice. Neurotherapeutics 2024, 22, e00500. [Google Scholar]
- Oda, W.; Fujita, Y.; Baba, K.; Mochizuki, H.; Niwa, H.; Yamashita, T. Inhibition of repulsive guidance molecule-a protects dopaminergic neurons in a mouse model of Parkinson’s disease. Cell Death Dis. 2021, 12, 181. [Google Scholar]
- Shimizu, M.; Shiraishi, N.; Tada, S.; Sasaki, T.; Beck, G.; Nagano, S.; Kinoshita, M.; Sumi, H.; Sugimoto, T.; Ishida, Y.; et al. RGMa collapses the neuronal actin barrier against disease-implicated protein and exacerbates ALS. Sci. Adv. 2023, 9, eadg3193. [Google Scholar]
- Huang, L.; Fung, E.; Bose, S.; Popp, A.; Böser, P.; Memmott, J.; Kutskova, Y.A.; Miller, R.; Tarcsa, E.; Klein, C.; et al. Elezanumab, a clinical stage human monoclonal antibody that selectively targets repulsive guidance molecule A to promote neuroregeneration and neuroprotection in neuronal injury and demyelination models. Neurobiol. Dis. 2021, 159, 105492. [Google Scholar] [CrossRef]
- Chen, L.; Gao, B.; Fang, M.; Li, J.; Mi, X.; Xu, X.; Wang, W.; Gu, J.; Tang, B.; Zhang, Y.; et al. Lentiviral Vector-Induced Overexpression of RGMa in the Hippocampus Suppresses Seizures and Mossy Fiber Sprouting. Mol. Neurobiol. 2017, 54, 1379–1391. [Google Scholar] [CrossRef]
- Song, M.; Tian, F.; Xia, H.; Xie, Y. Repulsive guidance molecule a suppresses seizures and mossy fiber sprouting via the FAK-p120RasGAP-Ras signaling pathway. Mol. Med. Rep. 2019, 19, 3255–3262. [Google Scholar] [CrossRef]
- Feng, Y.; Duan, C.; Luo, Z.; Xiao, W.; Tian, F. Silencing miR-20a-5p inhibits axonal growth and neuronal branching and prevents epileptogenesis through RGMa-RhoA-mediated synaptic plasticity. J. Cell. Mol. Med. 2020, 24, 10573–10588. [Google Scholar] [CrossRef] [PubMed]
- Qin, C.; Zhou, L.Q.; Ma, X.T.; Hu, Z.W.; Yang, S.; Chen, M.; Bosco, D.B.; Wu, L.-J.; Tian, D.-S. Dual Functions of Microglia in Ischemic Stroke. Neurosci. Bull. 2019, 35, 921–933. [Google Scholar] [CrossRef] [PubMed]
- Haruwaka, K.; Ikegami, A.; Tachibana, Y.; Ohno, N.; Konishi, H.; Hashimoto, A.; Matsumoto, M.; Kato, D.; Ono, R.; Kiyama, H.; et al. Dual microglia effects on blood brain barrier permeability induced by systemic inflammation. Nat. Commun. 2019, 10, 5816. [Google Scholar]
- Jiang, X.; Andjelkovic, A.V.; Zhu, L.; Yang, T.; Bennett, M.V.L.; Chen, J.; Keep, R.F.; Shi, Y. Blood-brain barrier dysfunction and recovery after ischemic stroke. Prog. Neurobiol. 2018, 163–164, 144–171. [Google Scholar]
- Pekny, M.; Pekna, M. Astrocyte reactivity and reactive astrogliosis: Costs and benefits. Physiol. Rev. 2014, 94, 1077–1098. [Google Scholar]
- Shen, G.; Xiao, H.; Huang, S.; Yuan, X.; Rongrong, Z.; Ma, Y.; Qin, X. Knockdown of repulsive guidance molecule a promotes polarization of microglia into an anti-inflammatory phenotype after oxygen-glucose deprivation-reoxygenation in vitro. Neurochem. Int. 2023, 170, 105546. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Wu, Y.; Xie, F.; Zhong, Y.; Wang, Y.; Xu, M.; Feng, J.; Charish, J.; Monnier, P.P.; Qin, X. RGMa mediates reactive astrogliosis and glial scar formation through TGFβ1/Smad2/3 signaling after stroke. Cell Death Differ. 2018, 25, 1503–1516. [Google Scholar]
- Li, M.; Wen, Y.; Zhang, R.; Xie, F.; Zhang, G.; Qin, X. Adenoviral vector-induced silencing of RGMa attenuates blood-brain barrier dysfunction in a rat model of MCAO/reperfusion. Brain Res. Bull. 2018, 142, 54–62. [Google Scholar]
- A Safety and Efficacy Study of Intravenous (IV) Elezanumab Assessing Change in Neurologic Function in Adult Participants with Acute Ischemic Stroke | ClinicalTrials.gov. Available online: https://clinicaltrials.gov/study/NCT04309474 (accessed on 19 February 2025).
- Kitayama, M.; Ueno, M.; Itakura, T.; Yamashita, T. Activated microglia inhibit axonal growth through RGMa. PLoS ONE 2011, 6, e25234. [Google Scholar]
- Safety and Efficacy Study of Intravenous (IV) Administration of Elezanumab to Assess Change in Upper Extremity Motor Score (UEMS) in Adult Participants with Acute Traumatic Cervical Spinal Cord Injury (SCI) | ClinicalTrials.gov. Available online: https://clinicaltrials.gov/study/NCT04295538 (accessed on 19 February 2025).
- Giovannoni, G.; Hawkes, C.H.; Lechner-Scott, J.; Levy, M.; Yeh, E.A. Smouldering-associated worsening or SAW: The next therapeutic challenge in managing multiple sclerosis. Mult. Scler. Relat. Disord. 2024, 92, 106194. [Google Scholar]
- Ciccarelli, O.; Barkhof, F.; Calabrese, M.; De Stefano, N.; Eshaghi, A.; Filippi, M.; Gasperini, C.; Granziera, C.; Kappos, L.; Rocca, M.A.; et al. Using the Progression Independent of Relapse Activity Framework to Unveil the Pathobiological Foundations of Multiple Sclerosis. Neurology 2024, 103, e209444. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Gao, Y.; Zhai, Z.; Zhang, S.; Shan, F.; Feng, J. Repulsive guidance molecule a blockade exerts the immunoregulatory function in DCs stimulated with ABP and LPS. Hum. Vaccin Immunother. 2016, 12, 2169–2180. [Google Scholar] [CrossRef]
- Nohra, R.; Beyeen, A.D.; Guo, J.P.; Khademi, M.; Sundqvist, E.; Hedreul, M.T.; Sellebjerg, F.; Smestad, C.; Oturai, A.B.; Harbo, H.F.; et al. RGMA and IL21R show association with experimental inflammation and multiple sclerosis. Genes Immun. 2010, 11, 279–293. [Google Scholar] [CrossRef] [PubMed]
- Ziemann, A.; Rosebraugh, M.; Barger, B.; Cree, B. A Phase 1, Multiple-dose Study of Elezanumab (ABT-555) in Patients with Relapsing Forms of Multiple Sclerosis (S56.001). Neurology 2019, 92 (Suppl. S15), S56-001. [Google Scholar] [CrossRef]
- Cree, B.; Pfleeger, K.; Schwefel, B.; Ziemann, A. Investigating the Safety and Efficacy of Elezanumab in Two Phase 2 Studies Enrolling Patients with Different Disease Courses of Multiple Sclerosis (1219). Neurology 2020, 94 (Suppl. S15), 1219. [Google Scholar] [CrossRef]
- Wingerchuk, D.M.; Banwell, B.; Bennett, J.L.; Cabre, P.; Carroll, W.; Chitnis, T.; de Seze, J.; Fujihara, K.; Greenberg, B.; Jacob, A.; et al. International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology 2015, 85, 177–189. [Google Scholar] [CrossRef]
- Tackley, G.; Vecchio, D.; Hamid, S.; Jurynczyk, M.; Kong, Y.; Gore, R.; Mutch, K.; Woodhall, M.; Waters, P.; Vincent, A.; et al. Chronic neuropathic pain severity is determined by lesion level in aquaporin 4-antibody-positive myelitis. J. Neurol. Neurosurg. Psychiatry 2017, 88, 165–169. [Google Scholar] [CrossRef]
- Tahara, M.; Oeda, T.; Okada, K.; Kiriyama, T.; Ochi, K.; Maruyama, H.; Fukaura, H.; Nomura, K.; Shimizu, Y.; Mori, M.; et al. Safety and efficacy of rituximab in neuromyelitis optica spectrum disorders (RIN-1 study): A multicentre, randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2020, 19, 298–306. [Google Scholar] [CrossRef]
- Traboulsee, A.; Greenberg, B.M.; Bennett, J.L.; Szczechowski, L.; Fox, E.; Shkrobot, S.; Yamamura, T.; Terada, Y.; Kawata, Y.; Wright, P.; et al. Safety and efficacy of satralizumab monotherapy in neuromyelitis optica spectrum disorder: A randomised, double-blind, multicentre, placebo-controlled phase 3 trial. Lancet Neurol. 2020, 19, 402–412. [Google Scholar] [CrossRef]
- Cree, B.A.C.; Bennett, J.L.; Kim, H.J.; Weinshenker, B.G.; Pittock, S.J.; Wingerchuk, D.M.; Fujihara, K.; Paul, F.; Cutter, G.R.; Marignier, R.; et al. Inebilizumab for the treatment of neuromyelitis optica spectrum disorder (N-MOmentum): A double-blind, randomised placebo-controlled phase 2/3 trial. Lancet 2019, 394, 1352–1363. [Google Scholar] [CrossRef]
- Pittock, S.J.; Berthele, A.; Fujihara, K.; Kim, H.J.; Levy, M.; Palace, J.; Nakashima, I.; Terzi, M.; Totolyan, N.; Viswanathan, S.; et al. Eculizumab in Aquaporin-4-Positive Neuromyelitis Optica Spectrum Disorder. N. Engl. J. Med. 2019, 381, 614–625. [Google Scholar] [PubMed]
- Satoh, J.; Tabunoki, H.; Ishida, T.; Saito, Y.; Arima, K. Accumulation of a repulsive axonal guidance molecule RGMa in amyloid plaques: A possible hallmark of regenerative failure in Alzheimer’s disease brains. Neuropathol. Appl. Neurobiol. 2013, 39, 109–120. [Google Scholar]
- Schreier, P.; Huang, L.; Fung, E.; Mollon, J.; Sielaff, B.; Lake, M.R.; Schulz, M.; Awwad, K. Development and validation of an ultra-performance liquid chromatography with tandem mass spectrometry method for determination of soluble repulsive guidance molecule A in human serum and cerebrospinal fluid. Bioanalysis 2024, 16, 1155–1166. [Google Scholar] [CrossRef] [PubMed]
- Bossers, K.; Meerhoff, G.; Balesar, R.; Van Dongen, J.W.; Kruse, C.G.; Swaab, D.F.; Verhaagen, J. Analysis of gene expression in Parkinson’s disease: Possible involvement of neurotrophic support and axon guidance in dopaminergic cell death. Brain Pathol. 2009, 19, 91–107. [Google Scholar]
- Korecka, J.A.; Moloney, E.B.; Eggers, R.; Hobo, B.; Scheffer, S.; Ras-Verloop, N.; Pasterkamp, R.J.; Swaab, D.F.; Smit, A.B.; van Kesteren, R.E.; et al. Repulsive Guidance Molecule a (RGMa) Induces Neuropathological and Behavioral Changes That Closely Resemble Parkinson’s Disease. J. Neurosci. 2017, 37, 9361–9379. [Google Scholar]
- Stirling, D.P.; Khodarahmi, K.; Liu, J.; McPhail, L.T.; McBride, C.B.; Steeves, J.D.; Ramer, M.S.; Tetzlaff, W. Minocycline treatment reduces delayed oligodendrocyte death, attenuates axonal dieback, and improves functional outcome after spinal cord injury. J. Neurosci. 2004, 24, 2182–2190. [Google Scholar]
- Van Battum, E.Y.; Brignani, S.; Pasterkamp, R.J. Axon guidance proteins in neurological disorders. Lancet Neurol. 2015, 14, 532–546. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J.P.; Brown, R.H.; Cleveland, D.W. Decoding ALS: From genes to mechanism. Nature 2016, 539, 197–206. [Google Scholar]
- Cicardi, M.E.; Marrone, L.; Azzouz, M.; Trotti, D. Proteostatic imbalance and protein spreading in amyotrophic lateral sclerosis. EMBO J. 2021, 40, e106389. [Google Scholar] [CrossRef]
- Moreno-Jiménez, E.P.; Flor-García, M.; Terreros-Roncal, J.; Rábano, A.; Cafini, F.; Pallas-Bazarra, N.; Ávila, J.; Llorens-Martín, M. Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer’s disease. Nat. Med. 2019, 25, 554–560. [Google Scholar]
- Salta, E.; Lazarov, O.; Fitzsimons, C.P.; Tanzi, R.; Lucassen, P.J.; Choi, S.H. Adult hippocampal neurogenesis in Alzheimer’s disease: A roadmap to clinical relevance. Cell Stem Cell 2023, 30, 120–136. [Google Scholar] [CrossRef] [PubMed]
- Johnson, A.C. Hippocampal Vascular Supply and Its Role in Vascular Cognitive Impairment. Stroke 2023, 54, 673–685. [Google Scholar] [PubMed]
- Fraga, E.; Medina, V.; Cuartero, M.I.; García-Culebras, A.; Bravo-Ferrer, I.; Hernández-Jiménez, M. Defective hippocampal neurogenesis underlies cognitive impairment by carotid stenosis-induced cerebral hypoperfusion in mice. Front. Cell Neurosci. 2023, 17, 1219847. [Google Scholar]
- Babcock, K.R.; Page, J.S.; Fallon, J.R.; Webb, A.E. Adult Hippocampal Neurogenesis in Aging and Alzheimer’s Disease. Stem Cell Rep. 2021, 16, 681–693. [Google Scholar]
- Shohayeb, B.; Diab, M.; Ahmed, M.; Ng, D.C.H. Factors that influence adult neurogenesis as potential therapy. Transl. Neurodegener. 2018, 7, 4. [Google Scholar] [PubMed]
- Sun, D.; Sun, X.D.; Zhao, L.; Lee, D.H.; Hu, J.X.; Tang, F.L.; Pan, J.X.; Mei, L.; Zhu, X.J.; Xiong, W.C. Neogenin, a regulator of adult hippocampal neurogenesis, prevents depressive-like behavior. Cell Death Dis. 2018, 9, 8. [Google Scholar]
- Siebold, C.; Yamashita, T.; Monnier, P.P.; Mueller, B.K.; Pasterkamp, R.J. RGMs: Structural Insights, Molecular Regulation, and Downstream Signaling. Trends Cell Biol. 2017, 27, 365–378. [Google Scholar]
- Kujawa, S.G.; Liberman, M.C. Synaptopathy in the noise-exposed and aging cochlea: Primary neural degeneration in acquired sensorineural hearing loss. Hear Res. 2015, 330 Pt B, 191–199. [Google Scholar]
- Yu, T.; Fu, H.; Sun, J.J.; Ding, D.R.; Wang, H. miR-106b-5p upregulation is associated with microglial activation and inflammation in the mouse hippocampus following status epilepticus. Exp. Brain Res. 2021, 239, 3315–3325. [Google Scholar]
- Song, M.Y.; Tian, F.F.; Wang, Y.Z.; Huang, X.; Guo, J.L.; Ding, D.X. Potential roles of the RGMa-FAK-Ras pathway in hippocampal mossy fiber sprouting in the pentylenetetrazole kindling model. Mol. Med. Rep. 2015, 11, 1738–1744. [Google Scholar]
Study | Intervention Studied | Neurological Disease | In Vitro Model | In Vivo Model | Important Findings |
---|---|---|---|---|---|
Muramatsu et al. 2011 [6] | RGMa-specific antibodies; RGMa siRNA | MS | BMDCs, CD4+ T-cells | MOG-induced EAE in naive C57BL/6 mice |
|
Demincheva et al. 2015 [7] | 5F9 rat RGMa mAbs; TCA intrathecally | MS | Human neuronal cell line NTera, human SH-SY5Y neuroblastoma cells | Autopsy tissues from progressive MS patients |
|
Tanabe et al. 2018 [8] | Humanized anti-RGMa mAb | SPMS | NA | NOD-EAE mice |
|
Hirata et al. 2022 [9] | Humanized anti-RGMa mAb | MS | NA | EAE |
|
Kalluri et al. 2023 [10] | Elezanumab (ABT-555)—fully human mAb | MS | NA | MS patients, healthy participants |
|
Cree et al. 2021(RADIUS-R and RADIUS-P) [11] | Elezanumab (ABT-555)—fully human mAb | MS | NA | RRMS, SPMS patients (phase 2 clinical trials) |
|
Harada et al. 2018 [12] | Humanized anti-RGMa mAb | NMOSD AQP4-IgG | NA | Murine NMOSD model induced by AQP4-IgG infusion (Wistar rats) |
|
Iwamoto et al. 2022 [13] | Humanized anti-RGMa mAb | NMOSD AQP4-IgG | Cultured macrophages stained with anti-Iba1 or anti-neogenin to confirm Iba1 and neogenin expression in cultured peritoneal macrophages | Murine NMOSD model induced by MBP immunization and a single intraperitoneal injection of AQP4-IgG (Female Lewis rats, 8–12 weeks old) |
|
Katsu et al. 2024 [14] | Humanized anti-RGMa mAb | NMOSD AQP4-IgG | NA | Murine NMOSD model induced by MBP immunization and AQP4-IgG infusion (female Lewis rats (LEW/CrlCrlj), 7 weeks old) |
|
Shabanzadeh et al. 2015 [15] | AE12-1Y—fully human mAb | Stroke | Sprague–Dawley rat retinal whole-mount cultures; mouse E16 cortical neurons | eMCAO in Sprague–Dawley rats |
|
Cheng et al. 2024 [16] | MiCM-coated and LIFU/magnetic responsive nanoparticle loaded with anti-RGMa mAb | Stroke | Mouse brain microvascular endothelial cells (bEnd.3 cell), isolated from brain tissue deriving from a mouse with endothelioma | LCCA embolization model in Sprague–Dawley rats; eMCAO model in C57 mice |
|
Wang et al. 2024 [17] | RGMa knockdown (AAV-shRGMA); PKG1 overexpression (AAV-PGK1); in vitro manipulations (siRGMA, siUSP10, PGK1, USP10 overexpression, LV-RGMA) | Stroke | OGD/R model constructed using primary cortical neurons isolated from fetal rats | MCAO/R mouse model (C57BL/6J male mice, 8–10 weeks old) |
|
Jacobson et al. 2024 [18] | Elezanumab (ABT-555)—fully human mAb | Stroke | NA | pMCAO model in male New Zealand White rabbits |
|
Mothe et al. 2017 [19] | AE12-1 and AE12-1Y human anti-RGMa mAb | SCI | E18 mouse cortical neurons | Clip impact-compression T8 thoracic injury in Wistar rats |
|
Mothe et al. 2020 [20] | Elezanumab (ABT-555)—fully human mAb | SCI | NA | Clip impact-compression T8 thoracic injury in Wistar rats |
|
Mothe et al. 2022 [21] | Elezanumab (ABT-555)—fully human mAb | SCI | NA | Clip impact-compression C6/7 cervical injury in Wistar rats |
|
Nakanishi et al. 2019 [22] | Anti-RGMa antibody (rat IgG; IBL) + rTMS | SCI | NA | Dorsal hemisection of spinal cord at T8 in C57BL/6 J rats |
|
Nakagawa et al. 2019 [5] | Anti-RGMa antibody + ICMS | SCI | NA | Hemisection of spinal cord at C6/7 cervical level in rhesus monkeys (Macaca mulatta, 3–5 years old, 3.8–5.4 kg) |
|
Jacobson et al. 2021 [23] | Elezanumab (ABT-555)—fully human mAb | SCI | NA | T9/10 hemicompression in African green monkeys (Chlorocebus sabaeus) |
|
Yamanaka et al. 2021 [24] | Anti-RGMa antibody + rTMS | SCI | NA | Hemisection of spinal cord at C6/7 cervical level in Japanese monkeys (adult male Macaca fuscata monkeys, 5.4–7.1 kg) |
|
Nevoux J et al. 2021 [25] | Anti-human RGMa antibody | Auditory neuropathy | Kainate excitotoxicity mouse model with cochlear culture from postnatal day 4 to 6 (adapted model of excitatory cochlear synaptopathy) | CBA/CaJ male mouse model of noise-induced synapse damage |
|
Yamamoto M et al. 2024 [26] | Anti-RGMa neutralizing antibody | Vascular dementia | NA | Bilateral common carotid artery stenosis mouse model of vascular dementia |
|
Oda W et al. 2021 [27] | Humanized anti-RGMa antibody, polyclonal anti-RGMa antibodies | PD | Coculture of microglia from embryonic mice cortex and RGM-expressing CHO cells | MPTP mouse model of PD (adult male C57BL/6J, 8 weeks old); mouse model with AAV-mediated RGMa overexpression in SN |
|
Shimizu M et al. 2023 [28] | Humanized anti-RGMa mAb | ALS | Evaluation of the uptake of recombinant soluble SOD1 mutations on rats’ primary cortical neurons | Transgenic mice overexpressing the mutant human superoxide dismutase1 (mSOD1 mice); ALS patients (Awaji criteria) |
|
Huang et al. 2021 [29] | Elezanumab (ABT-555)—fully human mAb | Optic nerve injury; optic neuritis; MS; demyelination | BMP competition; ELISA; BMP reporter gene assay; RGMa repulsive activity assay (human neuroblastoma SH-SY5Y cells) | Optic nerve crush model in rats; optic neuritis model in rats; spinal-targeted EAE rat model; mouse cuprizone model; iron metabolism study on female SD rats; pharmacokinetics and bioanalysis in SD rats and cynomolgus monkeys |
|
Chen et al. 2017 [30] | Lentivirus-mediated RGMa overexpression in the hippocampus of epileptic animal models | Epilepsy | Patch–clamp recordings from CA1 pyramidal neurons (acute slice model of epileptiform activity) | Pilocarpine-induced rat model (male Sprague–Dawley rats, weight: 200–230 g); PTZ kindling model (male Sprague–Dawley rats, weight: 200–230 g); TLE patients |
|
Song et al. 2019 [31] | Intracerebroventricular injection of recombinant RGMa protein and FAK inhibitor 14 | Epilepsy | NA | PTZ kindling model (male Sprague–Dawley rats, weight: 120–180 g, age: 40–45 days old) |
|
Feng et al. 2020 [32] | miR-20a-5p silencing | Epilepsy | 293T cells, PC12 cells and primary hippocampal neurons | PTZ kindling model (Sprague–Dawley rats, weight: 200–220 g, age: 7–9 weeks old and post-natal day 1) |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tseriotis, V.-S.; Liampas, A.; Lazaridou, I.Z.; Karachrysafi, S.; Vavougios, G.D.; Hadjigeorgiou, G.M.; Papamitsou, T.; Kouvelas, D.; Arnaoutoglou, M.; Pourzitaki, C.; et al. Repulsive Guidance Molecule-A as a Therapeutic Target Across Neurological Disorders: An Update. Int. J. Mol. Sci. 2025, 26, 3221. https://doi.org/10.3390/ijms26073221
Tseriotis V-S, Liampas A, Lazaridou IZ, Karachrysafi S, Vavougios GD, Hadjigeorgiou GM, Papamitsou T, Kouvelas D, Arnaoutoglou M, Pourzitaki C, et al. Repulsive Guidance Molecule-A as a Therapeutic Target Across Neurological Disorders: An Update. International Journal of Molecular Sciences. 2025; 26(7):3221. https://doi.org/10.3390/ijms26073221
Chicago/Turabian StyleTseriotis, Vasilis-Spyridon, Andreas Liampas, Irene Zacharo Lazaridou, Sofia Karachrysafi, George D. Vavougios, Georgios M. Hadjigeorgiou, Theodora Papamitsou, Dimitrios Kouvelas, Marianthi Arnaoutoglou, Chryssa Pourzitaki, and et al. 2025. "Repulsive Guidance Molecule-A as a Therapeutic Target Across Neurological Disorders: An Update" International Journal of Molecular Sciences 26, no. 7: 3221. https://doi.org/10.3390/ijms26073221
APA StyleTseriotis, V.-S., Liampas, A., Lazaridou, I. Z., Karachrysafi, S., Vavougios, G. D., Hadjigeorgiou, G. M., Papamitsou, T., Kouvelas, D., Arnaoutoglou, M., Pourzitaki, C., & Mavridis, T. (2025). Repulsive Guidance Molecule-A as a Therapeutic Target Across Neurological Disorders: An Update. International Journal of Molecular Sciences, 26(7), 3221. https://doi.org/10.3390/ijms26073221