Utilizing ADMET Analysis and Molecular Docking to Elucidate the Neuroprotective Mechanisms of a Cannabis-Containing Herbal Remedy (Suk-Saiyasna) in Inhibiting Acetylcholinesterase
Abstract
1. Introduction
2. Results
2.1. Total Phenolics, Total Flavonoids, and Antioxidant Activity of Suk-Saiyasna Herbal Remedy Extracts
2.2. Neurotoxicity and Neuroprotective Activity of Suk-Saiyasna Herbal Remedy Extracts
2.3. Acetylcholinesterase Inhibitory Activity of Suk-Saiyasna Herbal Renedy Extracts
2.4. In-Silico Structural Analysis and Identification of Acethylcholinesterase Binding Site
2.5. Binding Affinity of Selected Compounds in Suk-Saiyasna Herbal Renedy
2.6. Protein–Ligand Interactions of the Top Ligands from Alkaloids, Cannabinoids, Flavonoids, Terpenoids, and Phenolic Phytochemicals
2.7. ADME Predictions of the Top Ligands from Alkaloids, Cannabinoids, Flavonoids, Terpenoids, and Phenolic Phytochemical Classes
2.8. In Silico Toxicity Prediction of Selected Compounds
3. Discussion
4. Materials and Methods
4.1. Plants and Chemical Reagents
4.2. Preparation of Crude Extract
4.3. Determination of Total Phenolic Content
4.4. Determination of Total Flavonoid Content
4.5. Evaluation of Antioxidant Activity
4.6. Evaluation of Neurotoxicity and Neuroprotective Activity
4.6.1. Cell Culture
4.6.2. Determination of Toxicity of Suk-Saiyasna Herbal Remedy Extracts
4.6.3. Determination of Neuroprotective Effect of Suk-Saiyasna Herbal Remedy Extracts on Aβ42-Induced Toxicity in SH–SY5Y Cells
4.6.4. Statistical Analysis
4.7. Evaluation of Acetylcholinesterase Inhibitory Activity
4.8. Molecular Docking Studies
4.8.1. Determination of Search Space on Acetylcholinesterase
4.8.2. Preparation of Target Protein
4.8.3. Ligand Preparation
4.9. Assessment of Drug-Likeness and In Silico ADMET Prediction
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AChE | Acetylcholinesterase |
ACTI | Acetylcholine iodine |
ADMET | Absorption, Distribution, Metabolism, Excretion, and Toxicity |
Aβ42 | Amyloid Beta 42 |
AlCl3 | Aluminum chloride |
ANOVA | One-way analysis of variance |
ARG | Arginine |
ASP | Aspartic acid |
BBB | Blood–brain barrier |
BChE | Butyrylcholinesterase |
CCK–8 | Cholecystokinin octapeptide |
CO2 | Carbon dioxide |
°C | Celsius degree |
Da | Dalton |
DMSO | Dimethyl sulfoxide |
DPPH | 2,2–Diphenyl–1–picrylhydrazyl |
DTNB | 5,5–dithio–bis–(2–nitrobenzoic acid) |
FBS | Fetal Bovine Serum |
FLEX | Flexibility |
g | Gram |
GABAA | γ–aminobutyric acid type A |
GAE | Gallic acid equivalent |
GLU | Glutamine |
GLY | Glycine |
HIA | High intestinal absorption |
HBA | Hydrogen bond acceptors |
HBD | Hydrogen bond donors |
HCl | Hydrochloric acid |
HIS | Histidine |
IC50 | Half–maximal inhibitory concentration |
IN-SATU | Saturation |
INSOLU | Solubility |
kcal | Kilocalorie |
kg | Kilogram |
LEU | Leucine |
LD50 | Median lethal dose |
LIPO | Lipophilicity |
LogP | Logarithm of partition coefficient |
MEM:F12 | Minimum Essential Medium Eagle/F12 complete medium |
mL | Milliliter |
mol | Mole |
MW | Molecular weight |
Na2CO3 | Sodium carbonate |
OD | Optical density |
PDB | Protein data bank |
MR | Molar refractivity |
PGP | P–glycoprotein |
PHE | Phenylalanine |
POLAR | Polarity |
QE | Quercetin equivalent |
RB | Rotatable bond |
SD | Standard deviation |
RSA | Radical scavenging activity |
SER | Serine |
Δ9-THC | delta–9–Tetrahydrocannabinol |
TF | Total flavonoid content |
TP | Total phenolic content |
TPSA | Topological polar surface area |
TRIS | tris(hydroxymethyl)aminomethane |
TYR | Tyrosine |
VAL | Valine |
µg | Micro gram |
µM | Micro molar |
References
- Abbas-Mohammadi, M.; Farimani, M.M.; Salehi, P.; Ebrahimi, S.N.; Sonboli, A.; Kelso, C.; Skropeta, D. Acetylcholinesterase-inhibitory activity of Iranian plants: Combined HPLC/bioassay-guided fractionation, molecular networking and docking strategies for the dereplication of active compounds. J. Pharm. Biomed. Anal. 2018, 158, 471–479. [Google Scholar] [CrossRef] [PubMed]
- Syad, A.N.; Shunmugiah, K.P.; Kasi, P.D. Assessment of anticholinesterase activity of Gelidiella acerosa: Implications for its therapeutic potential against Alzheimer’s disease. Evid. Based Complement. Altern. Med. 2012, 2012, 497242. [Google Scholar] [CrossRef] [PubMed]
- Utami, S.; Adityaningsari, P.; Sosiawan, I.; Endrini, S.; Sachrowardi, Q.R.; Laksono, S.P.; Nafik, S.; Arrahmani, B.C.; Afifah, E.; Widowati, W. Antioxidants and anticholinesterase activities of the characterized ethanolic of ripe sesoot (Garcinia picrorrhiza Miq.) fruit extract (GpKar) and xanthone. Maj. Obat Tradis. 2017, 22, 160–165. [Google Scholar] [CrossRef]
- Mukherjee, P.K.; Satheeshkumar, N.; Venkatesh, P.; Venkatesh, M. Lead finding for acetyl cholinesterase inhibitors from natural origin: Structure activity relationship and scope. Mini Rev. Med. Chem. 2011, 11, 247–262. [Google Scholar] [CrossRef]
- Carvajal, F.J.; Inestrosa, N.C. Interactions of AChE with Aβ aggregates in Alzheimer’s brain: Therapeutic relevance of IDN 5706. Front. Mol. Neurosci. 2011, 4, 19. [Google Scholar] [CrossRef]
- Ohta, Y.; Darwish, M.; Hishikawa, N.; Yamashita, T.; Sato, K.; Takemoto, M.; Abe, K. Therapeutic effects of drug switching between acetylcholinesterase inhibitors in patients with Alzheimer’s disease. Geriatr. Gerontol. Int. 2017, 17, 1843–1848. [Google Scholar] [CrossRef]
- Luo, Z.; Sheng, J.; Sun, Y.; Lu, C.; Yan, J.; Liu, A.; Luo, H.-b.; Huang, L.; Li, X. Synthesis and evaluation of multi-target-directed ligands against Alzheimer’s disease based on the fusion of donepezil and ebselen. J. Med. Chem. 2013, 56, 9089–9099. [Google Scholar] [CrossRef]
- Tuzimski, T.; Petruczynik, A. Determination of anti-Alzheimer’s disease activity of selected plant ingredients. Molecules 2022, 27, 3222. [Google Scholar] [CrossRef]
- Lecoutey, C.; Legay, R.; Davis, A.; Sopková-de Oliveira Santos, J.; Dallemagne, P.; Rochais, C. Development of novel potential pleiotropic compounds of interest in Alzheimer’s disease treatment through rigidification strategy. Molecules 2021, 26, 2536. [Google Scholar] [CrossRef]
- Prasasty, V.; Radifar, M.; Istyastono, E. Natural peptides in drug discovery targeting acetylcholinesterase. Molecules 2018, 23, 2344. [Google Scholar] [CrossRef]
- Hira, S.; Saleem, U.; Anwar, F.; Sohail, M.F.; Raza, Z.; Ahmad, B. β-Carotene: A natural compound improves cognitive impairment and oxidative stress in a mouse model of streptozotocin-induced Alzheimer’s disease. Biomolecules 2019, 9, 441. [Google Scholar] [CrossRef] [PubMed]
- Hai, A.; Kizilbash, N.A.; Zaidi, S.H.; Alruwaili, J. Porphyrin derivatives as inhibitors for acetylcholinesterase from Drosophila melanogaster. Bioinformation 2013, 9, 645. [Google Scholar]
- Odubanjo, V.O.; Oboh, G.; Ibukun, E.O. Antioxidant and anticholinesterase activities of aqueous extract of Uraria picta (Jacq.) DC. Afr. J. Pharm. Pharmacol. 2013, 7, 2768–2773. [Google Scholar]
- Machado, V.; Cenci, A.R.; Teixeira, K.F.; Sens, L.; Tizziani, T.; Nunes, R.J.; Ferreira, L.L.; Yunes, R.A.; Sandjo, L.P.; Andricopulo, A.D. Pyrazolines as potential anti-Alzheimer’s agents: DFT, molecular docking, enzyme inhibition and pharmacokinetic studies. RSC Med. Chem. 2022, 13, 1644–1656. [Google Scholar]
- Peitzika, S.-C.; Pontiki, E. A review on recent approaches on molecular docking studies of novel compounds targeting acetylcholinesterase in Alzheimer disease. Molecules 2023, 28, 1084. [Google Scholar] [CrossRef]
- El-Sayed, E.-S.R.; Mansour, D.S.; Morsi, R.M.; Elmonem, H.A.A. Gamma irradiation mediated production improvement of some myco-fabricated nanoparticles and exploring their wound healing, anti-inflammatory and acetylcholinesterase inhibitory potentials. Sci. Rep. 2023, 13, 1629. [Google Scholar]
- El-Nashar, H.A.; Adel, M.; El-Shazly, M.; Yahia, I.S.; El Sheshtawy, H.S.; Almalki, A.A.; Ibrahim, N. Chemical composition, antiaging activities and molecular docking studies of essential oils from Acca sellowiana (Feijoa). Chem. Biodivers. 2022, 19, e202200272. [Google Scholar]
- Moustafa, M.A.; Hassan, N.N.; Alfuhaid, N.A.; Amer, A.; Awad, M. Insights into the toxicity, biochemical activity, and molecular docking of Cymbopogon citratus essential oils and citral on Spodoptera littoralis (Lepidoptera: Noctuidae). J. Econ. Entomol. 2023, 116, 1185–1195. [Google Scholar]
- Soni, A.; Kumar, A.; Kumar, V.; Rawat, R.; Eyupoglu, V. Design, Synthesis and Evaluation of Aminothiazole Derivatives as Potential Anti-Alzheimer’s Candidates. Future Med. Chem. 2024, 16, 513–529. [Google Scholar]
- Chaudhaery, S.S.; Roy, K.K.; Shakya, N.; Saxena, G.; Sammi, S.R.; Nazir, A.; Nath, C.; Saxena, A.K. Novel carbamates as orally active acetylcholinesterase inhibitors found to improve scopolamine-induced cognition impairment: Pharmacophore-based virtual screening, synthesis, and pharmacology. J. Med. Chem. 2010, 53, 6490–6505. [Google Scholar] [CrossRef]
- López, A.F.F.; Martínez, O.M.M.; Hernández, H.F.C. Evaluation of Amaryllidaceae alkaloids as inhibitors of human acetylcholinesterase by QSAR analysis and molecular docking. J. Mol. Struct. 2021, 1225, 129142. [Google Scholar]
- Ahmad, V.; Alotibi, I.; Alghamdi, A.A.; Ahmad, A.; Jamal, Q.M.S.; Srivastava, S. Computational approaches to evaluate the acetylcholinesterase binding interaction with taxifolin for the management of alzheimer’s disease. Molecules 2024, 29, 674. [Google Scholar] [CrossRef] [PubMed]
- Jamal, Q.M.S.; Khan, M.I.; Alharbi, A.H.; Ahmad, V.; Yadav, B.S. Identification of natural compounds of the apple as inhibitors against cholinesterase for the treatment of Alzheimer’s disease: An in silico molecular docking simulation and ADMET study. Nutrients 2023, 15, 1579. [Google Scholar] [CrossRef] [PubMed]
- Chafer-Dolz, B.; Cecilia, J.M.; Imbernón, B.; Núñez-Delicado, E.; Casaña-Giner, V.; Cerón-Carrasco, J.P. Discovery of novel acetylcholinesterase inhibitors through AI-powered structure prediction and high-performance computing-enhanced virtual screening. RSC Adv. 2025, 15, 4262–4273. [Google Scholar]
- Dall’Acqua, S. Plant-derived acetylcholinesterase inhibitory alkaloids for the treatment of Alzheimer’s disease. Bot. Targets Ther. 2013, 3, 19–28. [Google Scholar]
- Saeed, M.; Tasleem, M.; Shoib, A.; Kausar, M.A.; Sulieman, A.M.E.; Alabdallah, N.M.; El Asmar, Z.; Abdelgadir, A.; Al-Shammary, A.; Alam, M.J. Identification of putative plant-based ALR-2 inhibitors to treat diabetic peripheral neuropathy. Curr. Issues Mol. Biol. 2022, 44, 2825–2841. [Google Scholar] [CrossRef]
- National Drug Information, M.O.P.H. Herbal Medicine List and Evidence-Based Documentation: Hemorrhoid Relief Medi-cines. Available online: https://herbal.fda.moph.go.th/media.php?id=553111484570411008&name=nloehd3-03.pdf (accessed on 1 October 2024).
- Damjuti, W.; Thitikornpong, W.; Saengow, S.; Thanusuwannasak, T.; Fuangfoo, T.; Boonruab, J. The interaction of Suk-Saiyasna remedy with GABAA and CB1 receptor-targeting drugs: Enhancing hypnotic and sedative effects in in vivo models. J. Adv. Pharm. Technol. Res. 2024, 15, 13–18. [Google Scholar]
- Werawattanachai, N.; Kaewamatawong, R. Screening for Acetylcholinesterase Inhibitory Activity from the Piperaceae. Ubon Ratchathani Univ. J. Sci. Technol. 2016, 18, 25. [Google Scholar]
- Suttithumsatid, W.; Kara, J.; Lomlim, L.; Nualsri, C.; Panichayupakaranant, P. Acetylcholinesterase Inhibitory Activity of Standardized Cannabinoids-rich Fractions. Pharm. Biomed. Res. 2023, 9, 173–182. [Google Scholar]
- Colovic, M.B.; Krstic, D.Z.; Lazarevic-Pasti, T.D.; Bondzic, A.M.; Vasic, V.M. Acetylcholinesterase inhibitors: Pharmacology and toxicology. Curr. Neuropharmacol. 2013, 11, 315–335. [Google Scholar]
- Muhammed, M.T.; Aki-Yalcin, E. Molecular docking: Principles, advances, and its applications in drug discovery. Lett. Drug Des. Discov. 2024, 21, 480–495. [Google Scholar] [CrossRef]
- Önder, F.C. Discovery Of Donepezil-Like Compounds As Potential Acetylcholinesterase Inhibitors Determined By Pharmacophore Mapping-Based Virtual Screening and Molecular Docking. Med. J. Süleyman Demirel Univ. 2023, 30, 143–153. [Google Scholar]
- Brylinski, M. Aromatic interactions at the ligand–protein interface: Implications for the development of docking scoring functions. Chem. Biol. Drug Des. 2018, 91, 380–390. [Google Scholar]
- Bourne, Y.; Taylor, P.; Radić, Z.; Marchot, P. Structural insights into ligand interactions at the acetylcholinesterase peripheral anionic site. EMBO J. 2003, 22, 1–12. [Google Scholar]
- Bagri, K.; Kumar, A.; Kumar, P. Computational studies on acetylcholinesterase inhibitors: From biochemistry to chemistry. Mini Rev. Med. Chem. 2020, 20, 1403–1435. [Google Scholar]
- Ivanova, L.; Karelson, M. The impact of software used and the type of target protein on molecular docking accuracy. Molecules 2022, 27, 9041. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar]
- Pujari, I.; Sengupta, R.; Babu, V.S. Docking and ADMET studies for investigating the anticancer potency of Moscatilin on APC10/DOC1 and PKM2 against five clinical drugs. J. Genet. Eng. Biotechnol. 2021, 19, 161. [Google Scholar] [CrossRef]
- Burayag, L.; Acmad, Y.; Alberto, C.; Ang, B.; Arona, M.; Balajadia, V. Predicted inflammatory protein targets of tinospora cordifolia secondary metabolites: Admet and molecular docking studies. Acta Manil. 2024, 72, 33–54. [Google Scholar] [CrossRef]
- Adamu, U.A.; Dhakar, R.; Teli, P.K.; Muhammad, S.S.; Gumel, I.A. In-Silico Evaluation of Moringa Oleifera Phytochemicals as Inhibitors Against Newcastle Disease Virus in Birds. Int. J. Multidiscip. Res. 2024, 6, 1–30. [Google Scholar]
- Kim, M.; Park, K.H.; Kim, Y.B. Identifying active compounds and targets of Fritillariae thunbergii against influenza-associated inflammation by network pharmacology analysis and molecular docking. Molecules 2020, 25, 3853. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Sun, T.-F.; Li, G.; Zhang, H.-M.; Liu, F.-J.; Gao, Z.-H.; Cao, S.-N.; Sun, G.-D.; Du, H.-T.; Wang, C.-A.; et al. The separation of antler polypeptide and its effects on the proliferation and osteogenetic differentiation of bone marrow mesenchymal stem cells. Evid. Based Complement. Altern. Med. 2020, 2020, 1294151. [Google Scholar]
- Wu, W.; Li, H.; Yang, S.; Lai, X.; Fan, H.; Cai, H.; Zeng, X. Extraction resistance and mechanism of a macromolecular hindered phenol antioxidant in natural rubber. J. Appl. Polym. Sci. 2017, 134, 44905. [Google Scholar]
- Qaiser, H.; Saeed, M.; Nerukh, D.; Ul-Haq, Z. Structural insight into TNF-α inhibitors through combining pharmacophore-based virtual screening and molecular dynamic simulation. J. Biomol. Struct. Dyn. 2021, 39, 5920–5939. [Google Scholar]
- Sumontri, S.; Eiamart, W.; Tadtong, S.; Samee, W. Ultra-high-performance liquid chromatography–tandem mass spectrometry analysis of Δ9-tetrahydrocannabinol and cannabidiol in commercial Suk-Saiyasna herbal remedy: Applying Hansen solubility parameters for sample extraction to ensure regulatory compliance. Pharmaceuticals 2024, 17, 1502. [Google Scholar] [CrossRef]
- Oboh, G.; Agunloye, O.M.; Akinyemi, A.J.; Ademiluyi, A.O.; Adefegha, S.A. Comparative study on the inhibitory effect of caffeic and chlorogenic acids on key enzymes linked to Alzheimer’s disease and some pro-oxidant induced oxidative stress in rats’ brain-in vitro. Neurochem. Res. 2013, 38, 413–419. [Google Scholar]
- Ayaz, M.; Junaid, M.; Ullah, F.; Subhan, F.; Sadiq, A.; Ali, G.; Ovais, M.; Shahid, M.; Ahmad, A.; Wadood, A.; et al. Anti-Alzheimer’s studies on β-sitosterol isolated from Polygonum hydropiper L. Front. Pharmacol. 2017, 8, 697. [Google Scholar] [CrossRef]
- Figueredo, A.S.; de Oliveira, M.G.; Safadi, G.M.V.V.; de Paula da Silva, C.H.; da Silva, V.B.; Taft, C.A.; de Aquino, G.L.B. The natural alkaloid piperine and its acid and ester synthetic derivatives are acetylcholinesterase inhibitors. Curr. Phys. Chem. 2015, 5, 294–300. [Google Scholar]
- Thakur, S.; Kaurav, H.; Chaudhary, G. Mesua ferrea Linn.(Nagkesar): A potent antimicrobial plant species. Int. J. Curr. Pharm. Res. 2021, 13, 6–13. [Google Scholar]
- Plekratoke, K.; Boonyarat, C.; Monthakantirat, O.; Nualkaew, N.; Wangboonskul, J.; Awale, S.; Chulikhit, Y.; Daodee, S.; Khamphukdee, C.; Chaiwiwatrakul, S. The effect of ethanol extract from Mesua ferrea Linn flower on Alzheimer’s disease and its underlying mechanism. Curr. Issues Mol. Biol. 2023, 45, 4063–4079. [Google Scholar] [CrossRef]
- Areebambud, C.; Sareedenchai, V.; Jariyapongskul, A.; Tadtong, S. Pumpkin seed oil protects SH-SY5Y cells against amyloid-beta 42-induced oxidative stress and neuronal cell death. Sci. Eng. Health Stud. 2023, 17, 23050019. [Google Scholar]
- Thawai, C.; Bunbamrung, N.; Pittayakhajonwut, P.; Chongruchiroj, S.; Pratuangdejkul, J.; He, Y.-W.; Tadtong, S.; Sareedenchai, V.; Prombutara, P.; Qian, Y. A novel diterpene agent isolated from Microbispora hainanensis strain CSR-4 and its in vitro and in silico inhibition effects on acetylcholine esterase enzyme. Sci. Rep. 2020, 10, 11058. [Google Scholar]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [PubMed]
- Banerjee, P.; Eckert, A.O.; Schrey, A.K.; Preissner, R. ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 2018, 46, W257–W263. [Google Scholar]
Fractions | TP (mg GAE/g) | TF (mg QE/g) | DPPH IC50 (µg/mL) |
---|---|---|---|
Dichloromethane | 15.34 ± 0.35 | 32.26 ± 1.05 | 153.93 ± 4.87 |
Ethanol | 34.24 ± 0.59 | 61.08 ± 1.67 | 27.40 ± 1.51 |
Water | 1.04 ± 0.06 | 1.86 ± 0.13 | >800 |
Ascorbic acid | – | – | 6.46 ± 0.29 |
Ligands | Plants | Phytochemical Class | Binding Affinity (kcal/mol) |
---|---|---|---|
apigenin | Nigella sativa L. | Flavonoids | −10.1 |
cannflavin A | Cannabis sativa L. | Flavonoids | −11.2 |
cannflavin B | Cannabis sativa L. | Flavonoids | −11.3 |
cannflavin C | Cannabis sativa L. | Flavonoids | −10.3 |
catechin | Nigella sativa L. | Flavonoids | −9.3 |
epicatechin | Azadirachta indica A. Juss. | Flavonoids | −10 |
mesuaferrone A | Mesua ferrea L. | Flavonoids | −11.4 |
mesuaferrone B | Mesua ferrea L. | Flavonoids | −11.5 |
mesuanic acid | Mesua ferrea L. | Flavonoids | −9.2 |
quercetin | Mesua ferrea L. | Flavonoids | −9.4 |
brachyamide A | Piper nigrum L., Piper retrofractum Vahl | Alkaloids | −6.7 |
brachystamide B | Piper nigrum L., Piper retrofractum Vahl | Alkaloids | −6.6 |
dehydropipernonaline | Piper nigrum L., Piper retrofractum Vahl | Alkaloids | −10.5 |
ecgonine | Azadirachta indica A. Juss. | Alkaloids | −5.4 |
guineensine | Piper nigrum L., Piper retrofractum Vahl | Alkaloids | −7.2 |
hordenine | Cannabis sativa L. | Alkaloids | −6.5 |
neopellitorine B | Piper nigrum L., Piper retrofractum Vahl | Alkaloids | −8.1 |
pellitorine | Piper nigrum L., Piper retrofractum Vahl | Alkaloids | −7.5 |
piperanine | Piper nigrum L., Piper retrofractum Vahl | Alkaloids | −9.8 |
pipercallosine | Piper nigrum L., Piper retrofractum Vahl | Alkaloids | −9.3 |
piperchabamide C | Piper nigrum L., Piper retrofractum Vahl | Alkaloids | −7.1 |
piperdardine | Piper nigrum L., Piper retrofractum Vahl | Alkaloids | −10.3 |
piperine | Piper nigrum L., Piper retrofractum Vahl | Alkaloids | −10.5 |
pipernonaline | Piper nigrum L., Piper retrofractum Vahl | Alkaloids | −9.7 |
piperolactam C | Piper nigrum L., Piper retrofractum Vahl | Alkaloids | −9.1 |
piperolein B | Piper nigrum L., Piper retrofractum Vahl | Alkaloids | −9 |
piperundecalidine | Piper nigrum L., Piper retrofractum Vahl | Alkaloids | −9.8 |
retrofractamide B | Piper nigrum L., Piper retrofractum Vahl | Alkaloids | −7.5 |
cannabichromene (CBC) | Cannabis sativa L. | Cannabinoids | −9.6 |
cannabichromenic acid (CBCA) | Cannabis sativa L. | Cannabinoids | −9.7 |
cannabichromevarin (CBCV) | Cannabis sativa L. | Cannabinoids | −9.9 |
cannabichromevarinic acid (CBCVA) | Cannabis sativa L. | Cannabinoids | −9.8 |
cannabidiol (CBD) | Cannabis sativa L. | Cannabinoids | −8.9 |
cannabidiolic acid (CBDA) | Cannabis sativa L. | Cannabinoids | −9.2 |
cannabidivarin (CBDV) | Cannabis sativa L. | Cannabinoids | −8.7 |
cannabidivarinic acid (CBDVA) | Cannabis sativa L. | Cannabinoids | −8.5 |
cannabigerol (CBG) | Cannabis sativa L. | Cannabinoids | −9 |
cannabigerovarinic acid (CBGVA) | Cannabis sativa L. | Cannabinoids | −9.8 |
delta9––tetrahydrocannabinol (∆9-THC) | Cannabis sativa L. | Cannabinoids | −10.3 |
delta–9–Tetrahydrocannabivarinic acid (THCVA) | Cannabis sativa L. | Cannabinoids | −9.8 |
δ–3–carene | Cinnamomum bejolghota (Buch.–Ham.) Sweet | Terpenoids | −6.8 |
δ–cadinol | Cinnamomum bejolghota (Buch.–Ham.) Sweet | Terpenoids | −8.7 |
β–caryophyllene | Cinnamomum bejolghota (Buch.–Ham.) Sweet | Terpenoids | −8.5 |
α–Copaene | Myristica fragrans Houtt. | Terpenoids | −8.7 |
β–elemene | Cinnamomum bejolghota (Buch.–Ham.) Sweet | Terpenoids | −8.5 |
δ–guaiene | Cinnamomum bejolghota (Buch.–Ham.) Sweet | Terpenoids | −8.3 |
β–pinene | Cinnamomum bejolghota (Buch.–Ham.) Sweet | Terpenoids | −6.7 |
β–selinene | Cinnamomum bejolghota (Buch.–Ham.) Sweet | Terpenoids | −9.5 |
γ–terpinene | Myristica fragrans Houtt. | Terpenoids | −7 |
α–terpineol | Myristica fragrans Houtt. | Terpenoids | −6.9 |
γ–terpineol | Cinnamomum bejolghota (Buch.–Ham.) Sweet | Terpenoids | −7 |
α–trans–bergamotene | Cinnamomum bejolghota (Buch.–Ham.) Sweet | Terpenoids | −8.5 |
α–zingiberene | Cinnamomum bejolghota (Buch.–Ham.) Sweet | Terpenoids | −8.9 |
α–humulene | Cinnamomum bejolghota (Buch.–Ham.) Sweet | Terpenoids | −8.5 |
α–selinene | Cinnamomum bejolghota (Buch.–Ham.) Sweet | Terpenoids | −9.5 |
α–terpinene | Zingiber officinale Roscoe | Terpenoids | −7.1 |
α–cadinol | Cinnamomum bejolghota (Buch.–Ham.) Sweet | Terpenoids | −8.6 |
α–panasinsene | Cinnamomum bejolghota (Buch.–Ham.) Sweet | Terpenoids | −8.6 |
α–phellandrene | Cinnamomum bejolghota (Buch.–Ham.) Sweet | Terpenoids | −6.9 |
α–pinene | Cinnamomum bejolghota (Buch.–Ham.) Sweet, Nigella sativa L. | Terpenoids | −6.7 |
α–terpineol | Zingiber officinale Roscoe | Terpenoids | −6.9 |
α–thujene | Cinnamomum bejolghota (Buch.–Ham.) Sweet | Terpenoids | −6.8 |
1,8–cineole | Cinnamomum bejolghota (Buch.–Ham.) Sweet | Terpenoids | −6.9 |
13–epi–manoyl oxide | Cinnamomum bejolghota (Buch.–Ham.) Sweet | Terpenoids | −8.5 |
4–terpineol | Zingiber officinale Roscoe | Terpenoids | −6.8 |
7–epi–α–selinene | Cinnamomum bejolghota (Buch.–Ham.) Sweet | Terpenoids | −9.2 |
anethole | Myristica fragrans Houtt. | Terpenoids | −6.8 |
borneol | Zingiber officinale Roscoe | Terpenoids | −6.4 |
camphene | Cinnamomum bejolghota (Buch.–Ham.) Sweet | Terpenoids | −6.6 |
camphor | Cinnamomum bejolghota (Buch.–Ham.) Sweet | Terpenoids | −6.8 |
carvacrol | Nigella sativa L. | Terpenoids | −7.1 |
caryophyllene | Myristica fragrans Houtt. | Terpenoids | −8.5 |
cis–piperitol | Zingiber officinale Roscoe | Terpenoids | −6.8 |
dithymoquinone | Nigella sativa L. | Terpenoids | −10.2 |
E–β–ocimene | Cinnamomum bejolghota (Buch.–Ham.) Sweet | Terpenoids | −5.4 |
endo–fenchol | Cinnamomum bejolghota (Buch.–Ham.) Sweet | Terpenoids | −5.7 |
epi–α–cadinol | Cinnamomum bejolghota (Buch.–Ham.) Sweet | Terpenoids | −8.8 |
geraniol | Cinnamomum bejolghota (Buch.–Ham.) Sweet | Terpenoids | −6.7 |
geranyl acetate | Cinnamomum bejolghota (Buch.–Ham.) Sweet | Terpenoids | −7.2 |
germacrene–D | Cinnamomum bejolghota (Buch.–Ham.) Sweet | Terpenoids | −8.6 |
guaiol | Cinnamomum bejolghota (Buch.–Ham.) Sweet | Terpenoids | −9.2 |
isoborneol | Cinnamomum bejolghota (Buch.–Ham.) Sweet | Terpenoids | −6.4 |
isoelemicin | Myristica fragrans Houtt. | Terpenoids | −7.3 |
limonene | Cinnamomum bejolghota (Buch.–Ham.) Sweet | Terpenoids | −6.9 |
linalool | Cinnamomum bejolghota (Buch.–Ham.) Sweet | Terpenoids | −6.2 |
myrcene | Cinnamomum bejolghota (Buch.–Ham.) Sweet | Terpenoids | −6.5 |
nerol | Zingiber officinale Roscoe | Terpenoids | −6.2 |
neryl acetate | Cinnamomum bejolghota (Buch.–Ham.) Sweet | Terpenoids | −7.3 |
p–cymene | Cinnamomum bejolghota (Buch.–Ham.) Sweet, Nigella sativa L. | Terpenoids | −7.1 |
phytol | Cinnamomum bejolghota (Buch.–Ham.) Sweet | Terpenoids | −7 |
sabinene | Cinnamomum bejolghota (Buch.–Ham.) Sweet | Terpenoids | −6.7 |
sclareolide | Cinnamomum bejolghota (Buch.–Ham.) Sweet | Terpenoids | −9.3 |
spathulenol | Cinnamomum bejolghota (Buch.–Ham.) Sweet | Terpenoids | −8.1 |
terpinen–4–ol | Cinnamomum bejolghota (Buch.–Ham.) Sweet | Terpenoids | −6.8 |
terpinolene | Zingiber officinale Roscoe | Terpenoids | −7.2 |
tetradecanoic acid | Myristica fragrans Houtt. | Terpenoids | −6.4 |
thymohydroquinone | Nigella sativa L. | Terpenoids | −7.2 |
thymol | Nigella sativa L. | Terpenoids | −7.1 |
thymoquinone | Nigella sativa L. | Terpenoids | −7.4 |
α–amyrin | Mesua ferrea L. | Terpenoids | −9.2 |
α–terpinene | Zingiber officinale Roscoe | Terpenoids | −7.1 |
α–terpineol | Zingiber officinale Roscoe | Terpenoids | −6.9 |
β–sitosterol | Mesua ferrea L. | Terpenoids | −10.2 |
β–amyrin | Mesua ferrea L. | Terpenoids | −9.8 |
3–acetyl–11–keto–β–boswellic acid | Azadirachta indica A. Juss. | Terpenoids | −8.6 |
betulin | Azadirachta indica A. Juss. | Terpenoids | −8.5 |
caryophyllene oxide | Azadirachta indica A. Juss. | Terpenoids | −10 |
lupeol | Azadirachta indica A. Juss. | Terpenoids | −9 |
cineole | Zingiber officinale Roscoe | Terpenoids | −6.9 |
elemol | Zingiber officinale Roscoe | Terpenoids | −8.5 |
trans–nerolidol | Zingiber officinale Roscoe | Terpenoids | −7.8 |
β–Eudesmol | Zingiber officinale Roscoe | Terpenoids | −9.8 |
costunolide | Aucklandia lappa (Decne.) Decne. | Terpenoids | −9 |
cynaropicrin | Aucklandia lappa (Decne.) Decne. | Terpenoids | −9.5 |
dehydrocostus lactone | Aucklandia lappa (Decne.) Decne. | Terpenoids | −9.5 |
dihydrocostunolide | Aucklandia lappa (Decne.) Decne. | Terpenoids | −9.3 |
mokko lactone | Aucklandia lappa (Decne.) Decne. | Terpenoids | −9.5 |
Kleinhospitines A | Kleinhovia hospita L. | Terpenoids | −4.7 |
Kleinhospitines B | Kleinhovia hospita L. | Terpenoids | −4.7 |
Kleinhospitines C | Kleinhovia hospita L. | Terpenoids | −4.7 |
Kleinhospitines D | Kleinhovia hospita L. | Terpenoids | −4.7 |
cannabisin D | Cannabis sativa L. | Lignans | −9.7 |
N–trans–caffeoyltyramine | Cannabis sativa L. | Lignans | −10.1 |
N–trans–coumaroyltyramine | Cannabis sativa L. | Lignans | −10.2 |
N–trans–feruloyltyramine | Cannabis sativa L. | Lignans | −9.5 |
cannabispiradienone | Cannabis sativa L. | Stilbenoids | −9.2 |
cannabispiran | Cannabis sativa L. | Stilbenoids | −8.9 |
cannabistilbene I | Cannabis sativa L. | Stilbenoids | −10.1 |
denbinobin | Cannabis sativa L. | Stilbenoids | −9.5 |
dihydroresveratrol | Cannabis sativa L. | Stilbenoids | −9.2 |
chlorogenic acid | Nigella sativa L. | Phenolics | −10 |
ferulic acid | Nigella sativa L. | Phenolics | −7.5 |
gallic acid | Nigella sativa L. | Phenolics | −6.5 |
p–coumaric acid | Nigella sativa L. | Phenolics | −7.3 |
vanillic acid | Nigella sativa L. | Phenolics | −6.5 |
α–amyl cinnamyl alcohol | Cinnamomum bejolghota (Buch.–Ham.) Sweet | Alcohol group | −7.7 |
1–Hexanol | Cinnamomum bejolghota (Buch.–Ham.) Sweet | Alcohol group | −4.4 |
3,7–dimethyloct–6–en–1–yn–3–ol | Zingiber officinale Roscoe | Alcohol group | −3.9 |
3,7–dimethylocta–1,6–dien–3–ol | Zingiber officinale Roscoe | Alcohol group | −6.3 |
3–methylhexan–2–ol | Zingiber officinale Roscoe | Alcohol group | −5.1 |
4–isopropylbenzyl alcohol | Zingiber officinale Roscoe | Alcohol group | −6.7 |
allo–aromadendrene | Zingiber officinale Roscoe | Fat hydrocarbon | −8.7 |
α–cedrene | Zingiber officinale Roscoe | Fat hydrocarbon | −8.7 |
β–sesquiphellandrene | Zingiber officinale Roscoe | Fat hydrocarbon | −8.8 |
β–thujene | Zingiber officinale Roscoe | Fat hydrocarbon | −6.7 |
2,6–dimethylhept–5–enal | Zingiber officinale Roscoe | Aldoketones | −6 |
2–heptanone | Zingiber officinale Roscoe | Aldoketones | −5 |
butanal | Zingiber officinale Roscoe | Aldoketones | −3.8 |
germacrone | Zingiber officinale Roscoe | Aldoketones | −7.6 |
endo–bornyl acetate | Zingiber officinale Roscoe | Ester group | −7.5 |
geranyl propionate | Zingiber officinale Roscoe | Ester group | −7.4 |
neryl acetate | Zingiber officinale Roscoe | Ester group | −7.3 |
sec–butyl acetate | Zingiber officinale Roscoe | Ester group | −4.8 |
lauric acid | Nigella sativa L. | Fatty acids | −6.4 |
linoleic acid | Nigella sativa L. | Fatty acids | −7.5 |
linolenic acid | Nigella sativa L. | Fatty acids | −7.1 |
myristic acid | Nigella sativa L. | Fatty acids | −5.8 |
oleic acid | Nigella sativa L. | Fatty acids | −6.7 |
palmitic acid | Nigella sativa L. | Fatty acids | −6.4 |
stearic acid | Nigella sativa L. | Fatty acids | −6.8 |
hexanal | Cinnamomum bejolghota (Buch.–Ham.) Sweet | Aldehyde group | −4.4 |
limonene aldehyde | Cinnamomum bejolghota (Buch.–Ham.) Sweet | Aldehyde group | −7.2 |
tetradecanal | Cinnamomum bejolghota (Buch.–Ham.) Sweet | Aldehyde group | −6.2 |
Z–cinnamaldehyde | Cinnamomum bejolghota (Buch.–Ham.) Sweet | Aldehyde group | −7.3 |
eugenol | Myristica fragrans Houtt. | phenylpropanoids | −7 |
methyl eugenol | Myristica fragrans Houtt. | phenylpropanoids | −7.1 |
trans–isoeugenol | Myristica fragrans Houtt. | phenylpropanoids | −6.9 |
Donepezil | – | −11.7 | |
Galantamine | – | −9.6 | |
Rivastigmine | – | −8.2 |
Ligand Name | Binding Affinity (kcal/mol) | Amino Acid Residues Involved in Interaction | |
---|---|---|---|
Hydrogen Bond | Hydrophobic Interactions | ||
Δ9-THC | −10.3 | – | TYR72, TYR124, TRP286, GLU292, SER293, VAL294, PHE295, PHE297, TYR337, PHE338, TYR341, HIS447 |
Piperine | −10.5 | SER203, GLY122 | TYR72, TRP86, GLY121, TYR124, TRP286, SER293, PHE295, PHE297, TYR337, PHE338, TYR341, HIS447, GLY448 |
β–Sitosterol | −10.2 | – | ASP74, TRP86, TRP286, LEU289, GLU292, SER293, VAL294, PHE295, PHE297, TYR337, PHE338, TYR341, HIS447, GLY448 |
Mesuaferrone B | −11.5 | ARG296, PHE295, SER293 | TYR72, ASP74, THR75, TYR124, TRP286, LEU289, VAL294, PHE297, TYR337, PHE338, GLY342 |
Chlorogenic acid | −10.0 | GLY121, GLY122, TYR124, SER203, SER293, ARG296, HIS447 | ASP74, SER125, GLY120, GLU202, ALA204, TRP286, LEU289, VAL294, PHE295, PHE297, TYR337, TYR341, GLY448 |
Donepezil | −11.7 | PHE295 | TRP86, GLY121, TYR124, GLU202, TRP286, LEU289, GLU292, SER293, VAL294, ARG296, PHE297, TYR337, PHE338, TYR341, HIS447, GLY448 |
Galantamine | −9.6 | SER125, GLU202 | ASP74, TRP86, ASN87, GLY121, TYR124, SER203, TYR337, PHE338, TYR341, HIS447, GLY448, ILE451 |
Rivastigmine | −8.2 | SER203 | GLY121, GLY122, TYR124, GLU202, TRP286, VAL294, PHE295, PHE297, TYR337, PHE338, TYR341, HIS447, GLY448 |
Compounds | MW (Da) | HBD | HBA | LogP | TPSA | RB | MR | Lipinski’s Rule of Five | Veber’s Rule | HIA (%) | BBB |
---|---|---|---|---|---|---|---|---|---|---|---|
Δ9-THC | 314.46 | 1 | 2 | 5.74 | 29.46 | 4 | 97.91 | Yes (4/5) | Yes | High 96.4% | Yes |
Piperine | 285.34 | 0 | 3 | 2.51 | 38.77 | 4 | 85.47 | Yes (5/5) | Yes | High 97.1% | Yes |
Mesuaferrone B | 540.47 | 6 | 10 | 4.74 | 177.89 | 3 | 144.55 | No (3/5) | No | Low 75.5% | No |
β–Sitosterol | 414.71 | 1 | 1 | 8.02 | 20.23 | 6 | 133.23 | Yes (4/5) | Yes | High 87.3% | No |
Chlorogenic acid | 354.31 | 6 | 9 | –0.75 | 164.75 | 5 | 83.50 | Yes (4/5) | No | Low 53.3% | No |
Donepezil | 379.49 | 0 | 4 | 3.83 | 38.77 | 6 | 115.31 | Yes (5/5) | Yes | High 98.5% | Yes |
Galantamine | 446.90 | 1 | 4 | 1.32 | 41.93 | 1 | 84.05 | Yes (5/5) | Yes | High 97.4% | Yes |
Rivastigmine | 250.34 | 0 | 3 | 2.44 | 32.78 | 6 | 73.12 | Yes (5/5) | Yes | High 93.7% | Yes |
Compounds | Hepatotoxicity | Carcinogenicity | Neurotoxicity | Acute Oral Toxicity (LD50: mg/kg) | Toxicity Class |
---|---|---|---|---|---|
Piperine | Inactive | Active | Active | 330 | 4 |
Δ9-THC | Inactive | Inactive | Inactive | 500 | 4 |
β–Sitosterol | Inactive | Inactive | Active | 890 | 4 |
Mesuaferrone B | Inactive | Inactive | Inactive | 5000 | 5 |
Chlorogenic acid | Inactive | Inactive | Inactive | 5000 | 5 |
Donepezil | Inactive | Active | Active | 505 | 4 |
Galantamine | Inactive | Active | Active | 85 | 3 |
Rivastigmine | Inactive | Inactive | Active | 1000 | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sumontri, S.; Eiamart, W.; Tadtong, S.; Samee, W. Utilizing ADMET Analysis and Molecular Docking to Elucidate the Neuroprotective Mechanisms of a Cannabis-Containing Herbal Remedy (Suk-Saiyasna) in Inhibiting Acetylcholinesterase. Int. J. Mol. Sci. 2025, 26, 3189. https://doi.org/10.3390/ijms26073189
Sumontri S, Eiamart W, Tadtong S, Samee W. Utilizing ADMET Analysis and Molecular Docking to Elucidate the Neuroprotective Mechanisms of a Cannabis-Containing Herbal Remedy (Suk-Saiyasna) in Inhibiting Acetylcholinesterase. International Journal of Molecular Sciences. 2025; 26(7):3189. https://doi.org/10.3390/ijms26073189
Chicago/Turabian StyleSumontri, Suwimon, Wanna Eiamart, Sarin Tadtong, and Weerasak Samee. 2025. "Utilizing ADMET Analysis and Molecular Docking to Elucidate the Neuroprotective Mechanisms of a Cannabis-Containing Herbal Remedy (Suk-Saiyasna) in Inhibiting Acetylcholinesterase" International Journal of Molecular Sciences 26, no. 7: 3189. https://doi.org/10.3390/ijms26073189
APA StyleSumontri, S., Eiamart, W., Tadtong, S., & Samee, W. (2025). Utilizing ADMET Analysis and Molecular Docking to Elucidate the Neuroprotective Mechanisms of a Cannabis-Containing Herbal Remedy (Suk-Saiyasna) in Inhibiting Acetylcholinesterase. International Journal of Molecular Sciences, 26(7), 3189. https://doi.org/10.3390/ijms26073189