Advancing Forensic Human Chronological Age Estimation: Biochemical, Genetic, and Epigenetic Approaches from the Last 15 Years: A Systematic Review
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Radiocarbon Dating
3.2. Aspartic Acid Racemization (AAR)
3.3. Mitochondrial DNA (mtDNA) Analysis
3.4. Quantification of Signal Joint T-Cell Receptor Excision Circles (sjTRECs)
3.5. RNA Analysis
3.6. Telomere Length Analysis
3.7. DNA Methylation
3.7.1. Sanger Sequencing
3.7.2. Methylation-Specific PCR (MSP)
3.7.3. Methylation-Sensitive High-Resolution Melting (MS-HRM)
3.7.4. MassARRAY and Microarray
3.7.5. Next-Generation Sequencing (NGS)
3.7.6. Single-Base Extension (SBE)—SNaPshot
3.7.7. Pyrosequencing
3.7.8. Other Techniques for DNA Methylation Analysis
3.7.9. Combined Techniques
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Haas, C.; Neubauer, J.; Salzmann, A.P.; Hanson, E.; Ballantyne, J. Forensic Transcriptome Analysis Using Massively Parallel Sequencing. Forensic Sci. Int. Genet. 2021, 52, 102486. [Google Scholar] [CrossRef] [PubMed]
- Pignolo, R.J. Exceptional Human Longevity. Mayo Clin. Proc. 2019, 94, 110–124. [Google Scholar] [CrossRef]
- Ruan, L.; Zhang, X.; Li, R. Recent Insights into the Cellular and Molecular Determinants of Aging. J. Cell Sci. 2018, 131, jcs210831. [Google Scholar] [CrossRef] [PubMed]
- Ritz-Timme, S.; Cattaneo, C.; Collins, M.J.; Waite, E.R.; Schütz, H.W.; Kaatsch, H.-J.; Borrman, H.I.M. Age Estimation: The State of the Art in Relation to the Specific Demands of Forensic Practise. Int. J. Leg. Med. 2000, 113, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Meissner, C.; Ritz-Timme, S. Molecular Pathology and Age Estimation. Forensic Sci. Int. 2010, 203, 34–43. [Google Scholar] [CrossRef]
- Gerra, M.C.; Dallabona, C.; Cecchi, R. Epigenetic Analyses in Forensic Medicine: Future and Challenges. Int. J. Leg. Med. 2024, 138, 701–719. [Google Scholar] [CrossRef]
- Bell, C.G.; Lowe, R.; Adams, P.D.; Baccarelli, A.A.; Beck, S.; Bell, J.T.; Christensen, B.C.; Gladyshev, V.N.; Heijmans, B.T.; Horvath, S.; et al. DNA Methylation Aging Clocks: Challenges and Recommendations. Genome Biol. 2019, 20, 249. [Google Scholar] [CrossRef]
- Shabani, M.; Borry, P.; Smeers, I.; Bekaert, B. Forensic Epigenetic Age Estimation and Beyond: Ethical and Legal Considerations. Trends Genet. 2018, 34, 489–491. [Google Scholar] [CrossRef]
- Vidaki, A.; Ballard, D.; Aliferi, A.; Miller, T.H.; Barron, L.P.; Syndercombe Court, D. DNA Methylation-Based Forensic Age Prediction Using Artificial Neural Networks and next Generation Sequencing. Forensic Sci. Int. Genet. 2017, 28, 225–236. [Google Scholar] [CrossRef]
- Lee, J.E.; Lee, J.M.; Naue, J.; Fleckhaus, J.; Freire-Aradas, A.; Neubauer, J.; Pośpiech, E.; McCord, B.; Kalamara, V.; Gauthier, Q.; et al. A Collaborative Exercise on DNA Methylation-Based Age Prediction and Body Fluid Typing. Forensic Sci. Int. Genet. 2022, 57, 102656. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Nydal, R.; Lövseth, K. Distribution of Radiocarbon from Nuclear Tests. Nature 1965, 206, 1029–1031. [Google Scholar] [CrossRef] [PubMed]
- Cook, G.T.; Dunbar, E.; Black, S.M.; Xu, S. A Preliminary Assessment of Age at Death Determination Using the Nuclear Weapons Testing14 C Activity of Dentine and Enamel. Radiocarbon 2006, 48, 305–313. [Google Scholar] [CrossRef]
- Reimer, P.J.; Brown, T.A.; Reimer, R.W. Discussion: Reporting and Calibration of Post-Bomb14 C Data. Radiocarbon 2004, 46, 1299–1304. [Google Scholar] [CrossRef]
- Kondo-Nakamura, M.; Fukui, K.; Matsu’ura, S.; Kondo, M.; Iwadate, K. Single Tooth Tells Us the Date of Birth. Int. J. Leg. Med. 2011, 125, 873–877. [Google Scholar] [CrossRef]
- Alkass, K.; Buchholz, B.A.; Druid, H.; Spalding, K.L. Analysis of 14C and 13C in Teeth Provides Precise Birth Dating and Clues to Geographical Origin. Forensic Sci. Int. 2011, 209, 34–41. [Google Scholar] [CrossRef]
- Teglind, R.; Dawidson, I.; Balkefors, J.; Alkass, K. Analysis of 14C, 13C and Aspartic Acid Racemization in Teeth and Bones to Facilitate Identification of Unknown Human Remains: Outcomes of Practical Casework. Biomolecules 2021, 11, 1655. [Google Scholar] [CrossRef]
- Alkass, K.; Buchholz, B.A.; Ohtani, S.; Yamamoto, T.; Druid, H.; Spalding, K.L. Age Estimation in Forensic Sciences: Application of Combined Aspartic Acid Racemization and Radiocarbon Analysis. Mol. Cell. Proteom. 2010, 9, 1022–1030. [Google Scholar] [CrossRef]
- Geiger, T.; Clarke, S. Deamidation, Isomerization, and Racemization at Asparaginyl and Aspartyl Residues in Peptides. Succinimide-Linked Reactions That Contribute to Protein Degradation. J. Biol. Chem. 1987, 262, 785–794. [Google Scholar] [CrossRef]
- Lowenson, J.; Clarke, S. Does the Chemical Instability of Aspartyl and Asparaginyl Residues in Proteins Contribute to Erythrocyte Aging? The Role of Protein Carboxyl Methylation Reactions. Blood Cells 1988, 14, 103–118. [Google Scholar]
- Ritz-Timme, S.; Rochholz, G.; Schütz, H.W.; Collins, M.J.; Waite, E.R.; Cattaneo, C.; Kaatsch, H.J. Quality Assurance in Age Estimation Based on Aspartic Acid Racemisation. Int. J. Leg. Med. 2000, 114, 83–86. [Google Scholar] [CrossRef]
- Griffin, R.C.; Penkman, K.E.H.; Moody, H.; Collins, M.J. The Impact of Random Natural Variability on Aspartic Acid Racemization Ratios in Enamel from Different Types of Human Teeth. Forensic Sci. Int. 2010, 200, 148–152. [Google Scholar] [CrossRef] [PubMed]
- Sakuma, A.; Ohtani, S.; Saitoh, H.; Iwase, H. Comparative Analysis of Aspartic Acid Racemization Methods Using Whole-Tooth and Dentin Samples. Forensic Sci. Int. 2012, 223, 198–201. [Google Scholar] [CrossRef] [PubMed]
- Sakuma, A.; Saitoh, H.; Ishii, N.; Iwase, H. The Effects of Racemization Rate for Age Estimation of Pink Teeth. J. Forensic Sci. 2015, 60, 450–452. [Google Scholar] [CrossRef] [PubMed]
- Sirin, N.; Matzenauer, C.; Reckert, A.; Ritz-Timme, S. Age Estimation Based on Aspartic Acid Racemization in Dentine: What about Caries-Affected Teeth? Int. J. Leg. Med. 2018, 132, 623–628. [Google Scholar] [CrossRef]
- Arany, S.; Ohtani, S. Age Estimation by Racemization Method in Teeth: Application of Aspartic Acid, Glutamate, and Alanine. J. Forensic Sci. 2010, 55, 701–705. [Google Scholar] [CrossRef]
- Wochna, K.; Bonikowski, R.; Śmigielski, J.; Berent, J. Aspartic Acid Racemization of Root Dentin Used for Dental Age Estimation in a Polish Population Sample. Forensic Sci. Med. Pathol. 2018, 14, 285–294. [Google Scholar] [CrossRef]
- Rastogi, M.; Logani, A.; Shah, N.; Kumar, A.; Arora, S. Age Estimation of Living Indian Individuals Based on Aspartic Acid Racemization from Tooth Biopsy Specimen. J. Forensic Dent. Sci. 2017, 9, 83–90. [Google Scholar] [CrossRef]
- Chen, S.; Lv, Y.; Wang, D.; Yu, X. Aspartic Acid Racemization in Dentin of the Third Molar for Age Estimation of the Chaoshan Population in South China. Forensic Sci. Int. 2016, 266, 234–238. [Google Scholar] [CrossRef]
- Zapico, S.C.; Ubelaker, D.H. Application of Aspartic Acid Racemization for Age Estimation in a Spanish Sample. Biology 2022, 11, 856. [Google Scholar] [CrossRef]
- Elfawal, M.A.; Alqattan, S.I.; Ghallab, N.A. Racemization of Aspartic Acid in Root Dentin as a Tool for Age Estimation in a Kuwaiti Population. Med. Sci. Law. 2015, 55, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Minegishi, S.; Ohtani, S.; Noritake, K.; Funakoshi, T.; Ishii, N.; Utsuno, H.; Sakuma, A.; Saitoh, H.; Yamaguchi, S.; Marukawa, E.; et al. Preparation of Dentin Standard Samples for Age Estimation Based on Increased Aspartic Acid Racemization Rate by Heating. Leg. Med. 2019, 38, 25–31. [Google Scholar] [CrossRef]
- Matzenauer, C.; Reckert, A.; Ritz-Timme, S. Estimation of Age at Death Based on Aspartic Acid Racemization in Elastic Cartilage of the Epiglottis. Int. J. Leg. Med. 2014, 128, 995–1000. [Google Scholar] [CrossRef] [PubMed]
- Klumb, K.; Matzenauer, C.; Reckert, A.; Lehmann, K.; Ritz-Timme, S. Age Estimation Based on Aspartic Acid Racemization in Human Sclera. Int. J. Leg. Med. 2016, 130, 207–211. [Google Scholar] [CrossRef]
- St-Pierre, J.; Buckingham, J.A.; Roebuck, S.J.; Brand, M.D. Topology of Superoxide Production from Different Sites in the Mitochondrial Electron Transport Chain. J. Biol. Chem. 2002, 277, 44784–44790. [Google Scholar] [CrossRef]
- Wei, Y.-H.; Lee, H.-C. Oxidative Stress, Mitochondrial DNA Mutation, and Impairment of Antioxidant Enzymes in Aging. Exp Biol. Med. 2002, 227, 671–682. [Google Scholar] [CrossRef]
- Meissner, C.; Bruse, P.; Oehmichen, M. Tissue-Specific Deletion Patterns of the Mitochondrial Genome with Advancing Age. Exp. Gerontol. 2006, 41, 518–524. [Google Scholar] [CrossRef]
- Zapico, S.C.; Ubelaker, D.H. Relationship Between Mitochondrial DNA Mutations and Aging. Estimation of Age-at-Death. J. Gerontol. A Biol. Sci. Med. Sci. 2016, 71, 445–450. [Google Scholar] [CrossRef] [PubMed]
- Lacan, M.; Thèves, C.; Keyser, C.; Farrugia, A.; Baraybar, J.-P.; Crubézy, E.; Ludes, B. Detection of Age-Related Duplications in mtDNA from Human Muscles and Bones. Int. J. Leg. Med. 2011, 125, 293–300. [Google Scholar] [CrossRef]
- Bains, I.; Thiébaut, R.; Yates, A.J.; Callard, R. Quantifying Thymic Export: Combining Models of Naive T Cell Proliferation and TCR Excision Circle Dynamics Gives an Explicit Measure of Thymic Output. J. Immunol. 2009, 183, 4329–4336. [Google Scholar] [CrossRef]
- Kong, F.K.; Chen, C.L.; Six, A.; Hockett, R.D.; Cooper, M.D. T Cell Receptor Gene Deletion Circles Identify Recent Thymic Emigrants in the Peripheral T Cell Pool. Proc. Natl. Acad. Sci. USA 1999, 96, 1536–1540. [Google Scholar] [CrossRef] [PubMed]
- Ou, X.; Zhao, H.; Sun, H.; Yang, Z.; Xie, B.; Shi, Y.; Wu, X. Detection and Quantification of the Age-Related sjTREC Decline in Human Peripheral Blood. Int. J. Leg. Med. 2011, 125, 603–608. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.; Ge, J.; Seo, S.B.; Kim, K.; Lee, H.Y.; Lee, S.D. Age Estimation via Quantification of Signal-Joint T Cell Receptor Excision Circles in Koreans. Leg. Med. 2014, 16, 135–138. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, S.F.; Gaballah, I.F.; Rashed, L.A. Age Estimation in Living Egyptians Using Signal Joint T-cell Receptor Excision Circle Rearrangement. J. Forensic Sci. 2016, 61, 1107–1111. [Google Scholar] [CrossRef]
- Zubakov, D.; Liu, F.; van Zelm, M.C.; Vermeulen, J.; Oostra, B.A.; van Duijn, C.M.; Driessen, G.J.; van Dongen, J.J.M.; Kayser, M.; Langerak, A.W. Estimating Human Age from T-Cell DNA Rearrangements. Curr. Biol. 2010, 20, R970–R971. [Google Scholar] [CrossRef]
- Yamanoi, E.; Uchiyama, S.; Sakurada, M.; Ueno, Y. sjTREC Quantification Using SYBR Quantitative PCR for Age Estimation of Bloodstains in a Japanese Population. Leg. Med. 2018, 32, 71–74. [Google Scholar] [CrossRef]
- Ou, X.; Gao, J.; Wang, H.; Wang, H.; Lu, H.; Sun, H. Predicting Human Age with Bloodstains by sjTREC Quantification. PLoS ONE 2012, 7, e42412. [Google Scholar] [CrossRef]
- Cho, S.; Seo, H.J.; Lee, J.H.; Kim, M.Y.; Lee, S.D. Influence of Immunologic Status on Age Prediction Using Signal Joint T Cell Receptor Excision Circles. Int. J. Leg. Med. 2017, 131, 1061–1067. [Google Scholar] [CrossRef]
- Farag, A.A.; Kharboush, T.G.; Ibrahim, N.H.; Darwish, M.; Fawzy, I.M.; Bayomy, H.E.-S.; Abdelmotaleb, D.S.; Abdul Basset, S.A.B.; Abdel-Kareim, A.M.; Al mohaini, M.; et al. Exploiting Signal Joint T Cell Receptor Excision Circle to Investigate the Impact of COVID-19 and Autoimmune Diseases on Age Prediction and Immunosenescence. Biomedicines 2022, 10, 3193. [Google Scholar] [CrossRef]
- Cho, S.; Jung, S.-E.; Hong, S.R.; Lee, E.H.; Lee, J.H.; Lee, S.D.; Lee, H.Y. Independent Validation of DNA-Based Approaches for Age Prediction in Blood. Forensic Sci. Int. Genet. 2017, 29, 250–256. [Google Scholar] [CrossRef]
- Elmadawy, M.A.; Abdullah, O.A.; El Gazzar, W.B.; Ahmad, E.S.; Ameen, S.G.; Abdelkader, A. Telomere Length and Signal Joint T-Cell Receptor Rearrangement Excision Circles as Biomarkers for Chronological Age Estimation. Biomarkers 2021, 26, 168–173. [Google Scholar] [CrossRef] [PubMed]
- Song, B.; Qian, J.; Fu, J. Research Progress and Potential Application of microRNA and Other Non-Coding RNAs in Forensic Medicine. Int. J. Leg. Med. 2024, 138, 329–350. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Z.; Ishmael, D.; Lvy, Y. The Potential of Using Non-Coding RNAs in Forensic Science Applications. Forensic Sci. Res. 2023, 8, 98–106. [Google Scholar] [CrossRef] [PubMed]
- Chheda, U.; Pradeepan, S.; Esposito, E.; Strezsak, S.; Fernandez-Delgado, O.; Kranz, J. Factors Affecting Stability of RNA—Temperature, Length, Concentration, pH, and Buffering Species. J. Pharm. Sci. 2024, 113, 377–385. [Google Scholar] [CrossRef]
- Aryani, A.; Denecke, B. In Vitro Application of Ribonucleases: Comparison of the Effects on mRNA and miRNA Stability. BMC Res. Notes 2015, 8, 164. [Google Scholar] [CrossRef]
- Vennemann, M.; Koppelkamm, A. mRNA Profiling in Forensic Genetics I: Possibilities and Limitations. Forensic Sci. Int. 2010, 203, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Darnell, J.E. mRNA Structure and Function. In Progress in Nucleic Acid Research and Molecular Biology; Elsevier: Amsterdam, The Netherlands, 1977; Volume 19, pp. 493–511. ISBN 978-0-12-540019-0. [Google Scholar]
- Deng, X.-D.; Gao, Q.; Zhang, W.; Zhang, B.; Ma, Y.; Zhang, L.-X.; Muer, C.; Xie, Y.; Liu, Y. The Age-Related Expression Decline of ERCC1 and XPF for Forensic Age Estimation: A Preliminary Study. J. Forensic Leg. Med. 2017, 49, 15–19. [Google Scholar] [CrossRef]
- Zubakov, D.; Liu, F.; Kokmeijer, I.; Choi, Y.; van Meurs, J.B.J.; van IJcken, W.F.J.; Uitterlinden, A.G.; Hofman, A.; Broer, L.; van Duijn, C.M.; et al. Human Age Estimation from Blood Using mRNA, DNA Methylation, DNA Rearrangement, and Telomere Length. Forensic Sci. Int. Genet. 2016, 24, 33–43. [Google Scholar] [CrossRef]
- Dørum, G.; Hänggi, N.V.; Burri, D.; Marti, Y.; Banemann, R.; Kulstein, G.; Courts, C.; Gosch, A.; Hadrys, T.; Haas, C.; et al. Selecting mRNA Markers in Blood for Age Estimation of the Donor of a Biological Stain. Forensic Sci. Int. Genet. 2024, 68, 102976. [Google Scholar] [CrossRef]
- Fang, C.; Liu, X.; Zhao, J.; Xie, B.; Qian, J.; Liu, W.; Li, B.; Zhang, X.; Wu, H.; Yan, J. Age Estimation Using Bloodstain miRNAs Based on Massive Parallel Sequencing and Machine Learning: A Pilot Study. Forensic Sci. Int. Genet. 2020, 47, 102300. [Google Scholar] [CrossRef]
- Fang, C.; Zhou, P.; Li, R.; Guo, J.; Qiu, H.; Zhang, J.; Li, M.; Yu, C.; Meng, D.; Xu, X.; et al. Development of a Novel Forensic Age Estimation Strategy for Aged Blood Samples by Combining piRNA and miRNA Markers. Int. J. Leg. Med. 2023, 137, 1327–1335. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, C.; Wei, Y.; Zhao, Y.; Wang, C.; Lu, C.; Feng, J.; Li, S.; Cong, B. Circular RNA as a Potential Biomarker for Forensic Age Prediction. Front. Genet. 2022, 13, 825443. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, H.; Wang, C.; Fu, L.; Wang, Q.; Li, S.; Cong, B. Forensic Age Estimation from Human Blood Using Age-Related microRNAs and Circular RNAs Markers. Front. Genet. 2022, 13, 1031806. [Google Scholar] [CrossRef]
- Hansen, T.B.; Jensen, T.I.; Clausen, B.H.; Bramsen, J.B.; Finsen, B.; Damgaard, C.K.; Kjems, J. Natural RNA Circles Function as Efficient microRNA Sponges. Nature 2013, 495, 384–388. [Google Scholar] [CrossRef] [PubMed]
- Salignon, J.; Faridani, O.R.; Miliotis, T.; Janssens, G.E.; Chen, P.; Zarrouki, B.; Sandberg, R.; Davidsson, P.; Riedel, C.G. Age Prediction from Human Blood Plasma Using Proteomic and Small RNA Data: A Comparative Analysis. Aging 2023, 15, 5240. [Google Scholar] [CrossRef]
- Srettabunjong, S.; Satitsri, S.; Thongnoppakhun, W.; Tirawanchai, N. The Study on Telomere Length for Age Estimation in a Thai Population. Am. J. Forensic Med. Pathol. 2014, 35, 148–153. [Google Scholar] [CrossRef]
- Magi, F.; Dimauro, I.; Margheritini, F.; Duranti, G.; Mercatelli, N.; Fantini, C.; Ripani, F.R.; Sabatini, S.; Caporossi, D. Telomere Length Is Independently Associated with Age, Oxidative Biomarkers, and Sport Training in Skeletal Muscle of Healthy Adult Males. Free Radic. Res. 2018, 52, 639–647. [Google Scholar] [CrossRef]
- Márquez-Ruiz, A.B.; González-Herrera, L.; Valenzuela, A. Usefulness of Telomere Length in DNA from Human Teeth for Age Estimation. Int. J. Leg. Med. 2018, 132, 353–359. [Google Scholar] [CrossRef]
- Tejasvi, M.L.A.; Ck, A.A.; Reddy, E.R.; Kulkarni, P.; Bhayya, H.; Kugaji, M.S. Individuals Age Determination from Human Dental Pulp Through DNA Analysis by PCR. Glob. Med. Genet. 2021, 08, 057–061. [Google Scholar] [CrossRef]
- Castagnola, M.J.; Medina-Paz, F.; Zapico, S.C. Uncovering Forensic Evidence: A Path to Age Estimation through DNA Methylation. Int. J. Mol. Sci. 2024, 25, 4917. [Google Scholar] [CrossRef]
- Khodadadi, E.; Fahmideh, L.; Khodadadi, E.; Dao, S.; Yousefi, M.; Taghizadeh, S.; Asgharzadeh, M.; Yousefi, B.; Kafil, H.S. Current Advances in DNA Methylation Analysis Methods. BioMed Res. Int. 2021, 2021, 8827516. [Google Scholar] [CrossRef]
- Sabeeha, S.; Hasnain, S.E. Forensic Epigenetic Analysis: The Path Ahead. Med. Princ. Pract. 2019, 28, 301–308. [Google Scholar] [CrossRef]
- Parrish, R.R.; Day, J.J.; Lubin, F.D. Direct Bisulfite Sequencing for Examination of DNA Methylation with Gene and Nucleotide Resolution from Brain Tissues. Curr. Protoc. Neurosci. 2012, 60, 7–24. [Google Scholar] [CrossRef]
- Correia Dias, H.; Cordeiro, C.; Corte Real, F.; Cunha, E.; Manco, L. Age Estimation Based on DNA Methylation Using Blood Samples From Deceased Individuals. J. Forensic Sci. 2020, 65, 465–470. [Google Scholar] [CrossRef]
- Correia Dias, H.; Cunha, E.; Corte Real, F.; Manco, L. Age Prediction in Living: Forensic Epigenetic Age Estimation Based on Blood Samples. Leg. Med. 2020, 47, 101763. [Google Scholar] [CrossRef]
- Correia Dias, H.; Manco, L.; Corte Real, F.; Cunha, E. A Blood–Bone–Tooth Model for Age Prediction in Forensic Contexts. Biology 2021, 10, 1312. [Google Scholar] [CrossRef]
- Khan, N.; Bavle, R.M.; Makarla, S.; Konda, P.; Amulya, S.R.; Hosthor, S.S. Determination of Epigenetic Age through DNA Methylation of NPTX2 Gene Using Buccal Scrapes: A Pilot Study. J. Forensic Dent. Sci. 2019, 11, 147–152. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Xin, Y.; Cao, F.; Gan, Z.; Tian, Y.; Liu, W.; Shi, P. The Correlation between CpG Island Methylation of hTERT Promoter and Human Age Prediction. Leg. Med. 2023, 63, 102270. [Google Scholar] [CrossRef]
- Xin, Y.; Dong, K.; Cao, F.; Tian, Y.; Sun, J.; Peng, M.; Liu, W.; Shi, P. Studies of hTERT DNA Methylation Assays on the Human Age Prediction. Int. J. Leg. Med. 2019, 133, 1333–1339. [Google Scholar] [CrossRef]
- Kondo, M.; Aboshi, H.; Yoshikawa, M.; Ogata, A.; Murayama, R.; Takei, M.; Aizawa, S. A Newly Developed Age Estimation Method Based on CpG Methylation of Teeth-Derived DNA Using Real-Time Methylation-Specific PCR. J. Oral Sci. 2021, 63, 54–58. [Google Scholar] [CrossRef]
- Ogata, A.; Kondo, M.; Yoshikawa, M.; Okano, M.; Tsutsumi, T.; Aboshi, H. Dental Age Estimation Based on DNA Methylation Using Real-Time Methylation-Specific PCR. Forensic Sci. Int. 2022, 340, 111445. [Google Scholar] [CrossRef]
- Soedarsono, N.; Hanafi, M.G.S.; Hartomo, B.T.; Auerkari, E.I. ELOVL2, PRKG2, and EDARADD DNA Methylation Strongly Estimate Indonesian Adolescents. Diagnostics 2024, 14, 1767. [Google Scholar] [CrossRef]
- Oka, H.; Dwi Ariani, M.; Akazaki, T.; Miyauchi, M.; Kitagawa, M. Some Tips on Age Estimation Using DNA Methylation in Saliva Samples as an Index across the Japanese and Indonesian Ethnicities. Leg. Med. 2022, 56, 102042. [Google Scholar] [CrossRef] [PubMed]
- Hamano, Y.; Manabe, S.; Morimoto, C.; Fujimoto, S.; Ozeki, M.; Tamaki, K. Forensic Age Prediction for Dead or Living Samples by Use of Methylation-Sensitive High Resolution Melting. Leg. Med. 2016, 21, 5–10. [Google Scholar] [CrossRef] [PubMed]
- Hamano, Y.; Manabe, S.; Morimoto, C.; Fujimoto, S.; Tamaki, K. Forensic Age Prediction for Saliva Samples Using Methylation-Sensitive High Resolution Melting: Exploratory Application for Cigarette Butts. Sci. Rep. 2017, 7, 10444. [Google Scholar] [CrossRef] [PubMed]
- Giuliani, C.; Cilli, E.; Bacalini, M.G.; Pirazzini, C.; Sazzini, M.; Gruppioni, G.; Franceschi, C.; Garagnani, P.; Luiselli, D. Inferring Chronological Age from DNA Methylation Patterns of Human Teeth. Am. J. Phys. Anthr. 2016, 159, 585–595. [Google Scholar] [CrossRef]
- Yi, S.H.; Xu, L.C.; Mei, K.; Yang, R.Z.; Huang, D.X. Isolation and Identification of Age-Related DNA Methylation Markers for Forensic Age-Prediction. Forensic Sci. Int. Genet. 2014, 11, 117–125. [Google Scholar] [CrossRef]
- Freire-Aradas, A.; Girón-Santamaría, L.; Mosquera-Miguel, A.; Ambroa-Conde, A.; Phillips, C.; Casares De Cal, M.; Gómez-Tato, A.; Álvarez-Dios, J.; Pospiech, E.; Aliferi, A.; et al. A Common Epigenetic Clock from Childhood to Old Age. Forensic Sci. Int. Genet. 2022, 60, 102743. [Google Scholar] [CrossRef]
- Freire-Aradas, A.; Phillips, C.; Mosquera-Miguel, A.; Girón-Santamaría, L.; Gómez-Tato, A.; Casares De Cal, M.; Álvarez-Dios, J.; Ansede-Bermejo, J.; Torres-Español, M.; Schneider, P.M.; et al. Development of a Methylation Marker Set for Forensic Age Estimation Using Analysis of Public Methylation Data and the Agena Bioscience EpiTYPER System. Forensic Sci. Int. Genet. 2016, 24, 65–74. [Google Scholar] [CrossRef]
- Freire-Aradas, A.; Phillips, C.; Girón-Santamaría, L.; Mosquera-Miguel, A.; Gómez-Tato, A.; Casares De Cal, M.Á.; Álvarez-Dios, J.; Lareu, M.V. Tracking Age-Correlated DNA Methylation Markers in the Young. Forensic Sci. Int. Genet. 2018, 36, 50–59. [Google Scholar] [CrossRef]
- Aanes, H.; Bleka, Ø.; Dahlberg, P.S.; Carm, K.T.; Lehtimäki, T.; Raitakari, O.; Kähönen, M.; Hurme, M.; Rolseth, V. A New Blood Based Epigenetic Age Predictor for Adolescents and Young Adults. Sci. Rep. 2023, 13, 2303. [Google Scholar] [CrossRef]
- Bocklandt, S.; Lin, W.; Sehl, M.E.; Sánchez, F.J.; Sinsheimer, J.S.; Horvath, S.; Vilain, E. Epigenetic Predictor of Age. PLoS ONE 2011, 6, e14821. [Google Scholar] [CrossRef]
- Zhang, J.; Fu, H.; Xu, Y. Age Prediction of Human Based on DNA Methylation by Blood Tissues. Genes 2021, 12, 870. [Google Scholar] [CrossRef] [PubMed]
- Refn, M.R.; Andersen, M.M.; Kampmann, M.-L.; Tfelt-Hansen, J.; Sørensen, E.; Larsen, M.H.; Morling, N.; Børsting, C.; Pereira, V. Longitudinal Changes and Variation in Human DNA Methylation Analysed with the Illumina MethylationEPIC BeadChip Assay and Their Implications on Forensic Age Prediction. Sci. Rep. 2023, 13, 21658. [Google Scholar] [CrossRef]
- Amiri Roudbar, M.; Mousavi, S.F.; Salek Ardestani, S.; Lopes, F.B.; Momen, M.; Gianola, D.; Khatib, H. Prediction of Biological Age and Evaluation of Genome-Wide Dynamic Methylomic Changes throughout Human Aging. G3 Genes|Genomes|Genetics 2021, 11, jkab112. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.R.; Jung, S.-E.; Lee, E.H.; Shin, K.-J.; Yang, W.I.; Lee, H.Y. DNA Methylation-Based Age Prediction from Saliva: High Age Predictability by Combination of 7 CpG Markers. Forensic Sci. Int. Genet. 2017, 29, 118–125. [Google Scholar] [CrossRef]
- Lau, P.Y.; Fung, W.K. Evaluation of Marker Selection Methods and Statistical Models for Chronological Age Prediction Based on DNA Methylation. Leg. Med. 2020, 47, 101744. [Google Scholar] [CrossRef]
- Alsaleh, H.; Haddrill, P.R. Identifying Blood-Specific Age-Related DNA Methylation Markers on the Illumina MethylationEPIC® BeadChip. Forensic Sci. Int. 2019, 303, 109944. [Google Scholar] [CrossRef]
- Lee, J.E.; Park, S.U.; So, M.H.; Lee, H.Y. Age Prediction Using DNA Methylation of Y-Chromosomal CpGs in Semen Samples. Forensic Sci. Int. Genet. 2024, 69, 103007. [Google Scholar] [CrossRef]
- Lee, H.Y.; Hong, S.R.; Lee, J.E.; Hwang, I.K.; Kim, N.Y.; Lee, J.M.; Fleckhaus, J.; Jung, S.-E.; Lee, Y.H. Epigenetic Age Signatures in Bones. Forensic Sci. Int. Genet. 2020, 46, 102261. [Google Scholar] [CrossRef]
- Jung, J.Y.; So, M.H.; Jeong, K.; Kim, S.; Kim, E.J.; Park, J.H.; Kim, E.; Lee, H.Y. Epigenetic Age Prediction Using Costal Cartilage for the Investigation of Disaster Victims and Missing Persons. J. Forensic Sci. 2024, 69, 1578–1586. [Google Scholar] [CrossRef]
- Hong, S.R.; Shin, K.-J.; Jung, S.-E.; Lee, E.H.; Lee, H.Y. Platform-Independent Models for Age Prediction Using DNA Methylation Data. Forensic Sci. Int. Genet. 2019, 38, 39–47. [Google Scholar] [CrossRef]
- Hong, S.R.; Shin, K.-J. Can We Integrate Method-Specific Age-Predictive Models?: Analysis Method-Induced Differences in Detected DNA Methylation Status. Forensic Sci. Int. Genet. 2023, 62, 102805. [Google Scholar] [CrossRef]
- Guan, X.; Ohuchi, T.; Hashiyada, M.; Funayama, M. Age-Related DNA Methylation Analysis for Forensic Age Estimation Using Post-Mortem Blood Samples from Japanese Individuals. Leg. Med. 2021, 53, 101917. [Google Scholar] [CrossRef]
- Becker, J.; Bühren, V.; Schmelzer, L.; Reckert, A.; Eickhoff, S.B.; Ritz, S.; Naue, J. Molecular Age Prediction Using Skull Bone Samples from Individuals with and without Signs of Decomposition: A Multivariate Approach Combining Analysis of Posttranslational Protein Modifications and DNA Methylation. Int. J. Leg. Med. 2025, 139, 157–174. [Google Scholar] [CrossRef]
- Woźniak, A.; Piniewska-Róg, D.; Pośpiech, E.; Xavier, C.; Pisarek, A.; Kartasińska, E.; Boroń, M.; Freire-Aradas, A.; Wojtas, M.; De La Puente, M.; et al. Development of the VISAGE Enhanced Tool and Statistical Models for Epigenetic Age Estimation in Blood, Buccal Cells and Bones. Aging 2021, 13, 6459–6484. [Google Scholar] [CrossRef]
- Aliferi, A.; Ballard, D.; Gallidabino, M.D.; Thurtle, H.; Barron, L.; Syndercombe Court, D. DNA Methylation-Based Age Prediction Using Massively Parallel Sequencing Data and Multiple Machine Learning Models. Forensic Sci. Int. Genet. 2018, 37, 215–226. [Google Scholar] [CrossRef] [PubMed]
- Naue, J.; Hoefsloot, H.C.J.; Mook, O.R.F.; Rijlaarsdam-Hoekstra, L.; Van Der Zwalm, M.C.H.; Henneman, P.; Kloosterman, A.D.; Verschure, P.J. Chronological Age Prediction Based on DNA Methylation: Massive Parallel Sequencing and Random Forest Regression. Forensic Sci. Int. Genet. 2017, 31, 19–28. [Google Scholar] [CrossRef]
- Naue, J.; Sänger, T.; Hoefsloot, H.C.J.; Lutz-Bonengel, S.; Kloosterman, A.D.; Verschure, P.J. Proof of Concept Study of Age-Dependent DNA Methylation Markers across Different Tissues by Massive Parallel Sequencing. Forensic Sci. Int. Genet. 2018, 36, 152–159. [Google Scholar] [CrossRef]
- Ochana, B.-L.; Nudelman, D.; Cohen, D.; Peretz, A.; Piyanzin, S.; Gal, O.; Horn, A.; Loyfer, N.; Varshavsky, M.; Raisch, R.; et al. Time Is Encoded by Methylation Changes at Clustered CpG Sites. bioRxiv 2024. [Google Scholar] [CrossRef]
- Refn, M.R.; Kampmann, M.-L.; Vyöni, A.; Tfelt-Hansen, J.; Sørensen, E.; Ostrowski, S.R.; Kongstad, M.; Aliferi, A.; Giangasparo, F.; Morling, N.; et al. Independent Evaluation of an 11-CpG Panel for Age Estimation in Blood. Forensic Sci. Int. Genet. 2025, 76, 103214. [Google Scholar] [CrossRef]
- Heidegger, A.; Pisarek, A.; De La Puente, M.; Niederstätter, H.; Pośpiech, E.; Woźniak, A.; Schury, N.; Unterländer, M.; Sidstedt, M.; Junker, K.; et al. Development and Inter-Laboratory Validation of the VISAGE Enhanced Tool for Age Estimation from Semen Using Quantitative DNA Methylation Analysis. Forensic Sci. Int. Genet. 2022, 56, 102596. [Google Scholar] [CrossRef]
- Pisarek, A.; Heidegger, A.; Xavier, C.; Papież, A.; Piniewska-Róg, D.; Kalamara, V.; Potabattula, R.; Bochenek, M.; Sikora-Polaczek, M.; Macur, A.; et al. Epigenetic Age Prediction in Semen—Marker Selection and Model Development. Aging 2021, 13, 19145–19164. [Google Scholar] [CrossRef] [PubMed]
- Freire-Aradas, A.; Tomsia, M.; Piniewska-Róg, D.; Ambroa-Conde, A.; Casares De Cal, M.; Pisarek, A.; Gómez-Tato, A.; Álvarez-Dios, J.; Pośpiech, E.; Parson, W.; et al. Development of an Epigenetic Age Predictor for Costal Cartilage with a Simultaneous Somatic Tissue Differentiation System. Forensic Sci. Int. Genet. 2023, 67, 102936. [Google Scholar] [CrossRef]
- Piniewska-Róg, D.; Heidegger, A.; Pośpiech, E.; Xavier, C.; Pisarek, A.; Jarosz, A.; Woźniak, A.; Wojtas, M.; Phillips, C.; Kayser, M.; et al. Impact of Excessive Alcohol Abuse on Age Prediction Using the VISAGE Enhanced Tool for Epigenetic Age Estimation in Blood. Int. J. Leg. Med. 2021, 135, 2209–2219. [Google Scholar] [CrossRef]
- Pośpiech, E.; Pisarek, A.; Rudnicka, J.; Noroozi, R.; Boroń, M.; Masny, A.; Wysocka, B.; Migacz-Gruszka, K.; Lisman, D.; Pruszkowska-Przybylska, P.; et al. Introduction of a Multiplex Amplicon Sequencing Assay to Quantify DNA Methylation in Target Cytosine Markers Underlying Four Selected Epigenetic Clocks. Clin. Epigenet 2023, 15, 128. [Google Scholar] [CrossRef]
- VISAGE Consortium VISAGE Consortium. Available online: https://www.visage-h2020.eu/ (accessed on 25 March 2025).
- Vidaki, A.; González, D.M.; Jiménez, B.P.; Kayser, M. Male-Specific Age Estimation Based on Y-Chromosomal DNA Methylation. Aging 2021, 13, 6442–6458. [Google Scholar] [CrossRef]
- Llobet, M.O.; Johansson, Å.; Gyllensten, U.; Allen, M.; Enroth, S. Forensic Prediction of Sex, Age, Height, Body Mass Index, Hip-to-Waist Ratio, Smoking Status and Lipid Lowering Drugs Using Epigenetic Markers and Plasma Proteins. Forensic Sci. Int. Genet. 2023, 65, 102871. [Google Scholar] [CrossRef]
- Mawlood, S.K.; Dennany, L.; Watson, N.; Dempster, J.; Pickard, B.S. Quantification of Global Mitochondrial DNA Methylation Levels and Inverse Correlation with Age at Two CpG Sites. Aging 2016, 8, 636–641. [Google Scholar] [CrossRef]
- Onofri, M.; Delicati, A.; Marcante, B.; Carlini, L.; Alessandrini, F.; Tozzo, P.; Carnevali, E. Forensic Age Estimation through a DNA Methylation-Based Age Prediction Model in the Italian Population: A Pilot Study. IJMS 2023, 24, 5381. [Google Scholar] [CrossRef]
- Grignani, P.; Bertoglio, B.; Monti, M.C.; Cuoghi Costantini, R.; Ricci, U.; Onofri, M.; Fattorini, P.; Previderè, C. Age Estimation of Burnt Human Remains through DNA Methylation Analysis. Int. J. Leg. Med. 2025, 139, 175–185. [Google Scholar] [CrossRef]
- Dias, H.C.; Cordeiro, C.; Pereira, J.; Pinto, C.; Real, F.C.; Cunha, E.; Manco, L. DNA Methylation Age Estimation in Blood Samples of Living and Deceased Individuals Using a Multiplex SNaPshot Assay. Forensic Sci. Int. 2020, 311, 110267. [Google Scholar] [CrossRef]
- Han, X.; Xiao, C.; Yi, S.; Li, Y.; Chen, M.; Huang, D. Accurate Age Estimation from Blood Samples of Han Chinese Individuals Using Eight High-Performance Age-Related CpG Sites. Int. J. Leg. Med. 2022, 136, 1655–1665. [Google Scholar] [CrossRef]
- Ye, Z.; Jiang, L.; Zhao, M.; Liu, J.; Dai, H.; Hou, Y.; Wang, Z. Epigenome-Wide Screening of CpG Markers to Develop a Multiplex Methylation SNaPshot Assay for Age Prediction. Leg. Med. 2022, 59, 102115. [Google Scholar] [CrossRef]
- Filoglu, G.; Sımsek, S.Z.; Ersoy, G.; Can, K.; Bulbul, O. Epigenetic-based Age Prediction in Blood Samples: Model Development. J. Forensic Sci. 2024, 69, 869–879. [Google Scholar] [CrossRef]
- Jiang, L.; Zhang, K.; Wei, X.; Li, J.; Wang, S.; Wang, Z.; Zhou, Y.; Zha, L.; Luo, H.; Song, F. Developing a Male-Specific Age Predictive Model Based on Y-CpGs for Forensic Analysis. Forensic Sci. Int. 2023, 343, 111566. [Google Scholar] [CrossRef]
- Pan, C.; Yi, S.; Xiao, C.; Huang, Y.; Chen, X.; Huang, D. The Evaluation of Seven Age-Related CpGs for Forensic Purpose in Blood from Chinese Han Population. Forensic Sci. Int. Genet. 2020, 46, 102251. [Google Scholar] [CrossRef]
- Marcante, B.; Delicati, A.; Onofri, M.; Tozzo, P.; Caenazzo, L. Estimation of Human Chronological Age from Buccal Swab Samples through a DNA Methylation Analysis Approach of a Five-Locus Multiple Regression Model. IJMS 2024, 25, 935. [Google Scholar] [CrossRef]
- Carlsen, L.; Holländer, O.; Danzer, M.F.; Vennemann, M.; Augustin, C. DNA Methylation-Based Age Estimation for Adults and Minors: Considering Sex-Specific Differences and Non-Linear Correlations. Int. J. Leg. Med. 2023, 137, 635–643. [Google Scholar] [CrossRef]
- Takahashi, Y.; Asari, M.; Isozaki, S.; Hoshina, C.; Okuda, K.; Mori, K.; Namba, R.; Ochiai, W.; Shimizu, K. Age Prediction by Methylation Analysis of Small Amounts of DNA Using Locked Nucleic Acids. J. Forensic Sci. 2023, 68, 267–274. [Google Scholar] [CrossRef] [PubMed]
- Ambroa-Conde, A.; Girón-Santamaría, L.; Mosquera-Miguel, A.; Phillips, C.; Casares De Cal, M.A.; Gómez-Tato, A.; Álvarez-Dios, J.; De La Puente, M.; Ruiz-Ramírez, J.; Lareu, M.V.; et al. Epigenetic Age Estimation in Saliva and in Buccal Cells. Forensic Sci. Int. Genet. 2022, 61, 102770. [Google Scholar] [CrossRef]
- Jung, S.-E.; Lim, S.M.; Hong, S.R.; Lee, E.H.; Shin, K.-J.; Lee, H.Y. DNA Methylation of the ELOVL2, FHL2, KLF14, C1orf132/MIR29B2C, and TRIM59 Genes for Age Prediction from Blood, Saliva, and Buccal Swab Samples. Forensic Sci. Int. Genet. 2019, 38, 1–8. [Google Scholar] [CrossRef] [PubMed]
- So, M.H.; Lee, H.Y. Genetic Analyzer-dependent DNA Methylation Detection and Its Application to Existing Age Prediction Models. Electrophoresis 2021, 42, 1497–1506. [Google Scholar] [CrossRef]
- Hao, T.; Guo, J.; Liu, J.; Wang, J.; Liu, Z.; Cheng, X.; Li, J.; Ren, J.; Li, Z.; Yan, J.; et al. Predicting Human Age by Detecting DNA Methylation Status in Hair. Electrophoresis 2021, 42, 1255–1261. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.Y.; Jung, S.-E.; Oh, Y.N.; Choi, A.; Yang, W.I.; Shin, K.-J. Epigenetic Age Signatures in the Forensically Relevant Body Fluid of Semen: A Preliminary Study. Forensic Sci. Int. Genet. 2015, 19, 28–34. [Google Scholar] [CrossRef]
- Lee, J.W.; Choung, C.M.; Jung, J.Y.; Lee, H.Y.; Lim, S.-K. A Validation Study of DNA Methylation-Based Age Prediction Using Semen in Forensic Casework Samples. Leg. Med. 2018, 31, 74–77. [Google Scholar] [CrossRef] [PubMed]
- Er, S.; Abik, Z.; Ersoy, G.; Filoglu, G.; Ozkara, H.; Bulbul, O. A Semen-specific Deoxyribonucleic Acid Methylation Model for Epigenetic Age Estimation and Its Robustness under Environmental Challenges. Electrophoresis 2024, 45, 1820–1833. [Google Scholar] [CrossRef]
- Xiao, C.; Li, Y.; Chen, M.; Yi, S.; Huang, D. Improved Age Estimation from Semen Using Sperm-Specific Age-Related CpG Markers. Forensic Sci. Int. Genet. 2023, 67, 102941. [Google Scholar] [CrossRef]
- So, M.H.; Lee, J.E.; Lee, H.Y. Strategies to Deal with Genetic Analyzer-specific DNA Methylation Measurements. Electrophoresis 2024, 45, 906–915. [Google Scholar] [CrossRef]
- Reed, K.; Poulin, M.L.; Yan, L.; Parissenti, A.M. Comparison of Bisulfite Sequencing PCR with Pyrosequencing for Measuring Differences in DNA Methylation. Anal. Biochem. 2010, 397, 96–106. [Google Scholar] [CrossRef]
- Yang, F.; Qian, J.; Qu, H.; Ji, Z.; Li, J.; Hu, W.; Cheng, F.; Fang, X.; Yan, J. DNA Methylation-based Age Prediction with Bloodstains Using Pyrosequencing and Random Forest Regression. Electrophoresis 2023, 44, 835–844. [Google Scholar] [CrossRef]
- Fan, H.; Xie, Q.; Zhang, Z.; Wang, J.; Chen, X.; Qiu, P. Chronological Age Prediction: Developmental Evaluation of DNA Methylation-Based Machine Learning Models. Front. Bioeng. Biotechnol. 2022, 9, 819991. [Google Scholar] [CrossRef]
- Park, J.-L.; Kim, J.H.; Seo, E.; Bae, D.H.; Kim, S.-Y.; Lee, H.-C.; Woo, K.-M.; Kim, Y.S. Identification and Evaluation of Age-Correlated DNA Methylation Markers for Forensic Use. Forensic Sci. Int. Genet. 2016, 23, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Ji, Z.; Xing, Y.; Li, J.; Feng, X.; Yang, F.; Zhu, B.; Yan, J. Male-Specific Age Prediction Based on Y-Chromosome DNA Methylation with Blood Using Pyrosequencing. Forensic Sci. Int. Genet. 2024, 71, 103050. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Yan, J.; Hou, J.; Fu, X.; Li, L.; Hou, Y. Developing a DNA Methylation Assay for Human Age Prediction in Blood and Bloodstain. Forensic Sci. Int. Genet. 2015, 17, 129–136. [Google Scholar] [CrossRef]
- Spólnicka, M.; Pośpiech, E.; Pepłońska, B.; Zbieć-Piekarska, R.; Makowska, Ż.; Pięta, A.; Karłowska-Pik, J.; Ziemkiewicz, B.; Wężyk, M.; Gasperowicz, P.; et al. DNA Methylation in ELOVL2 and C1orf132 Correctly Predicted Chronological Age of Individuals from Three Disease Groups. Int. J. Leg. Med. 2018, 132, 1–11. [Google Scholar] [CrossRef]
- Zbieć-Piekarska, R.; Spólnicka, M.; Kupiec, T.; Parys-Proszek, A.; Makowska, Ż.; Pałeczka, A.; Kucharczyk, K.; Płoski, R.; Branicki, W. Development of a Forensically Useful Age Prediction Method Based on DNA Methylation Analysis. Forensic Sci. Int. Genet. 2015, 17, 173–179. [Google Scholar] [CrossRef]
- Zbieć-Piekarska, R.; Spólnicka, M.; Kupiec, T.; Makowska, Ż.; Spas, A.; Parys-Proszek, A.; Kucharczyk, K.; Płoski, R.; Branicki, W. Examination of DNA Methylation Status of the ELOVL2 Marker May Be Useful for Human Age Prediction in Forensic Science. Forensic Sci. Int. Genet. 2015, 14, 161–167. [Google Scholar] [CrossRef]
- Thong, Z.; Tan, J.Y.Y.; Loo, E.S.; Phua, Y.W.; Chan, X.L.S.; Syn, C.K.-C. Artificial Neural Network, Predictor Variables and Sensitivity Threshold for DNA Methylation-Based Age Prediction Using Blood Samples. Sci. Rep. 2021, 11, 1744. [Google Scholar] [CrossRef]
- Smeers, I.; Decorte, R.; Van De Voorde, W.; Bekaert, B. Evaluation of Three Statistical Prediction Models for Forensic Age Prediction Based on DNA Methylation. Forensic Sci. Int. Genet. 2018, 34, 128–133. [Google Scholar] [CrossRef]
- Feng, L.; Peng, F.; Li, S.; Jiang, L.; Sun, H.; Ji, A.; Zeng, C.; Li, C.; Liu, F. Systematic Feature Selection Improves Accuracy of Methylation-Based Forensic Age Estimation in Han Chinese Males. Forensic Sci. Int. Genet. 2018, 35, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Fleckhaus, J.; Bugert, P.; Al-Rashedi, N.A.M.; Rothschild, M.A. Investigation of the Impact of Biogeographic Ancestry on DNA Methylation Based Age Predictions Comparing a Middle East and a Central European Population. Forensic Sci. Int. Genet. 2023, 67, 102923. [Google Scholar] [CrossRef]
- Anaya, Y.; Yew, P.; Roberts, K.A.; Hardy, W.R. DNA Methylation of Decedent Blood Samples to Estimate the Chronological Age of Human Remains. Int. J. Leg. Med. 2021, 135, 2163–2173. [Google Scholar] [CrossRef]
- Xiao, C.; Yi, S.; Huang, D. Genome-wide Identification of Age-related CpG Sites for Age Estimation from Blood DNA of Han Chinese Individuals. Electrophoresis 2021, 42, 1488–1496. [Google Scholar] [CrossRef] [PubMed]
- Kampmann, M.-L.; Fleckhaus, J.; Børsting, C.; Jurtikova, H.; Piters, A.; Papin, J.; Gauthier, Q.; Ghemrawi, M.; Doutremepuich, C.; McCord, B.; et al. Collaborative Exercise: Analysis of Age Estimation Using a QIAGEN Protocol and the PyroMark Q48 Platform. Forensic Sci. Res. 2024, 9, owad055. [Google Scholar] [CrossRef]
- Sukawutthiya, P.; Sathirapatya, T.; Vongpaisarnsin, K. A Minimal Number CpGs of ELOVL2 Gene for a Chronological Age Estimation Using Pyrosequencing. Forensic Sci. Int. 2021, 318, 110631. [Google Scholar] [CrossRef] [PubMed]
- Guan, Z.; Wang, J.; Liu, Z.; Yang, C.; Xu, X.; Wang, X.; Zhang, G. Epigenetic Age Estimation by Detecting DNA Methylation Status in Buccal Swabs. Electrophoresis 2024, 45, 2012–2018. [Google Scholar] [CrossRef]
- Shiga, M.; Asari, M.; Takahashi, Y.; Isozaki, S.; Hoshina, C.; Mori, K.; Namba, R.; Okuda, K.; Shimizu, K. DNA Methylation-Based Age Estimation and Quantification of the Degradation Levels of Bisulfite-Converted DNA. Leg. Med. 2024, 67, 102336. [Google Scholar] [CrossRef]
- Koop, B.E.; Mayer, F.; Gündüz, T.; Blum, J.; Becker, J.; Schaffrath, J.; Wagner, W.; Han, Y.; Boehme, P.; Ritz-Timme, S. Postmortem Age Estimation via DNA Methylation Analysis in Buccal Swabs from Corpses in Different Stages of Decomposition-a “Proof of Principle” Study. Int. J. Leg. Med. 2021, 135, 167–173. [Google Scholar] [CrossRef]
- Mayer, F.; Becker, J.; Reinauer, C.; Böhme, P.; Eickhoff, S.B.; Koop, B.; Gündüz, T.; Blum, J.; Wagner, W.; Ritz-Timme, S. Altered DNA Methylation at Age-Associated CpG Sites in Children with Growth Disorders: Impact on Age Estimation? Int. J. Leg. Med. 2022, 136, 987–996. [Google Scholar] [CrossRef]
- Becker, J.; Böhme, P.; Reckert, A.; Eickhoff, S.B.; Koop, B.E.; Blum, J.; Gündüz, T.; Takayama, M.; Wagner, W.; Ritz-Timme, S. Evidence for Differences in DNA Methylation between Germans and Japanese. Int. J. Leg. Med. 2022, 136, 405–413. [Google Scholar] [CrossRef]
- Siahaan, T.; Reckert, A.; Becker, J.; Eickhoff, S.B.; Koop, B.; Gündüz, T.; Böhme, P.; Mayer, F.; Küppers, L.; Wagner, W.; et al. Molecular and Morphological Findings in a Sample of Oral Surgery Patients: What Can We Learn for Multivariate Concepts for Age Estimation? J. Forensic Sci. 2021, 66, 1524–1532. [Google Scholar] [CrossRef] [PubMed]
- Pfeifer, M.; Bajanowski, T.; Helmus, J.; Poetsch, M. Inter-Laboratory Adaption of Age Estimation Models by DNA Methylation Analysis—Problems and Solutions. Int. J. Leg. Med. 2020, 134, 953–961. [Google Scholar] [CrossRef] [PubMed]
- Alghanim, H.; Antunes, J.; Silva, D.S.B.S.; Alho, C.S.; Balamurugan, K.; McCord, B. Detection and Evaluation of DNA Methylation Markers Found at SCGN and KLF14 Loci to Estimate Human Age. Forensic Sci. Int. Genet. 2017, 31, 81–88. [Google Scholar] [CrossRef]
- Bekaert, B.; Kamalandua, A.; Zapico, S.C.; Van De Voorde, W.; Decorte, R. Improved Age Determination of Blood and Teeth Samples Using a Selected Set of DNA Methylation Markers. Epigenetics 2015, 10, 922–930. [Google Scholar] [CrossRef]
- Li, L.; Song, F.; Lang, M.; Hou, J.; Wang, Z.; Prinz, M.; Hou, Y. Methylation-Based Age Prediction Using Pyrosequencing Platform from Seminal Stains in Han Chinese Males. J. Forensic Sci. 2020, 65, 610–619. [Google Scholar] [CrossRef]
- Soares Bispo Santos Silva, D.; Antunes, J.; Balamurugan, K.; Duncan, G.; Sampaio Alho, C.; McCord, B. Evaluation of DNA Methylation Markers and Their Potential to Predict Human Aging. Electrophoresis 2015, 36, 1775–1780. [Google Scholar] [CrossRef]
- Fokias, K.; Dierckx, L.; Van De Voorde, W.; Bekaert, B. Age Determination through DNA Methylation Patterns in Fingernails and Toenails. Forensic Sci. Int. Genet. 2023, 64, 102846. [Google Scholar] [CrossRef] [PubMed]
- Fokias, K.; Dierckx, L.; Van De Voorde, W.; Bekaert, B. Improving the Age Estimation Model for Toenails. Forensic Sci. Int. Genet. 2023, 66, 102911. [Google Scholar] [CrossRef]
- Weidner, C.I.; Lin, Q.; Koch, C.M.; Eisele, L.; Beier, F.; Ziegler, P.; Bauerschlag, D.O.; Jöckel, K.-H.; Erbel, R.; Mühleisen, T.W.; et al. Aging of Blood Can Be Tracked by DNA Methylation Changes at Just Three CpG Sites. Genome Biol. 2014, 15, R24. [Google Scholar] [CrossRef]
- Márquez-Ruiz, A.B.; González-Herrera, L.; Luna, J.D.D.; Valenzuela, A. DNA Methylation Levels and Telomere Length in Human Teeth: Usefulness for Age Estimation. Int. J. Leg. Med. 2020, 134, 451–459. [Google Scholar] [CrossRef]
- Zapico, S.C.; Gauthier, Q.; Antevska, A.; McCord, B.R. Identifying Methylation Patterns in Dental Pulp Aging: Application to Age-at-Death Estimation in Forensic Anthropology. Int. J. Mol. Sci. 2021, 22, 3717. [Google Scholar] [CrossRef] [PubMed]
- Yuen, Z.W.-S.; Shanmuganandam, S.; Stanley, M.; Jiang, S.; Hein, N.; Daniel, R.; McNevin, D.; Jack, C.; Eyras, E. Profiling Age and Body Fluid DNA Methylation Markers Using Nanopore Adaptive Sampling. Forensic Sci. Int. Genet. 2024, 71, 103048. [Google Scholar] [CrossRef]
- De Bruin, D.D.S.H.; Haagmans, M.A.; Van Der Gaag, K.J.; Hoogenboom, J.; Weiler, N.E.C.; Tesi, N.; Salazar, A.; Zhang, Y.; Holstege, H.; Reinders, M.; et al. Exploring Nanopore Direct Sequencing Performance of Forensic STRs, SNPs, InDels, and DNA Methylation Markers in a Single Assay. Forensic Sci. Int. Genet. 2025, 74, 103154. [Google Scholar] [CrossRef]
- Noroozi, R.; Rudnicka, J.; Pisarek, A.; Wysocka, B.; Masny, A.; Boroń, M.; Migacz-Gruszka, K.; Pruszkowska-Przybylska, P.; Kobus, M.; Lisman, D.; et al. Analysis of Epigenetic Clocks Links Yoga, Sleep, Education, Reduced Meat Intake, Coffee, and a SOCS2 Gene Variant to Slower Epigenetic Aging. GeroScience 2023, 46, 2583–2604. [Google Scholar] [CrossRef]
- Manco, L.; Dias, H.C. DNA Methylation Analysis of ELOVL2 Gene Using Droplet Digital PCR for Age Estimation Purposes. Forensic Sci. Int. 2022, 333, 111206. [Google Scholar] [CrossRef] [PubMed]
- Dias, H.C.; Manco, L. Predicting Age from Blood by Droplet Digital PCR Using a Set of Three DNA Methylation Markers. Forensic Sci. Int. 2024, 356, 111950. [Google Scholar] [CrossRef] [PubMed]
- Ho Lee, M.; Hee Hwang, J.; Min Seong, K.; Jin Ahn, J.; Jun Kim, S.; Yong Hwang, S.; Lim, S.-K. Application of Droplet Digital PCR Method for DNA Methylation-Based Age Prediction from Saliva. Leg. Med. 2022, 54, 101992. [Google Scholar] [CrossRef]
- Mawlood, S.K.; Dennany, L.; Watson, N.; Pickard, B.S. The EpiTect Methyl qPCR Assay as Novel Age Estimation Method in Forensic Biology. Forensic Sci. Int. 2016, 264, 132–138. [Google Scholar] [CrossRef]
- Li, Y.; Liu, X.; Chen, M.; Yi, S.; He, X.; Xiao, C.; Huang, D. DNA Methylation-Based Age Estimation from Semen: Genome-Wide Marker Identification and Model Development. Forensic Sci. Int. Genet. 2025, 76, 103215. [Google Scholar] [CrossRef]
- Qian, Y.; Peng, Q.; Qian, Q.; Gao, X.; Liu, X.; Li, Y.; Fan, X.; Cheng, Y.; Yuan, N.; Hadi, S.; et al. A Methylation Panel of 10 CpGs for Accurate Age Inference via Stepwise Conditional Epigenome-Wide Association Study. Int. J. Leg. Med. 2024. [Google Scholar] [CrossRef] [PubMed]
- Freire-Aradas, A.; Pośpiech, E.; Aliferi, A.; Girón-Santamaría, L.; Mosquera-Miguel, A.; Pisarek, A.; Ambroa-Conde, A.; Phillips, C.; Casares De Cal, M.A.; Gómez-Tato, A.; et al. A Comparison of Forensic Age Prediction Models Using Data From Four DNA Methylation Technologies. Front. Genet. 2020, 11, 932. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Jiang, F.; Ouyang, F.; Zhang, J.; Wang, Z.; Shen, X. DNA Methylation Markers in Combination with Skeletal and Dental Ages to Improve Age Estimation in Children. Forensic Sci. Int. Genet. 2018, 33, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Qu, H.; Wang, G.; Xie, B.; Shi, Y.; Yang, Y.; Zhao, Z.; Hu, L.; Fang, X.; Yan, J.; et al. A Novel Strategy for Forensic Age Prediction by DNA Methylation and Support Vector Regression Model. Sci. Rep. 2015, 5, 17788. [Google Scholar] [CrossRef]
- Montesanto, A.; D’Aquila, P.; Lagani, V.; Paparazzo, E.; Geracitano, S.; Formentini, L.; Giacconi, R.; Cardelli, M.; Provinciali, M.; Bellizzi, D.; et al. A New Robust Epigenetic Model for Forensic Age Prediction. J. Forensic Sci. 2020, 65, 1424–1431. [Google Scholar] [CrossRef]
- Schwender, K.; Holländer, O.; Klopfleisch, S.; Eveslage, M.; Danzer, M.F.; Pfeiffer, H.; Vennemann, M. Development of Two Age Estimation Models for Buccal Swab Samples Based on 3 CpG Sites Analyzed with Pyrosequencing and Minisequencing. Forensic Sci. Int. Genet. 2021, 53, 102521. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marcante, B.; Marino, L.; Cattaneo, N.E.; Delicati, A.; Tozzo, P.; Caenazzo, L. Advancing Forensic Human Chronological Age Estimation: Biochemical, Genetic, and Epigenetic Approaches from the Last 15 Years: A Systematic Review. Int. J. Mol. Sci. 2025, 26, 3158. https://doi.org/10.3390/ijms26073158
Marcante B, Marino L, Cattaneo NE, Delicati A, Tozzo P, Caenazzo L. Advancing Forensic Human Chronological Age Estimation: Biochemical, Genetic, and Epigenetic Approaches from the Last 15 Years: A Systematic Review. International Journal of Molecular Sciences. 2025; 26(7):3158. https://doi.org/10.3390/ijms26073158
Chicago/Turabian StyleMarcante, Beatrice, Laura Marino, Narjis Elisa Cattaneo, Arianna Delicati, Pamela Tozzo, and Luciana Caenazzo. 2025. "Advancing Forensic Human Chronological Age Estimation: Biochemical, Genetic, and Epigenetic Approaches from the Last 15 Years: A Systematic Review" International Journal of Molecular Sciences 26, no. 7: 3158. https://doi.org/10.3390/ijms26073158
APA StyleMarcante, B., Marino, L., Cattaneo, N. E., Delicati, A., Tozzo, P., & Caenazzo, L. (2025). Advancing Forensic Human Chronological Age Estimation: Biochemical, Genetic, and Epigenetic Approaches from the Last 15 Years: A Systematic Review. International Journal of Molecular Sciences, 26(7), 3158. https://doi.org/10.3390/ijms26073158