Loosening the Lid on Shoulder Osteoarthritis: How the Transcriptome and Metabolic Syndrome Correlate with End-Stage Disease
Abstract
1. Introduction
2. Main Points
2.1. Inflammation and Mechanical Stress in Joint Degeneration
2.2. MetS’s Impact on OA and CTA
2.3. Targeted Therapeutic Opportunities
3. Results
4. Discussion
4.1. Common Molecular Pathways Involved in Primary OA and CTA
ERK1/2 Pathway Activation
4.2. Distinct Gene Expression and Molecular Pathways Differentiating Primary OA and CTA
4.3. The Effect of MetS on CTA
WIF1 and RSPO4 Downregulation
4.4. Fine-Tuning Wnt/β-Catenin Signaling: Balancing Cartilage Remodeling in OA and CTA
4.5. Impaired Metabolic and Cellular Stress Responses
4.6. Hypoxia-Responsive Pathways and Emerging Pharmacological Options for Shoulder OA
4.7. The Effect of MetS on Primary OA
MetS Upregulates ACAN, PANX3, CLU, and VAT1L
4.8. Potential Therapeutic Strategies Targetting Aggrecan and PANX3 in Osteoarthritis
4.9. Novel Targets and Therapeutic Approaches: Inhibiting PANX3/Cx43 and Harnessing Clusterin
4.10. CLU as a Potential Synovial and Systemic Biomarker: Therapeutic Pathways in MetS-Associated OA
4.11. Pathways in MetS and Primary Shoulder OA
4.12. Chondroitin Sulphate Degradation Pathways in MetS-Associated OA Pathogenesis
4.13. Translational Insight, GLP-1 Agonists
4.14. Limitations
5. Materials and Methods
5.1. Patients
5.2. Clinical Data Collection
5.3. RNA Extraction and Transcriptomics Analysis
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AMPK | Adenosine monophosphate-activated protein kinase |
BMP-2 | Bone morphogenetic protein-2 |
CS | Chondroitin sulphate |
C21orf62.AS1 | Chromosome 21 Open Reading Frame 62 antisense RNA 1 |
cDNA | Complimentary Deoxyribonucleic acid |
Cx43 | Connexin 43 |
CTA | Cuff-tear arthropathy |
DS | Dermatan sulphate |
DKK1 | Dickkopf-1 |
DEGs | Differentially expressed genes |
FRZB | Frizzled motif associated with bone development |
FOSB | FosB Proto-Oncogene |
INTS6.AS1 | Integrator complex subunit 6 antisense RNA 1 |
KNDC1 | Kinase Non-Catalytic C-Lobe Domain Containing 1 |
Panx3 | Pannexin 3 |
MIA | Melanoma inhibitory activity |
MAPK | Mitogen-activated protein kinase |
OA | Osteoarthritis |
CD-RAP | Retinoic acid-sensitive protein |
SIRT-1 | Sirtuin-1 |
STC2 | Stanniocalcin-2 |
TGF-β3 | Transforming growth factor β3 |
VAT1L | Vesicle Amine Transport 1-Like |
References
- Krakowski, P.; Rejniak, A.; Sobczyk, J.; Karpiński, R. Cartilage Integrity: A Review of Mechanical and Frictional Properties and Repair Approaches in Osteoarthritis. Healthcare 2024, 12, 1648. [Google Scholar] [CrossRef]
- Sharma, L. Osteoarthritis of the Knee. N. Engl. J. Med. 2021, 384, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Quicke, J.G.; Conaghan, P.G.; Corp, N.; Peat, G. Osteoarthritis year in review 2021: Epidemiology & therapy. Osteoarthr. Cartil. 2022, 30, 196–206. [Google Scholar] [CrossRef]
- Kluzek, S.; Newton, J.; Arden, N. Is osteoarthritis a metabolic disorder? Br. Med. Bull. 2015, 115, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Wallace, I.J.; Worthington, S.; Felson, D.T.; Jurmain, R.D.; Wren, K.T.; Maijanen, H.; Woods, R.J.; Lieberman, D.E. Knee osteoarthritis has doubled in prevalence since the mid-20th century. Proc. Natl. Acad. Sci. USA 2017, 114, 9332–9336. [Google Scholar]
- Eajazi, A.; Kussman, S.; LeBedis, C.; Guermazi, A.; Kompel, A.; Jawa, A.; Murakami, A.M. Rotator Cuff Tear Arthropathy: Pathophysiology, Imaging Characteristics, and Treatment Options. Am. J. Roentgenol. 2015, 205, W502–W511. [Google Scholar] [CrossRef]
- Grotle, M.; Hagen, K.B.; Natvig, B.; Dahl, F.A.; Kvien, T.K. Obesity and osteoarthritis in knee, hip and/or hand: An epidemiological study in the general population with 10 years follow-up. BMC Musculoskelet. Disord. 2008, 9, 132. [Google Scholar] [CrossRef]
- Fahed, G.; Aoun, L.; Bou Zerdan, M.; Allam, S.; Bou Zerdan, M.; Bouferraa, Y.; Assi, H.I. Metabolic syndrome: Updates on pathophysiology and management in 2021. Int. J. Mol. Sci. 2022, 23, 786. [Google Scholar] [CrossRef]
- Courties, A.; Gualillo, O.; Berenbaum, F.; Sellam, J. Metabolic stress-induced joint inflammation and osteoarthritis. Osteoarthr. Cartil. 2015, 23, 1955–1965. [Google Scholar] [CrossRef]
- Jeffries, M.A. Osteoarthritis year in review 2018: Genetics and epigenetics. Osteoarthr. Cartil. 2019, 27, 371–377. [Google Scholar] [CrossRef]
- Wang, X.; Hunter, D.; Xu, J.; Ding, C. Metabolic triggered inflammation in osteoarthritis. Osteoarthr. Cartil. 2015, 23, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Zhuo, Q.; Yang, W.; Chen, J.; Wang, Y. Metabolic syndrome meets osteoarthritis. Nat. Rev. Rheumatol. 2012, 8, 729–737. [Google Scholar] [CrossRef]
- Puenpatom, R.A.; Victor, T.W. Increased prevalence of metabolic syndrome in individuals with osteoarthritis: An analysis of NHANES III data. Postgrad. Med. 2009, 121, 9–20. [Google Scholar] [CrossRef]
- Chapman, K.; Valdes, A.M. Genetic factors in OA pathogenesis. Bone 2012, 51, 258–264. [Google Scholar] [CrossRef]
- Fernández-Moreno, M.; Rego, I.; Carreira-Garcia, V.; Blanco, F.J. Genetics in osteoarthritis. Curr. Genom. 2008, 9, 542–547. [Google Scholar] [CrossRef] [PubMed]
- Loughlin, J. Genetic contribution to osteoarthritis development: Current state of evidence. Curr. Opin. Rheumatol. 2015, 27, 284. [Google Scholar] [CrossRef]
- Reynard, L.N.; Barter, M.J. Osteoarthritis year in review 2019: Genetics, genomics and epigenetics. Osteoarthr. Cartil. 2020, 28, 275–284. [Google Scholar] [CrossRef]
- Onkarappa, R.S.; Chauhan, D.K.; Saikia, B.; Karim, A.; Kanojia, R.K. Metabolic Syndrome and Its Effects on Cartilage Degeneration vs Regeneration: A Pilot Study Using Osteoarthritis Biomarkers. Indian J. Orthop. 2020, 54 (Suppl. S1), 20–24. [Google Scholar] [CrossRef] [PubMed]
- Casagrande, D.; Stains, J.P.; Murthi, A.M. Identification of shoulder osteoarthritis biomarkers: Comparison between shoulders with and without osteoarthritis. J. Shoulder Elb. Surg. 2015, 24, 382–390. [Google Scholar] [CrossRef]
- Aleem, A.W.; Rai, M.F.; Cai, L.; Brophy, R.H. Gene Expression in Glenoid Articular Cartilage Varies Across Acute Instability, Chronic Instability, and Osteoarthritis. J. Bone Jt. Surg. Am. 2023, 105, 990–1000. [Google Scholar] [CrossRef]
- Ansari, M.Y.; Ahmad, N.; Voleti, S.; Wase, S.J.; Novak, K.; Haqqi, T.M. Mitochondrial dysfunction triggers a catabolic response in chondrocytes via ROS-mediated activation of the JNK/AP1 pathway. J. Cell Sci. 2020, 133, jcs247353. [Google Scholar] [CrossRef] [PubMed]
- Blanco, F.J.; Valdes, A.M.; Rego-Pérez, I. Mitochondrial DNA variation and the pathogenesis of osteoarthritis phenotypes. Nat. Rev. Rheumatol. 2018, 14, 327–340. [Google Scholar] [CrossRef] [PubMed]
- Dalmao-Fernández, A.; Hermida-Gómez, T.; Lund, J.; Vazquez-Mosquera, M.E.; Rego-Pérez, I.; Garesse, R.; Blanco, F.J.; Fernández-Moreno, M. Mitochondrial DNA from osteoarthritic patients drives functional impairment of mitochondrial activity: A study on transmitochondrial cybrids. Cytotherapy 2021, 23, 399–410. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.J.; Advani, J.; Brock, D.C.; Nellissery, J.; Gumerson, J.; Dong, L.; Aravind, L.; Kennedy, B.; Swaroop, A. GATD3A, a mitochondrial deglycase with evolutionary origins from gammaproteobacteria, restricts the formation of advanced glycation end products. BMC Biol. 2022, 20, 68. [Google Scholar] [CrossRef]
- Sun, K.; Xu, L.; Jing, Y.; Han, Z.; Chen, X.; Cai, C.; Zhao, P.; Zhao, X.; Yang, L.; Wei, L. Autophagy-deficient Kupffer cells promote tumorigenesis by enhancing mtROS-NF-κB-IL1α/β-dependent inflammation and fibrosis during the preneoplastic stage of hepatocarcinogenesis. Cancer Lett. 2017, 388, 198–207. [Google Scholar] [CrossRef]
- Nong, S.; Chen, X.; Wang, Z.; Xu, G.; Wei, W.; Peng, B.; Zhou, L.; Wei, L.; Zhao, J.; Wei, Q.; et al. Potential lncRNA Biomarkers for HBV-Related Hepatocellular Carcinoma Diagnosis Revealed by Analysis on Coexpression Network. Biomed Res. Int. 2021, 2021, 9972011. [Google Scholar] [CrossRef]
- Lui, K.Y.; Zhao, H.; Qiu, C.; Li, C.; Zhang, Z.; Peng, H.; Fu, R.; Chen, H.-a.; Lu, M.-q. Integrator complex subunit 6 (INTS6) inhibits hepatocellular carcinoma growth by Wnt pathway and serve as a prognostic marker. BMC Cancer 2017, 17, 644. [Google Scholar] [CrossRef]
- Geng, N.; Yun, D.; Liu, D.; Liu, P. AB0053 LncRNA NUTM2A-AS1 Alleviated Osteoarthritis by Regulating miR-183-5p/TGFA Pathway. Ann. Rheum. Dis. 2022, 81 (Suppl. S1), 1161. [Google Scholar] [CrossRef]
- Dayal, A.A.; Medvedeva, N.V.; Nekrasova, T.M.; Duhalin, S.D.; Surin, A.K.; Minin, A.A. Desmin Interacts Directly with Mitochondria. Int. J. Mol. Sci. 2020, 21, 8122. [Google Scholar] [CrossRef]
- Hoffmann, B.R.; Stodola, T.J.; Wagner, J.R.; Didier, D.N.; Exner, E.C.; Lombard, J.H.; Greene, A.S. Mechanisms of Mas1 Receptor-Mediated Signaling in the Vascular Endothelium. Arter. Thromb. Vasc. Biol. 2017, 37, 433–445. [Google Scholar] [CrossRef]
- Zheng, X.; Wu, J.; Song, L.; Huang, B. ACSM3 suppresses proliferation and induces apoptosis and cell cycle arrest in acute myeloid leukemia cells via the regulation of IGF2BP2. Exp. Ther. Med. 2023, 25, 177. [Google Scholar] [CrossRef]
- Hao, H.; Nakayamada, S.; Ohkubo, N.; Yamagata, K.; Zhang, M.; Shan, Y.; Iwata, S.; Zhang, T.; Tanaka, Y. Involvement of lncRNA IL21-AS1 in interleukin-2 and T follicular regulatory cell activation in systemic lupus erythematosus. Arthritis Res. Ther. 2021, 23, 302. [Google Scholar] [CrossRef]
- Chen, Q.; Hu, Z.; Zhang, X.; Wei, Z.; Fu, H.; Yang, D.; Cai, Q. A four-lncRNA signature for predicting prognosis of recurrence patients with gastric cancer. Open Med. 2021, 16, 540–552. [Google Scholar] [CrossRef]
- Chen, X.; Li, Z.; Xu, D.; Li, S. LINC01121 induced intervertebral disc degeneration via modulating miR-150-5p/MMP16 axis. J. Gene Med. 2020, 22, e3231. [Google Scholar] [CrossRef]
- Dubin, R.L.; Hall, C.M.; Pileri, C.L.; Kudlacek, P.E.; Li, X.Y.; Yee, J.A.; Johnson, M.L.; Anderson, R.J. Thermostable (SULT1A1) and thermolabile (SULT1A3) phenol sulfotransferases in human osteosarcoma and osteoblast cells. Bone 2001, 28, 617–624. [Google Scholar] [CrossRef]
- Leask, M.; Dowdle, A.; Salvesen, H.; Topless, R.; Fadason, T.; Wei, W.; Schierding, W.; Marsman, J.; Antony, J.; O’Sullivan, J.M.; et al. Functional Urate-Associated Genetic Variants Influence Expression of lincRNAs LINC01229 and MAFTRR. Front. Genet. 2019, 9, 733. [Google Scholar] [CrossRef]
- Nishikawa, K.; Nakashima, T.; Takeda, S.; Isogai, M.; Hamada, M.; Kimura, A.; Kodama, T.; Yamaguchi, A.; Owen, M.J.; Takahashi, S.; et al. Maf promotes osteoblast differentiation in mice by mediating the age-related switch in mesenchymal cell differentiation. J. Clin. Investig. 2010, 120, 3455–3465. [Google Scholar] [CrossRef]
- Nalesso, G.; Thomas, B.L.; Sherwood, J.C.; Yu, J.; Addimanda, O.; Eldridge, S.E.; Thorup, A.S.; Dale, L.; Schett, G.; Zwerina, J.; et al. WNT16 antagonises excessive canonical WNT activation and protects cartilage in osteoarthritis. Ann. Rheum. Dis. 2017, 76, 218–226. [Google Scholar] [CrossRef]
- Yu, S.; Shen, J.; Fei, J.; Zhu, X.; Yin, M.; Zhou, J. KNDC1 is a predictive marker of malignant transformation in borderline ovarian tumors. OncoTargets Ther. 2020, 13, 709–718. [Google Scholar]
- Zhang, C.; Zhen, Y.Z.; Lin, Y.J.; Liu, J.; Wei, J.; Xu, R.; Hu, G. KNDC1 knockdown protects human umbilical vein endothelial cells from senescence. Mol. Med. Rep. 2014, 10, 82–88. [Google Scholar] [CrossRef]
- Kim, K.A.; Zhao, J.; Andarmani, S.; Kakitani, M.; Oshima, T.; Binnerts, M.E.; Abo, A.; Tomizuka, K.; Funk, W.D. R-Spondin proteins: A novel link to beta-catenin activation. Cell Cycle 2006, 5, 23–26. [Google Scholar] [CrossRef]
- Lu, J.-F.; Qi, L.-G.; Zhu, X.-B.; Shen, Y.-X. LncRNA RMRP knockdown promotes proliferation and inhibits apoptosis in osteoarthritis chondrocytes by miR-206/CDK9 axis. Pharm. Int. J. Pharm. Sci. 2020, 75, 500–504. [Google Scholar]
- Zhang, S.; Li, J.; Lea, R.; Vleminckx, K.; Amaya, E. Fezf2 promotes neuronal differentiation through localised activation of Wnt/β-catenin signalling during forebrain development. Development 2014, 141, 4794–4805. [Google Scholar] [CrossRef]
- Zhu, Z.; Bai, X.; Wang, H.; Li, X.; Sun, G.; Zhang, P. A study on the mechanism of Wnt inhibitory factor 1 in osteoarthritis. Arch. Med. Sci. 2020, 16, 898–906. [Google Scholar] [CrossRef]
- Won, Y.; Yang, J.I.; Park, S.; Chun, J.S. Lipopolysaccharide Binding Protein and CD14, Cofactors of Toll-like Receptors, Are Essential for Low-Grade Inflammation-Induced Exacerbation of Cartilage Damage in Mouse Models of Posttraumatic Osteoarthritis. Arthritis Rheumatol. 2021, 73, 1451–1460. [Google Scholar] [CrossRef]
- Zhu, H.; Zhu, X.; Liu, Y.; Jiang, F.; Chen, M.; Cheng, L.; Cheng, X. Gene Expression Profiling of Type 2 Diabetes Mellitus by Bioinformatics Analysis. Comput. Math. Methods Med. 2020, 2020, 9602016. [Google Scholar] [CrossRef]
- Choi, W.-S.; Lee, G.; Song, W.-H.; Koh, J.-T.; Yang, J.; Kwak, J.-S.; Kim, H.-E.; Kim, S.K.; Son, Y.-O.; Nam, H.; et al. The CH25H–CYP7B1–RORα axis of cholesterol metabolism regulates osteoarthritis. Nature 2019, 566, 254–258. [Google Scholar] [CrossRef]
- Ko, J.-Y.; Wang, F.-S.; Lian, W.-S.; Fang, H.-C.; Kuo, S.-J. Cartilage-specific knockout of miRNA-128a expression normalizes the expression of circadian clock genes (CCGs) and mitigates the severity of osteoarthritis. Biomed. J. 2023, 47, 100629. [Google Scholar] [CrossRef]
- Abed, É.; Chan, T.F.; Delalandre, A.; Martel-Pelletier, J.; Pelletier, J.-P.; Lajeunesse, D. R-spondins are newly recognized players in osteoarthritis that regulate Wnt signaling in osteoblasts. Arthritis Rheum. 2011, 63, 3865–3875. [Google Scholar] [CrossRef]
- Cui, D.; Li, L.; Lou, H.; Sun, H.; Ngai, S.M.; Shao, G.; Tang, J. The ribosomal protein S26 regulates p53 activity in response to DNA damage. Oncogene 2014, 33, 2225–2235. [Google Scholar] [CrossRef]
- Pang, K.; Park, J.; Ahn, S.G.; Lee, J.; Park, Y.; Ooshima, A.; Mizuno, S.; Yamashita, S.; Park, K.-S.; Lee, S.-Y.; et al. RNF208, an estrogen-inducible E3 ligase, targets soluble Vimentin to suppress metastasis in triple-negative breast cancers. Nat. Commun. 2019, 10, 5805. [Google Scholar] [CrossRef]
- Haasper, C.; Jagodzinski, M.; Drescher, M.; Meller, R.; Wehmeier, M.; Krettek, C.; Hesse, E. Cyclic strain induces FosB and initiates osteogenic differentiation of mesenchymal cells. Exp. Toxicol. Pathol. 2008, 59, 355–363. [Google Scholar] [CrossRef] [PubMed]
- Inoue, D.; Kido, S.; Matsumoto, T. Transcriptional induction of FosB/DeltaFosB gene by mechanical stress in osteoblasts. J. Biol. Chem. 2004, 279, 49795–49803. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Zhang, S.; Si, H.; Zeng, Y.; Wu, Y.; Liu, Y.; Li, M.; Wu, L.; Shen, B. A genetic correlation scan identifies blood proteins associated with bone mineral density. BMC Musculoskelet. Disord. 2022, 23, 530. [Google Scholar] [CrossRef]
- Li, D.; Zhao, W.; Zhang, X.; Lv, H.; Li, C.; Sun, L. NEFM DNA methylation correlates with immune infiltration and survival in breast cancer. Clin. Epigenetics 2021, 13, 112. [Google Scholar] [CrossRef]
- Adamczyk, M. Transglutaminase 2 in cartilage homoeostasis: Novel links with inflammatory osteoarthritis. Amino Acids 2017, 49, 625–633. [Google Scholar] [CrossRef]
- Liu, F.; Wu, M.; Wu, X.; Chen, D.; Xie, M.; Pan, H. TGM2 accelerates migration and differentiation of BMSCs by activating Wnt/β-catenin signaling. J. Orthop. Surg. Res. 2023, 18, 168. [Google Scholar] [CrossRef]
- Xin, L.; Wen, Y.; Song, J.; Chen, T.; Zhai, Q. Bone regeneration strategies based on organelle homeostasis of mesenchymal stem cells. Front. Endocrinol. 2023, 14, 1151691. [Google Scholar] [CrossRef]
- Yu, W.M.; Liu, X.; Shen, J.; Jovanovic, O.; Pohl, E.E.; Gerson, S.L.; Finkel, T.; Broxmeyer, H.E.; Qu, C.K. Metabolic regulation by the mitochondrial phosphatase PTPMT1 is required for hematopoietic stem cell differentiation. Cell Stem Cell 2013, 12, 62–74. [Google Scholar] [CrossRef]
- Kim, P.; Park, J.; Lee, D.-J.; Mizuno, S.; Shinohara, M.; Hong, C.P.; Jeong, Y.; Yun, R.; Park, H.; Park, S.; et al. Mast4 determines the cell fate of MSCs for bone and cartilage development. Nat. Commun. 2022, 13, 3960. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, H.; Pan, H.; Zhang, Z.; Zeng, H.; Xie, H.; Yin, J.; Tang, W.; Lin, R.; Zeng, C.; et al. Expression pattern analysis of m6A regulators reveals IGF2BP3 as a key modulator in osteoarthritis synovial macrophages. J. Transl. Med. 2023, 21, 339. [Google Scholar] [CrossRef]
- Karlsen, T.; Jakobsen, R.; Mikkelsen, T.; JE, B. microRNA-140 Targets RALA and Regulates Chondrogenic Differentiation of Human Mesenchymal Stem Cells by Translational Enhancement of SOX9 and ACAN. Stem Cells Dev. 2014, 23, 290–304. [Google Scholar] [CrossRef]
- Alvarez-Garcia, O.; Matsuzaki, T.; Olmer, M.; Plate, L.; Kelly, J.W.; Lotz, M.K. Regulated in Development and DNA Damage Response 1 Deficiency Impairs Autophagy and Mitochondrial Biogenesis in Articular Cartilage and Increases the Severity of Experimental Osteoarthritis. Arthritis Rheumatol. 2017, 69, 1418–1428. [Google Scholar] [CrossRef]
- Alvarez-Garcia, O.; Olmer, M.; Akagi, R.; Akasaki, Y.; Fisch, K.M.; Shen, T.; Su, A.I.; Lotz, M.K. Suppression of REDD1 in osteoarthritis cartilage, a novel mechanism for dysregulated mTOR signaling and defective autophagy. Osteoarthr. Cartil. 2016, 24, 1639–1647. [Google Scholar] [CrossRef]
- Geyer, M.; Grässel, S.; Straub, R.H.; Schett, G.; Dinser, R.; Grifka, J.; Gay, S.; Neumann, E.; Müller-Ladner, U. Differential transcriptome analysis of intraarticular lesional vs intact cartilage reveals new candidate genes in osteoarthritis pathophysiology. Osteoarthr. Cartil. 2009, 17, 328–335. [Google Scholar] [CrossRef]
- Giordano, R.; Petersen, K.K.; Andersen, H.H.; Simonsen, O.; Arendt-Nielsen, L. Serum Inflammatory Markers in Patients With Knee Osteoarthritis: A Proteomic Approach. Clin. J. Pain 2020, 36, 229–237. [Google Scholar] [CrossRef]
- Shu, L.; Li, Y.; Liu, Y.; Zhu, Z.; Huang, H.; Chen, S.; Wu, X.; Liang, Y. CD320 Regulates Bone Marrow Angiogenesis in Multiple Myeloma Via HGF-ERK Axis. Blood 2022, 140 (Suppl. S1), 12466–12467. [Google Scholar] [CrossRef]
- Jin, Q.; Liu, Y.; Zhang, Z.; Wen, X.; Chen, Z.; Tian, H.; Kang, Z.; Wu, X.; Xu, H. MYC promotes fibroblast osteogenesis by regulating ALP and BMP2 to participate in ectopic ossification of ankylosing spondylitis. Arthritis Res. Ther. 2023, 25, 28. [Google Scholar] [CrossRef]
- Shkhyan, R.; Van Handel, B.; Bogdanov, J.; Lee, S.; Yu, Y.; Scheinberg, M.; Banks, N.W.; Limfat, S.; Chernostrik, A.; Franciozi, C.E.; et al. Drug-induced modulation of gp130 signalling prevents articular cartilage degeneration and promotes repair. Ann. Rheum. Dis. 2018, 77, 760–769. [Google Scholar] [CrossRef]
- Wang, G.; He, L.; Xiang, Y.; Jia, D.; Li, Y. Long noncoding and micro-RNA expression in a model of articular chondrocyte degeneration induced by stromal cell-derived factor-1. Asian Biomed. (Res. Rev. News) 2022, 16, 169–179. [Google Scholar] [CrossRef]
- van der Crabben, S.N.; Hennus, M.P.; McGregor, G.A.; Ritter, D.I.; Nagamani, S.C.; Wells, O.S.; Harakalova, M.; Chinn, I.K.; Alt, A.; Vondrova, L.; et al. Destabilized SMC5/6 complex leads to chromosome breakage syndrome with severe lung disease. J. Clin. Investig. 2016, 126, 2881–2892. [Google Scholar] [CrossRef]
- Tang, Z.; Feng, H.; Chen, X.; Shao, S.; Li, C. SNORC knockdown alleviates inflammation, autophagy defect and matrix degradation of chondrocytes in osteoarthritis development. Mol. Cell. Biochem. 2023, 479, 2323–2335. [Google Scholar] [CrossRef]
- Liu, G.; He, G.; Zhang, J.; Zhang, Z.; Wang, L. Identification of SCRG1 as a Potential Therapeutic Target for Human Synovial Inflammation. Front. Immunol. 2022, 13, 893301. [Google Scholar] [CrossRef]
- Schneider, C.V.; Schneider, K.M.; Conlon, D.M.; Park, J.; Vujkovic, M.; Zandvakili, I.; Ko, Y.A.; Trautwein, C.; Center, R.; Carr, R.M.; et al. A genome-first approach to mortality and metabolic phenotypes in MTARC1 p.Ala165Thr (rs2642438) heterozygotes and homozygotes. Med 2021, 2, 851–863.e853. [Google Scholar] [CrossRef]
- Mucientes, A.; Herranz, E.; Lois, P.; Blanco, F.J.; Abasolo, L.; Rodriguez, L.R.; Lamas, J.R.; Fernandez, B. AB0077 Contribution of Notum to the Development of Osteoarthritis. Ann. Rheum. Dis. 2020, 79 (Suppl. S1), 1338–1339. [Google Scholar] [CrossRef]
- Coltell, O.; Ortega-Azorín, C.; Sorlí, J.V.; Portolés, O.; Asensio, E.M.; Saiz, C.; Barragán, R.; Estruch, R.; Corella, D. Circulating Adiponectin and Its Association with Metabolic Traits and Type 2 Diabetes: Gene-Diet Interactions Focusing on Selected Gene Variants and at the Genome-Wide Level in High-Cardiovascular Risk Mediterranean Subjects. Nutrients 2021, 13, 541. [Google Scholar] [CrossRef]
- de Boer, T.N.; van Spil, W.E.; Huisman, A.M.; Polak, A.A.; Bijlsma, J.W.; Lafeber, F.P.; Mastbergen, S.C. Serum adipokines in osteoarthritis; comparison with controls and relationship with local parameters of synovial inflammation and cartilage damage. Osteoarthr. Cartil. 2012, 20, 846–853. [Google Scholar] [CrossRef]
- Laurberg, T.B.; Frystyk, J.; Ellingsen, T.; Hansen, I.T.; Jørgensen, A.; Tarp, U.; Hetland, M.L.; Hørslev-Petersen, K.; Hornung, N.; Poulsen, J.H.; et al. Plasma Adiponectin in Patients with Active, Early, and Chronic Rheumatoid Arthritis Who Are Steroid- and Disease-Modifying Antirheumatic Drug-Naive Compared with Patients with Osteoarthritis and Controls. J. Rheumatol. 2009, 36, 1885–1891. [Google Scholar] [CrossRef]
- Tang, C.H.; Chiu, Y.C.; Tan, T.W.; Yang, R.S.; Fu, W.M. Adiponectin enhances IL-6 production in human synovial fibroblast via an AdipoR1 receptor, AMPK, p38, and NF-kappa B pathway. J. Immunol. 2007, 179, 5483–5492. [Google Scholar] [CrossRef]
- Tong, K.-M.; Chen, C.-P.; Huang, K.-C.; Shieh, D.-C.; Cheng, H.-C.; Tzeng, C.-Y.; Chen, K.-H.; Chiu, Y.-C.; Tang, C.-H. Adiponectin increases MMP-3 expression in human chondrocytes through adipor1 signaling pathway. J. Cell. Biochem. 2011, 112, 1431–1440. [Google Scholar] [CrossRef]
- Whitehead, J.P.; Richards, A.A.; Hickman, I.J.; Macdonald, G.A.; Prins, J.B. Adiponectin--a key adipokine in the metabolic syndrome. Diabetes Obes. Metab. 2006, 8, 264–280. [Google Scholar] [CrossRef]
- Ungsudechachai, T.; Honsawek, S.; Jittikoon, J.; Udomsinprasert, W. Clusterin exacerbates interleukin-1β-induced inflammation via suppressing PI3K/Akt pathway in human fibroblast-like synoviocytes of knee osteoarthritis. Sci. Rep. 2022, 12, 9963. [Google Scholar] [CrossRef]
- Roughley, P.J.; Mort, J.S. The role of aggrecan in normal and osteoarthritic cartilage. J. Exp. Orthop. 2014, 1, 8. [Google Scholar] [CrossRef]
- Ma, B.; Xu, X.; He, S.; Zhang, J.; Wang, X.; Wu, P.; Liu, J.; Jiang, H.; Zheng, M.; Li, W.; et al. STC2 modulates ERK1/2 signaling to suppress adipogenic differentiation of human bone marrow mesenchymal stem cells. Biochem. Biophys. Res. Commun. 2020, 524, 163–168. [Google Scholar] [CrossRef]
- Lee, H.; Kim, Y.I.; Nirmala, F.S.; Kim, J.S.; Seo, H.D.; Ha, T.Y.; Jang, Y.J.; Jung, C.H.; Ahn, J. MiR-141-3p promotes mitochondrial dysfunction in ovariectomy-induced sarcopenia via targeting Fkbp5 and Fibin. Aging 2021, 13, 4881–4894. [Google Scholar] [CrossRef]
- Rajasekaran, S.; Soundararajan, D.C.R.; Nayagam, S.M.; Tangavel, C.; Raveendran, M.; Thippeswamy, P.B.; Djuric, N.; Anand, S.V.; Shetty, A.P.; Kanna, R.M. Modic changes are associated with activation of intense inflammatory and host defense response pathways–molecular insights from proteomic analysis of human intervertebral discs. Spine J. 2022, 22, 19–38. [Google Scholar] [CrossRef]
- Yang, B.; Xu, L.; Wang, S. Regulation of lncRNA-H19/miR-140-5p in cartilage matrix degradation and calcification in osteoarthritis. Ann. Palliat. Med. 2020, 9, 1896–1904. [Google Scholar]
- Schubert, T.; Schlegel, J.; Schmid, R.; Opolka, A.; Grassel, S.; Humphries, M.; Bosserhoff, A.K. Modulation of cartilage differentiation by melanoma inhibiting activity/cartilage-derived retinoic acid-sensitive protein (MIA/CD-RAP). Exp. Mol. Med. 2010, 42, 166–174. [Google Scholar] [CrossRef]
- Tscheudschilsuren, G.; Bosserhoff, A.K.; Schlegel, J.; Vollmer, D.; Anton, A.; Alt, V.; Schnettler, R.; Brandt, J.; Proetzel, G. Regulation of mesenchymal stem cell and chondrocyte differentiation by MIA. Exp. Cell Res. 2006, 312, 63–72. [Google Scholar] [CrossRef]
- Ishikawa, M.; Yamada, Y. The Role of Pannexin 3 in Bone Biology. J. Dent. Res. 2017, 96, 372–379. [Google Scholar] [CrossRef]
- Moon, P.M.; Penuela, S.; Barr, K.; Khan, S.; Pin, C.L.; Welch, I.; Attur, M.; Abramson, S.B.; Laird, D.W.; Beier, F. Deletion of Panx3 Prevents the Development of Surgically Induced Osteoarthritis. J. Mol. Med. 2015, 93, 845–856. [Google Scholar] [CrossRef]
- Kawatsu, M.; Takeshita, N.; Takimoto, A.; Yoshimoto, Y.; Seiryu, M.; Ito, A.; Kimura, S.; Kawamoto, T.; Hiraki, Y.; Shukunami, C.; et al. Scleraxis upregulated by transforming growth factor-β1 signaling inhibits tension-induced osteoblast differentiation of priodontal ligament cells via ephrin A2. Bone 2021, 149, 115969. [Google Scholar] [CrossRef]
- Hattori, K.; Takahashi, N.; Terabe, K.; Ohashi, Y.; Kishimoto, K.; Yokota, Y.; Suzuki, M.; Kojima, T.; Imagama, S. Activation of transient receptor potential vanilloid 4 protects articular cartilage against inflammatory responses via CaMKK/AMPK/NF-κB signaling pathway. Sci. Rep. 2021, 11, 15508. [Google Scholar] [CrossRef]
- Hu, K.; Sun, H.; Gui, B.; Sui, C. TRPV4 functions in flow shear stress induced early osteogenic differentiation of human bone marrow mesenchymal stem cells. Biomed. Pharmacother. 2017, 91, 841–848. [Google Scholar] [CrossRef]
- Hamada, K.; Fukuda, H.; Mikasa, M.; Kobayashi, Y. Roentgenographic findings in massive rotator cuff tears. A long-term observation. Clin. Orthop. Relat. Res. 1990, 254, 92–96. [Google Scholar] [CrossRef]
- Xue, J.-F.; Shi, Z.-M.; Zou, J.; Li, X.-L. Inhibition of PI3K/AKT/mTOR signaling pathway promotes autophagy of articular chondrocytes and attenuates inflammatory response in rats with osteoarthritis. Biomed. Pharmacother. 2017, 89, 1252–1261. [Google Scholar]
- Pulkkinen, L.; Ukkola, O.; Kolehmainen, M.; Uusitupa, M. Ghrelin in diabetes and metabolic syndrome. Int. J. Pept. 2010, 2010, 248948. [Google Scholar] [CrossRef] [PubMed]
- Qu, R.; Chen, X.; Wang, W.; Qiu, C.; Ban, M.; Guo, L.; Vasilev, K.; Chen, J.; Li, W.; Zhao, Y. Ghrelin protects against osteoarthritis through interplay with Akt and NF-κB signaling pathways. FASEB J. 2018, 32, 1044–1058. [Google Scholar]
- Simonaro, C.M.; D’Angelo, M.; He, X.; Eliyahu, E.; Shtraizent, N.; Haskins, M.E.; Schuchman, E.H. Mechanism of glycosaminoglycan-mediated bone and joint disease: Implications for the mucopolysaccharidoses and other connective tissue diseases. Am. J. Pathol. 2008, 172, 112–122. [Google Scholar] [CrossRef]
- Simonaro, C.M.; Haskins, M.E.; Schuchman, E.H. Articular chondrocytes from animals with a dermatan sulfate storage disease undergo a high rate of apoptosis and release nitric oxide and inflammatory cytokines: A possible mechanism underlying degenerative joint disease in the mucopolysaccharidoses. Lab. Investig. 2001, 81, 1319–1328. [Google Scholar]
- Drygalski, K.; Lecoutre, S.; Clément, K.; Dugail, I. Hyaluronan in Adipose Tissue, Metabolic Inflammation, and Diabetes: Innocent Bystander or Guilty Party? Diabetes 2023, 72, 159–169. [Google Scholar] [CrossRef] [PubMed]
- Thornalley, P.J. Protein and nucleotide damage by glyoxal and methylglyoxal in physiological systems-role in ageing and disease. Drug Metab. Drug Interact. 2008, 23, 125–150. [Google Scholar] [CrossRef]
- Alikhani, M.; Alikhani, Z.; Boyd, C.; MacLellan, C.M.; Raptis, M.; Liu, R.; Pischon, N.; Trackman, P.C.; Gerstenfeld, L.; Graves, D.T. Advanced glycation end products stimulate osteoblast apoptosis via the MAP kinase and cytosolic apoptotic pathways. Bone 2007, 40, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Goldring, M.B.; Otero, M. Inflammation in osteoarthritis. Curr. Opin. Rheumatol. 2011, 23, 471–478. [Google Scholar] [CrossRef]
- Mao, X.; Fu, P.; Wang, L.; Xiang, C. Mitochondria: Potential Targets for Osteoarthritis. Front. Med. 2020, 7, 581402. [Google Scholar] [CrossRef]
- Maldonado, M.; Nam, J. The role of changes in extracellular matrix of cartilage in the presence of inflammation on the pathology of osteoarthritis. Biomed Res. Int. 2013, 2013, 284873. [Google Scholar] [CrossRef] [PubMed]
- Assirelli, E.; Dolzani, P.; Pulsatelli, L.; Addimanda, O.; Lisignoli, G.; Mariani, E.; Meliconi, R. Complement factor expression in osteoarthritis joint compartments. Osteoarthr. Cartil. 2016, 24, S2383–S2384. [Google Scholar] [CrossRef]
- Lynskey, S.J.; Gill, S.D.; McGee, S.L.; Ziemann, M.; Page, R.S. ‘QuickDASH’ to find unique genes and biological processes associated with shoulder osteoarthritis: A prospective case–control study. BMC Res. Notes 2024, 17, 361. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, T.; Hamilton, J.L.; Chen, D. Wnt/β-catenin Signaling in Osteoarthritis and in Other Forms of Arthritis. Curr. Rheumatol. Rep. 2017, 19, 53. [Google Scholar] [CrossRef]
- Wang, Y.; Fan, X.; Xing, L.; Tian, F. Wnt signaling: A promising target for osteoarthritis therapy. Cell Commun. Signal. 2019, 17, 97. [Google Scholar] [CrossRef]
- Usami, Y.; Gunawardena, A.T.; Iwamoto, M.; Enomoto-Iwamoto, M. Wnt signaling in cartilage development and diseases: Lessons from animal studies. Lab. Investig. 2016, 96, 186–196. [Google Scholar] [CrossRef] [PubMed]
- Kovács, B.; Vajda, E.; Nagy, E.E. Regulatory Effects and Interactions of the Wnt and OPG-RANKL-RANK Signaling at the Bone-Cartilage Interface in Osteoarthritis. Int. J. Mol. Sci. 2019, 20, 4653. [Google Scholar] [CrossRef]
- Hacking, C.Y.J.; Elfeky, M.; Yap, J. Rotator Cuff Tear Arthropathy: Radiopaedia.org. 1 September 2015. Available online: https://radiopaedia.org/articles/39335 (accessed on 17 March 2025).
- Ma, Y.; Zheng, W.; Chen, H.; Shao, X.; Lin, P.; Liu, X.; Li, X.; Ye, H. Glucosamine promotes chondrocyte proliferation via the Wnt/β-catenin signaling pathway. Int. J. Mol. Med. 2018, 42, 61–70. [Google Scholar] [CrossRef]
- Mucientes, A.; Herranz, E.; Lois, P.; Candelas, G.; Abasolo, L.; Rodriguez-Rodriguez, L.; Lamas, J.R.; Fernández-Gutiérrez, B. Contribution of Notum and Glypicans to the Development of Osteoarthritis. In Arthritis & Rheumatology; Wiley: Hoboken, NJ, USA, 2020. [Google Scholar]
- Chen, J.; Chen, F.; Wu, X.; Bian, H.; Chen, C.; Zhang, X.; Hei, R.; Yuan, H.; Wang, Q.; Lu, Y.; et al. DLX5 promotes Col10a1 expression and chondrocyte hypertrophy and is involved in osteoarthritis progression. Genes Dis. 2023, 10, 2097–2108. [Google Scholar] [CrossRef]
- Wang, M.; Shen, J.; Jin, H.; Im, H.J.; Sandy, J.; Chen, D. Recent progress in understanding molecular mechanisms of cartilage degeneration during osteoarthritis. Ann. N. Y. Acad. Sci. 2011, 1240, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Deshmukh, V.; Hu, H.; Barroga, C.; Bossard, C.; Kc, S.; Dellamary, L.; Stewart, J.; Chiu, K.; Ibanez, M.; Pedraza, M.; et al. A small-molecule inhibitor of the Wnt pathway (SM04690) as a potential disease modifying agent for the treatment of osteoarthritis of the knee. Osteoarthr. Cartil. 2018, 26, 18–27. [Google Scholar] [CrossRef]
- Yazici, Y.; McAlindon, T.E.; Gibofsky, A.; Lane, N.E.; Latterman, C.; Skrepnik, N.; Swearingen, C.J.; DiFrancesco, A.; Tambiah, J.R.; Hochberg, M.C. Efficacy and safety from a phase 2B trial of SM04690, a novel, intra-articular, WNT pathway inhibitor for the treatment of osteoarthritis of the knee. Osteoarthr. Cartil. 2019, 27, S503. [Google Scholar] [CrossRef]
- Clevers, H.; Nusse, R. Wnt/-Catenin Signaling and Disease. Cell 2012, 149, 1192–1205. [Google Scholar] [CrossRef]
- Masenga, S.K.; Kabwe, L.S.; Chakulya, M.; Kirabo, A. Mechanisms of Oxidative Stress in Metabolic Syndrome. Int. J. Mol. Sci. 2023, 24, 7898. [Google Scholar] [CrossRef]
- Loeser, R.F. Aging and osteoarthritis: The role of chondrocyte senescence and aging changes in the cartilage matrix. Osteoarthr. Cartil. 2009, 17, 971–979. [Google Scholar] [CrossRef]
- Tashjian, R.Z.; Lock, I.; Granger, E.K.; Wang, Y.; Lee, Y.; Chalmers, P.N.; Jones, K.B. Gene Expression in Torn Rotator Cuff Tendons Determined by RNA Sequencing. Orthop. J. Sports Med. 2020, 8, 2325967120927480. [Google Scholar] [CrossRef] [PubMed]
- Lenihan, C.R.; Taylor, C.T. The impact of hypoxia on cell death pathways. Biochem. Soc. Trans. 2013, 41, 657–663. [Google Scholar] [CrossRef]
- Svensson, K.J.; Welch, J.E.; Kucharzewska, P.; Bengtson, P.; Bjurberg, M.; Pahlman, S.; Ten Dam, G.B.; Persson, L.; Belting, M. Hypoxia-Mediated Induction of the Polyamine System Provides Opportunities for Tumor Growth Inhibition by Combined Targeting of Vascular Endothelial Growth Factor and Ornithine Decarboxylase. Cancer Res. 2008, 68, 9291–9301. [Google Scholar] [CrossRef]
- Khan, N.M.; Ahmad, I.; Haqqi, T.M. Nrf2/ARE pathway attenuates oxidative and apoptotic response in human osteoarthritis chondrocytes by activating ERK1/2/ELK1-P70S6K-P90RSK signaling axis. Free Radic. Biol. Med. 2018, 116, 159–171. [Google Scholar] [CrossRef] [PubMed]
- Bhatti, J.S.; Bhatti, G.K.; Reddy, P.H. Mitochondrial dysfunction and oxidative stress in metabolic disorders—A step towards mitochondria based therapeutic strategies. Biochim. Biophys. Acta Mol. Basis Dis. 2017, 1863, 1066–1077. [Google Scholar] [CrossRef]
- Ma, Q. Role of nrf2 in oxidative stress and toxicity. Annu. Rev. Pharmacol. Toxicol. 2013, 53, 401–426. [Google Scholar] [CrossRef] [PubMed]
- Mahjoub, S.; Masrour-Roudsari, J. Role of oxidative stress in pathogenesis of metabolic syndrome. Casp. J. Intern. Med. 2012, 3, 386–396. [Google Scholar]
- Nagase, H.; Kashiwagi, M. Aggrecanases and cartilage matrix degradation. Arthritis Res. Ther. 2003, 5, 94–103. [Google Scholar] [CrossRef]
- Bar Oz, M.; Kumar, A.; Elayyan, J.; Reich, E.; Binyamin, M.; Kandel, L.; Liebergall, M.; Steinmeyer, J.; Lefebvre, V.; Dvir-Ginzberg, M. Acetylation reduces SOX9 nuclear entry and ACAN gene transactivation in human chondrocytes. Aging Cell 2016, 15, 499–508. [Google Scholar] [CrossRef]
- Bay-Jensen, A.C.; Mobasheri, A.; Thudium, C.S.; Kraus, V.B.; Karsdal, M.A. Blood and urine biomarkers in osteoarthritis—An update on cartilage associated type II collagen and aggrecan markers. Curr. Opin. Rheumatol. 2022, 34, 54–60. [Google Scholar] [CrossRef]
- Cuffaro, D.; Ciccone, L.; Rossello, A.; Nuti, E.; Santamaria, S. Targeting Aggrecanases for Osteoarthritis Therapy: From Zinc Chelation to Exosite Inhibition. J. Med. Chem. 2022, 65, 13505–13532. [Google Scholar] [CrossRef] [PubMed]
- Bihlet, A.R.; Balchen, T.; Goteti, K.; Sonne, J.; Ladel, C.; Karsdal, M.A.; Ona, V.; Moreau, F.; Waterhouse, R.; Bay-Jensen, A.-C.; et al. Safety, Tolerability, and Pharmacodynamics of the ADAMTS-5 Nanobody M6495: Two Phase 1, Single-Center, Double-Blind, Randomized, Placebo-Controlled Studies in Healthy Subjects and Patients With Osteoarthritis. ACR Open Rheumatol. 2024, 6, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Li, Y.; Shang, C.; Shang, G.; Kou, H.; Li, J.; Chen, S.; Liu, H. Sprifermin: Effects on Cartilage Homeostasis and Therapeutic Prospects in Cartilage-Related Diseases. Front. Cell Dev. Biol. 2021, 9, 786546. [Google Scholar] [CrossRef]
- Moon, P.M.; Shao, Z.Y.; Wambiekele, G.; Appleton, C.T.G.; Laird, D.W.; Penuela, S.; Beier, F. Global Deletion of Pannexin 3 Resulting in Accelerated Development of Aging-Induced Osteoarthritis in Mice. Arthritis Rheumatol. 2021, 73, 1178–1188. [Google Scholar] [CrossRef]
- Han, Y.; Cho, D.H.; Chung, D.J.; Lee, K.Y. Osterix plays a critical role in BMP4-induced promoter activity of connexin43. Biochem. Biophys. Res. Commun. 2016, 478, 683–688. [Google Scholar] [CrossRef]
- Gupta, A.; Niger, C.; Buo, A.M.; Eidelman, E.R.; Chen, R.J.; Stains, J.P. Connexin43 enhances the expression of osteoarthritis-associated genes in synovial fibroblasts in culture. BMC Musculoskelet. Disord. 2014, 15, 425. [Google Scholar] [CrossRef]
- Luo, Y.; Zheng, S.; Xiao, W.; Zhang, H.; Li, Y. Pannexins in the musculoskeletal system: New targets for development and disease progression. Bone Res. 2024, 12, 26. [Google Scholar] [CrossRef] [PubMed]
- Ungsudechachai, T.; Honsawek, S.; Jittikoon, J.; Udomsinprasert, W. Clusterin Is Associated with Systemic and Synovial Inflammation in Knee Osteoarthritis. Cartilage 2021, 13 (Suppl. S1), 1557s–1565s. [Google Scholar] [CrossRef]
- Connor, J.R.; Kumar, S.; Sathe, G.; Mooney, J.; O’Brien, S.P.; Mui, P.; Murdock, P.R.; Gowen, M.; Lark, M.W. Clusterin expression in adult human normal and osteoarthritic articular cartilage. Osteoarthr. Cartil. 2001, 9, 727–737. [Google Scholar] [CrossRef]
- Kovács, P.; Pushparaj, P.N.; Takács, R.; Mobasheri, A.; Matta, C. The clusterin connectome: Emerging players in chondrocyte biology and putative exploratory biomarkers of osteoarthritis. Front. Immunol. 2023, 14, 1103097. [Google Scholar] [CrossRef]
- Ungsudechachai, T.; Jittikoon, J.; Honsawek, S.; Udomsinprasert, W. Protective effect of clusterin against interleukin-1β-induced apoptosis and inflammation in human knee osteoarthritis chondrocytes. Clin. Transl. Sci. 2024, 17, e13881. [Google Scholar] [CrossRef] [PubMed]
- Van der Kraan, P.; Van den Berg, W. Chondrocyte hypertrophy and osteoarthritis: Role in initiation and progression of cartilage degeneration? Osteoarthr. Cartil. 2012, 20, 223–232. [Google Scholar] [CrossRef] [PubMed]
- Von der Mark, K.; Kirsch, T.; Nerlich, A.; Kuss, A.; Weseloh, G.; Glückert, K.; Stöss, H. Type X collagen synthesis in human osteoarthritic cartilage. Indication of chondrocyte hypertrophy. Arthritis Rheum. Off. J. Am. Coll. Rheumatol. 1992, 35, 806–811. [Google Scholar]
- Tarquini, C.; Pucci, S.; Scioli, M.G.; Doldo, E.; Agostinelli, S.; D’Amico, F.; Bielli, A.; Ferlosio, A.; Caredda, E.; Tarantino, U.; et al. Clusterin exerts a cytoprotective and antioxidant effect in human osteoarthritic cartilage. Aging 2020, 12, 10129–10146. [Google Scholar] [CrossRef]
- Kalvaityte, U.; Matta, C.; Bernotiene, E.; Pushparaj, P.N.; Kiapour, A.M.; Mobasheri, A. Exploring the translational potential of clusterin as a biomarker of early osteoarthritis. J. Orthop. Transl. 2022, 32, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Kacso, I.M.; Bondor, C.I.; Kacso, G. Plasma adiponectin is related to the progression of kidney disease in type 2 diabetes patients. Scand. J. Clin. Lab. Investig. 2012, 72, 333–339. [Google Scholar]
- Tootsi, K.; Kals, J.; Zilmer, M.; Paapstel, K.; Märtson, A. Severity of Osteoarthritis Is Associated with Increased Arterial Stiffness. Int. J. Rheumatol. 2016, 2016, 6402963. [Google Scholar] [CrossRef]
- Loughlin, J.; Dowling, B.; Chapman, K.; Marcelline, L.; Mustafa, Z.; Southam, L.; Ferreira, A.; Ciesielski, C.; Carson, D.A.; Corr, M. Functional variants within the secreted frizzled-related protein 3 gene are associated with hip osteoarthritis in females. Proc. Natl. Acad. Sci. USA 2004, 101, 9757–9762. [Google Scholar] [CrossRef]
- Steinberg, J.; Southam, L.; Fontalis, A.; Clark, M.J.; Jayasuriya, R.L.; Swift, D.; Shah, K.M.; Brooks, R.A.; McCaskie, A.W.; Wilkinson, J.M.; et al. Linking chondrocyte and synovial transcriptional profile to clinical phenotype in osteoarthritis. Ann. Rheum. Dis. 2021, 80, 1070–1074. [Google Scholar] [CrossRef]
- Wen, C.-Y.; Wu, C.-B.; Tang, B.; Wang, T.; Yan, C.-H.; Lu, W.; Pan, H.; Hu, Y.; Chiu, K.-Y. Collagen fibril stiffening in osteoarthritic cartilage of human beings revealed by atomic force microscopy. Osteoarthr. Cartil. 2012, 20, 916–922. [Google Scholar]
- Kim, J.-H.; Lee, G.; Won, Y.; Lee, M.; Kwak, J.-S.; Chun, C.-H.; Chun, J.-S. Matrix cross-linking–mediated mechanotransduction promotes posttraumatic osteoarthritis. Proc. Natl. Acad. Sci. USA 2015, 112, 9424–9429. [Google Scholar] [PubMed]
- Verzijl, N.; DeGroot, J.; Zaken, C.B.; Braun-Benjamin, O.; Maroudas, A.; Bank, R.A.; Mizrahi, J.; Schalkwijk, C.G.; Thorpe, S.R.; Baynes, J.W. Crosslinking by advanced glycation end products increases the stiffness of the collagen network in human articular cartilage: A possible mechanism through which age is a risk factor for osteoarthritis. Arthritis Rheum. 2002, 46, 114–123. [Google Scholar] [PubMed]
- Eaton, C.B.; Sayeed, S.M.; Roberts, M.; Lapane, K.; Waring, M.; Yang, S.; Driban, J.; McAlindon, T. Metabolic syndrome, advanced glycation end products and knee osteoarthritis progression: A report from OAI. Osteoarthr. Cartil. 2013, 21, S165–S166. [Google Scholar] [CrossRef]
- Kaur, G.; Song, Y.; Xia, K.; McCarthy, K.; Zhang, F.; Linhardt, R.J.; Harris, N.R. Effect of high glucose on glycosaminoglycans in cultured retinal endothelial cells and rat retina. Glycobiology 2022, 32, 720–734. [Google Scholar] [CrossRef]
- Meurot, C.; Jacques, C.; Martin, C.; Sudre, L.; Breton, J.; Rattenbach, R.; Bismuth, K.; Berenbaum, F. Targeting the GLP-1/GLP-1R axis to treat osteoarthritis: A new opportunity? J. Orthop. Transl. 2022, 32, 121–129. [Google Scholar] [CrossRef]
- Fu, G.K.; Xu, W.; Wilhelmy, J.; Mindrinos, M.N.; Davis, R.W.; Xiao, W.; Fodor, S.P. Molecular indexing enables quantitative targeted RNA sequencing and reveals poor efficiencies in standard library preparations. Proc. Natl. Acad. Sci. USA 2014, 111, 1891–1896. [Google Scholar] [CrossRef]
- Coenye, T. Do results obtained with RNA-sequencing require independent verification? Biofilm 2021, 3, 100043. [Google Scholar] [CrossRef]
- Page, R.S.; McGee, S.L.; Eng, K.; Brown, G.; Beattie, S.; Collier, F.; Gill, S.D. Adhesive capsulitis of the shoulder: Protocol for the adhesive capsulitis biomarker (AdCaB) study. BMC Musculoskelet. Disord. 2019, 20, 145. [Google Scholar] [CrossRef]
- Hamada, K.; Yamanaka, K.; Uchiyama, Y.; Mikasa, T.; Mikasa, M. A radiographic classification of massive rotator cuff tear arthritis. Clin. Orthop. Relat. Res. 2011, 469, 2452–2460. [Google Scholar] [CrossRef]
- Jiang, H.; Lei, R.; Ding, S.-W.; Zhu, S. Skewer: A fast and accurate adapter trimmer for next-generation sequencing paired-end reads. BMC Bioinform. 2014, 15, 182. [Google Scholar] [CrossRef]
- Ewels, P.; Magnusson, M.; Lundin, S.; Käller, M. MultiQC: Summarize analysis results for multiple tools and samples in a single report. Bioinformatics 2016, 32, 3047–3048. [Google Scholar] [CrossRef] [PubMed]
- Simon, A. A Quality Control Analysis Tool for High Throughput Sequencing Data. Available online: https://github.com/s-andrews/FastQC (accessed on 11 November 2023).
- Frankish, A.; Diekhans, M.; Jungreis, I.; Lagarde, J.; Loveland, J.E.; Mudge, J.M.; Sisu, C.; Wright, J.C.; Armstrong, J.; Barnes, I.; et al. GENCODE 2021. Nucleic Acids Res. 2020, 49, D916–D923. [Google Scholar] [CrossRef]
- Bray, N.L.; Pimentel, H.; Melsted, P.; Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 2016, 34, 525–527. [Google Scholar] [CrossRef] [PubMed]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- Gillespie, M.; Jassal, B.; Stephan, R.; Milacic, M.; Rothfels, K.; Senff-Ribeiro, A.; Griss, J.; Sevilla, C.; Matthews, L.; Gong, C.; et al. The reactome pathway knowledgebase 2022. Nucleic Acids Res. 2022, 50, D687–D692. [Google Scholar] [CrossRef]
- Kaspi, A.; Ziemann, M. mitch: Multi-contrast pathway enrichment for multi-omics and single-cell profiling data. BMC Genom. 2020, 21, 447. [Google Scholar] [CrossRef]
Genes | Regulation | Likely Effect of Gene | Pathophysiological Description | Log2FoldChange | −log10 (FDR) | References |
---|---|---|---|---|---|---|
IGHV4.31 | Upregulated | Inflammatory | Adaptive immune response | 7.691303 | 0.0005410 | |
IGHV1.69D | Upregulated | Inflammatory | Adaptive immune response | 4.073358 | 0.0005410 | |
GATD3A | Downregulated | Catabolic Inflammatory | Downregulation → mitochondrial dysfunction
| −3.070696 | 0.0006993 | [21,22,23,24,25] |
ISY1.RAB43 | Upregulated | Unclear | Unclear | 0.5688546 | 0.0244115 | |
IGHV5.51 | Upregulated | Inflammatory | Adaptive immune response | 4.437549 | 0.0244115 | |
ZBTB45P2 | Upregulated | Unclear | Unclear | 5.661125 | 0.0244115 | |
GATD3B | Upregulated | Unclear | Unclear | 0.842649 | 0.0244115 | |
IGHV3.30 | Upregulated | Inflammatory | Adaptive immune response | 3.974320 | 0.0244115 | |
AL356056.2 | Upregulated | Inflammatory | Potentially regulate gene expression and facilitate inflammatory tumour immune microenvironment | 5.391960 | 0.0244115 | [26] |
JSRP1 | Upregulated | Unclear | Unclear | 2.933264 | 0.0263392 | |
IGHV4.61 | Upregulated | Inflammatory | Adaptive immune response | 4.750504 | 0.0445601 | |
IGHV2.26 | Upregulated | Inflammatory | Adaptive immune response | 4.409251 | 0.0473066 | |
INTS6.AS1 | Downregulated | Anti-inflammatory | Reflects INTS6 expression, which promotes WIF1 expression and inhibits WNT signalling in malignancy | −1.213004 | 0.0473066 | [27] |
HLA.DQA2 | Upregulated | Inflammatory | Autoimmunity | 3.544540 | 0.0535342 | |
HLA.H | Upregulated | Unclear | Unclear | 2.875753 | 0.0550853 | |
POLR2J2 | Upregulated | Unclear | Unclear | 2.618078 | 0.0579623 | |
IGHV1.46 | Upregulated | Inflammatory | Adaptive immune response | 3.745839 | 0.0623642 | |
IGHV4.55 | Upregulated | Inflammatory | Adaptive immune response | 3.875863 | 0.0628543 | |
IGHV1.18 | Upregulated | Inflammatory | Adaptive immune response | 4.064690 | 0.0643239 | |
NUTM2A | Upregulated | Catabolic Inflammatory | Decreased level of complimentary antisense RNA NUTM2A-AS1 regulates miR-183-5p/TGFA pathway
| 4.137140 | 0.0643239 | [28] |
Genes | Regulation | Likely Effect of Gene | Pathophysiological Description | Log2FoldChange | −log10 (FDR) | References |
---|---|---|---|---|---|---|
GATD3A | Downregulated | Catabolic Inflammatory | As above | −2.8201856 | 0.0008253 | |
CDRT1 | Downregulated | Unclear | Unclear | −2.2904291 | 0.2588321 | |
AC079414.2 | Downregulated | Unclear | Unclear | −2.8887873 | 0.2588321 | |
DES | Upregulated | Unclear | Maintains normal mitochondrial function in skeletal muscle | 1.8294800 | 0.2588321 | [29] |
AP003175.1 | Downregulated | Unclear | Unclear | −2.2330722 | 0.2588321 | |
CDRT4 | Upregulated | Unclear | Unclear | 0.9557273 | 0.2588321 | |
AC108471.2 | Downregulated | Unclear | Unclear | −2.0403979 | 0.2588321 | |
MAS1 | Downregulated | Anabolic | Downstream activation of ERK1/2 signalling
| −2.3785438 | 0.2883475 | [30] |
AC016629.2 | Downregulated | Unclear | Unclear | −1.8487647 | 0.3150250 | |
ACSM3 | Downregulated | Anabolic | Downregulation in acute myeloid leukemia → increased IGF2BP2 expression
| −1.7109043 | 0.3150250 | [31] |
IL12A.AS1 | Downregulated | Anti-inflammatory | Decreased expression in SLE → T follicular regulatory cell activation | −2.2720054 | 0.3150250 | [32] |
C21orf62.AS1 | Downregulated | Anti-inflammatory | Activation of WNT signalling in malignancy | −1.3878887 | 0.3150250 | [33] |
LINC01121 | Downregulated | Inflammatory | Modulation of MMP-16 expression
| −1.8717111 | 0.3150250 | [34] |
AL022323.2 | Downregulated | Unclear | Unclear | −2.3579100 | 0.3150250 | |
LINC01322 | Downregulated | Unclear | Unclear | −2.7691623 | 0.3150250 | |
SULT1A3 | Upregulated | Anabolic | Potential regulation of bone response to thyroid hormone and oestrogen in osteoblast | 1.2454267 | 0.3150250 | [35] |
LINC01229 | Downregulated | Anabolic | Downregulation → increased MAF expression
| −1.5291981 | 0.3150250 | [36,37] |
AL355482.1 | Downregulated | Unclear | Unclear | −2.2142403 | 0.3150250 | |
WNT16 | Downregulated | Anti-inflammatory | WNT signalling inhibition in the absence of other WNT ligands Otherwise lubricin-dependent transient WNT signalling activator | −3.6505808 | 0.3150250 | [38] |
GATD3B | Upregulated | Unclear | Unclear | 0.6112931 | 0.3150250 |
Genes | Regulation | Likely Effect of Gene | Pathophysiological Description | Log2FoldChange | −log10 (FDR) | References |
---|---|---|---|---|---|---|
KNDC1 | Downregulated | Anabolic | Downregulation induces ERK 1/2 signalling
| −3.274925 | 0.0010439 | [39,40] |
FAM50A | Downregulated | Anabolic | Interaction with Runx2
| −2.711501 | 0.0010439 | [41] |
RMRP | Downregulated | Anabolic | Downregulation regulates miR-206/CDK9 axis
| −7.205598 | 0.0016968 | [42] |
FEZF2 | Downregulated | Anabolic | Wnt/β-catenin signalling activation
| −3.203489 | 0.0139739 | [43] |
WIF1 | Downregulated | Anabolic Anti-inflammatory | Wnt/β-catenin signalling suppression → reduced ROS and MMP levels
| −4.115397 | 0.0165503 | [44] |
LBP | Downregulated | Inflammatory | Low-grade inflammation
| −2.881010 | 0.0182503 | [45] |
GNG3 | Downregulated | Unclear | Knockdown in mice models leads to decreased weight gain and is potentially implicated in the development of diabetes | −4.216226 | 0.0246764 | [46] |
CH25H | Downregulated | Catabolic Inflammatory | Increased LOX1-mediated cholesterol uptake and CH25H-CYP7B1-RORα axis regulation
| −2.647419 | 0.0246764 | [47] |
NR1D2 | Upregulated | Anabolic | Suppression of miR-128a expression
| 1.394920 | 0.0246764 | [48] |
RSPO4 | Downregulated | Anabolic Anti-inflammatory | Modulation of WNT/β-catenin signalling
| −3.360214 | 0.0392417 | [48,49] |
AC004057.1 | Upregulated | Others (unclear) | Unclear | 1.831635 | 0.0821972 | [50] |
RPS26 | Upregulated | Catabolic | Modulation of p53 transcriptional activity
| 1.162675 | 0.1167178 | |
AC005906.2 | Upregulated | Unclear | Unclear | 2.300732 | 0.1167178 | |
AC104532.1 | Upregulated | Unclear | Unclear | 5.307702 | 0.1247431 | |
RNF208 | Downregulated | Catabolic | Vimentin degradation
| −2.221922 | 0.1336789 | [51] |
FOSB | Downregulated | Anabolic | ERK1/2 signalling activation
| −3.173144 | 0.1336789 | [52,53] |
DAW1 | Upregulated | Unclear | Unclear | 2.507415 | 0.1336789 | |
MYBPC1 | Upregulated | Unclear | Correlates with bone mineral density, likely by affecting skeletal muscle loss | 3.601125 | 0.1841973 | [54] |
NPIPA8 | Upregulated | Unclear | Unclear | 4.324186 | 0.1867315 | |
NEFM | Downregulated | Inflammatory | Downregulation due to DNA methylation
| −2.917603 | 0.2224579 | [55] |
Genes | Regulation | Likely Effect of Gene | Pathophysiological Description | Log2FoldChange | −log10 (FDR) | References |
---|---|---|---|---|---|---|
TGM2 | Downregulated | Anabolic | Chondrocyte maturation and mineralized scaffold formation, Wnt/β-catenin signalling activation
| −3.3507315 | 0.0025472 | [56,57] |
KIF5A | Downregulated | Unclear | Unclear | −4.2775322 | 0.0611450 | |
BRSK1 | Downregulated | Unclear | Unclear | −3.3693750 | 0.0775459 | |
PTPMT1 | Upregulated | Anabolic | Increased mitochondrial metabolic capacity
| 1.0628621 | 0.2995526 | [58,59] |
VSNL1 | Downregulated | Unclear | Unclear | |||
OPTN | Upregulated | Anabolic | NF-κB signalling suppression in rheumatoid arthritis
| −4.1565301 | 0.3016345 | [58] |
RALB | Upregulated | Unclear | Unclear | 1.2887951 | 0.3016345 | |
MAST4 | Downregulated | Anabolic (in osteogenesis) Catabolic (in chondrogenesis) | TGF-β1-dependent inhibition → increased SOX9 stability
| −1.9906119 | 0.3016345 | [60] |
KLHL3 | Downregulated | Unclear | Unclear | −2.2875423 | 0.3018224 | |
ZC3H13 | Downregulated | Inflammatory | m6A methylation
| −0.7312717 | 0.3018224 | [61] |
RALA | Upregulated | Anabolic | Increased SOX9 and ACAN protein level
| 1.4128225 | 0.3216342 | [62] |
DDIT4 | Downregulated | Anabolic | Regulation of PGC1α levels and mitochondrial biogenesis
| −2.6283417 | 0.3216342 | [63,64] |
MSANTD3 | Upregulated | Unclear | Unclear | 1.8272517 | 0.3216342 | |
AC005670.3 | Downregulated | Unclear | Unclear | −1.1064848 | 0.3216342 | |
DNER | Downregulated | Anabolic Inflammatory | Activation of Notch signalling
| −5.1965309 | 0.6513570 | [65,66] |
CD320 | Downregulated | Anabolic | Increased HGF expression → activation of ERK 1/2 signalling
| −2.4803583 | 0.6513570 | [67] |
MYC | Downregulated | Anabolic | Increased chondrocyte proliferation and reduced cartilage degradation Increased ALP and BMP2 expression in ankylosing spondylitis
| −1.8769580 | 0.6513570 | [68,69] |
AC004057.1 | Upregulated | Unclear | Unclear | 2.9485435 | 0.6513570 | |
MX1 | Upregulated | Catabolic Inflammatory | Regulation of chemokine release
| 1.6875061 | 0.6513570 | [70] |
NSMCE3 | Upregulated | Anabolic | Interaction with SMC5/6 complex
| 1.0260843 | 0.6513570 | [71] |
Genes | Regulation | Likely Effect of Gene | Pathophysiological Description | Log2FoldChange | −log10 (FDR) | References |
---|---|---|---|---|---|---|
SNORC | Upregulated | Inflammatory | Knockdown in IL-1β-induced chondrocytes → suppression of PI3K and JNK signalling
| 4.230058 | 0.0000012 | [72] |
SCRG1 | Upregulated | Anabolic Inflammatory | Suppression of mesenchymal stem cell proliferation and induction of cartilage formation Inflammation and immune infiltration in OA synovitis through unknown mechanisms | 3.418468 | 0.0000034 | [73] |
MTARC1 | Downregulated | Anti-inflammatory | Reduced NO production
| −1.235527 | 0.0000066 | [74] |
NOTUM | Upregulated | Anti-inflammatory | WNT signalling inhibition and highly expressed in OA | 4.631073 | 0.0000330 | [75] |
VAT1L | Upregulated | Inflammatory | Associated with plasma adiponectin level, which has contradictory effect
| 2.034787 | 0.0001065 | [76,77,78,79,80,81] |
CLU | Upregulated | Anabolic Anti-inflammatory | Inhibition of PI3K/Akt signalling
| 3.397077 | 0.0001272 | [82] |
ACAN | Upregulated | Anabolic | Aggrecan is a key component of cartilage extracellular matrix | 4.245406 | 0.0001343 | [83] |
STC2 | Upregulated | Anabolic | Activation of ERK1/2 signalling in mesenchymal stem cells
| 3.653243 | 0.0001470 | [84] |
SHISA4 | Upregulated | Unclear | Unclear | 2.167296 | 0.0001470 | |
FIBIN | Upregulated | Inflammatory | Inhibition → mitochondrial dysfunction in sarcopenia | 3.109228 | 0.0001846 | [85] |
EPS8L2 | Upregulated | Unclear | Unclear | 2.131447 | 0.0001846 | |
FGFBP2 | Upregulated | Inflammatory | Component of FGF signalling pathway
| 3.549677 | 0.0002803 | [86] |
ITIH6 | Upregulated | Unclear | Unclear | 5.202700 | 0.0003075 | |
H19 | Upregulated | Catabolic | Regulation of miR-140-5p pathway
| 3.035993 | 0.0003636 | [87] |
MIA | Upregulated | Catabolic | Inhibition of ERK 1/2 signalling
| 3.796352 | 0.0003721 | [88,89] |
PANX3 | Upregulated | Catabolic Inflammatory | Inhibition of WNT/β-catenin signalling
| 4.118535 | 0.0003854 | [90,91] |
SCX | Upregulated | Catabolic | Suppression of tension-induced osteoblast differentiation in periodontal ligament cells | 1.833260 | 0.0004293 | [92] |
TRPV4 | Upregulated | Anabolic | Activation of AMPK signalling and suppression of NF-κB signalling
| 2.907016 | 0.0006412 | [93,94] |
B3GNT9 | Upregulated | Unclear | Unclear | 1.733289 | 0.0009621 | |
SLC38A3 | Upregulated | Unclear | Unclear | 3.328527 | 0.0010543 |
Reactome Pathway | setSize | pANOVA | s.dist | p.adjustANOVA |
---|---|---|---|---|
Eukaryotic translation elongation | 93 | 4.09 × 10−29 | 0.671 | 6.03 × 10−26 |
Peptide chain elongation | 88 | 3.13 × 10−27 | 0.666 | 1.74 × 10−24 |
Viral mRNA translation | 88 | 3.54 × 10−27 | 0.665 | 1.74 × 10−24 |
Selenocysteine synthesis | 92 | 3.09 × 10−25 | 0.625 | 6.51 × 10−23 |
Eukaryotic translation termination | 92 | 1.79 × 10−24 | 0.615 | 2.64 × 10−22 |
Unwinding of DNA | 12 | 2.28 × 10−4 | −0.614 | 2.65 × 10−3 |
Formation of a pool of free 40S subunits | 100 | 3.23 × 10−26 | 0.612 | 7.93 × 10−24 |
Collagen biosynthesis and modifying enzymes | 62 | 1.03 × 10−16 | 0.609 | 7.20 × 10−15 |
CS/DS degradation | 11 | 4.92 × 10−4 | 0.607 | 5.18 × 10−3 |
SARS-CoV-1 modulates host translation machinery | 36 | 4.56 × 10−10 | 0.600 | 1.68 × 10−8 |
Response of EIF2AK4 (GCN2) to amino acid deficiency | 100 | 4.42 × 10−25 | 0.598 | 7.87 × 10−23 |
Nonsense-mediated decay (NMD) independent of the Exon Junction Complex (EJC) | 94 | 1.73 × 10−23 | 0.596 | 1.96 × 10−21 |
SRP-dependent cotranslational protein targeting to membrane | 111 | 1.23 × 10−26 | 0.586 | 4.54 × 10−24 |
Interleukin-15 signalling | 14 | 1.48 × 10−4 | −0.586 | 1.93 × 10−3 |
Interleukin-2 signalling | 11 | 7.88 × 10−4 | −0.584 | 7.68 × 10−3 |
Keratan sulphate degradation | 11 | 8.05 × 10−4 | 0.583 | 7.68 × 10−3 |
Assembly of collagen fibrils and other multimeric structures | 51 | 7.73 × 10−13 | 0.580 | 3.56 × 10−11 |
RIP-mediated NFkB activation via ZBP1 | 17 | 4.39 × 10−5 | −0.572 | 6.88 × 10−4 |
Collagen chain trimerization | 40 | 4.78 × 10−10 | 0.569 | 1.72 × 10−8 |
GTP hydrolysis and joining of the 60S ribosomal subunit | 111 | 4.81 × 10−25 | 0.567 | 7.87 × 10−23 |
L13a-mediated translational silencing of ceruloplasmin expression | 110 | 4.75 × 10−24 | 0.558 | 5.83 × 10−22 |
Collagen formation | 82 | 5.42 × 10−18 | 0.552 | 4.18 × 10−16 |
Selenoamino acid metabolism | 114 | 4.38 × 10−24 | 0.548 | 5.83 × 10−22 |
Polo-like kinase-mediated events | 16 | 2.00 × 10−4 | −0.537 | 2.38 × 10−3 |
HDMs demethylate histones | 21 | 2.20 × 10−5 | −0.535 | 3.90 × 10−4 |
FOXO-mediated transcription of cell death genes | 16 | 2.67 × 10−4 | −0.526 | 3.01 × 10−3 |
Cap-dependent translation initiation | 118 | 9.28 × 10−23 | 0.523 | 9.11 × 10−21 |
Eukaryotic translation initiation | 118 | 9.28 × 10−23 | 0.523 | 9.11 × 10−21 |
Diseases associated with glycosaminoglycan metabolism | 36 | 1.13 × 10−7 | 0.511 | 3.26 × 10−6 |
CD22-mediated BCR regulation | 12 | 2.88 × 10−3 | −0.497 | 1.97 × 10−2 |
Formation of the ternary complex and, subsequently, the 43S complex | 51 | 9.87 × 10−10 | 0.495 | 3.46 × 10−8 |
ZBP1(DAI)-mediated induction of type I IFNs | 20 | 1.85 × 10−4 | −0.483 | 2.27 × 10−3 |
Scavenging by Class A Receptors | 16 | 8.81 × 10−4 | 0.480 | 8.27 × 10−3 |
Synthesis of Leukotrienes (LTs) and Eoxins (EXs) | 17 | 7.34 × 10−4 | −0.473 | 7.31 × 10−3 |
STAT5 activation downstream of FLT3 ITD mutants | 10 | 9.65 × 10−3 | −0.473 | 5.06 × 10−2 |
SARS-CoV-2 modulates host translation machinery | 49 | 1.36 × 10−8 | 0.469 | 4.35 × 10−7 |
ECM proteoglycans | 50 | 1.04 × 10−8 | 0.468 | 3.39 × 10−7 |
Regulation of IFNA/IFNB signalling | 12 | 5.23 × 10−3 | −0.466 | 3.18 × 10−2 |
Growth hormone receptor signalling | 20 | 3.48 × 10−4 | −0.462 | 3.71 × 10−3 |
GP1b-IX-V activation signalling | 10 | 1.18 × 10−2 | −0.460 | 5.84 × 10−2 |
Activation of the pre-replicative complex | 32 | 7.42 × 10−6 | −0.458 | 1.44 × 10−4 |
Transcription of E2F targets under negative control by DREAM complex | 19 | 5.65 × 10−4 | −0.457 | 5.82 × 10−3 |
Inhibition of replication initiation of damaged DNA by RB1/E2F1 | 13 | 4.93 × 10−3 | −0.450 | 3.04 × 10−2 |
G0 and early G1 | 27 | 5.25 × 10−5 | −0.450 | 8.06 × 10−4 |
Heme biosynthesis | 13 | 5.13 × 10−3 | −0.448 | 3.13 × 10−2 |
Dissolution of fibrin clot | 12 | 7.30 × 10−3 | 0.447 | 4.12 × 10−2 |
Interleukin-3, Interleukin-5, and GM-CSF signalling | 40 | 9.98 × 10−7 | −0.447 | 2.41 × 10−5 |
Ribosomal scanning and start codon recognition | 58 | 4.30 × 10−9 | 0.446 | 1.44 × 10−7 |
Regulation of FOXO transcriptional activity by acetylation | 10 | 1.48 × 10−2 | −0.445 | 6.78 × 10−2 |
Nonsense-mediated decay (NMD) enhanced by the Exon Junction Complex (EJC) | 114 | 2.45 × 10−16 | 0.444 | 1.57 × 10−14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lynskey, S.J.; Ling, Z.; Ziemann, M.; Gill, S.D.; McGee, S.L.; Page, R.S. Loosening the Lid on Shoulder Osteoarthritis: How the Transcriptome and Metabolic Syndrome Correlate with End-Stage Disease. Int. J. Mol. Sci. 2025, 26, 3145. https://doi.org/10.3390/ijms26073145
Lynskey SJ, Ling Z, Ziemann M, Gill SD, McGee SL, Page RS. Loosening the Lid on Shoulder Osteoarthritis: How the Transcriptome and Metabolic Syndrome Correlate with End-Stage Disease. International Journal of Molecular Sciences. 2025; 26(7):3145. https://doi.org/10.3390/ijms26073145
Chicago/Turabian StyleLynskey, Samuel J., Zihui Ling, Mark Ziemann, Stephen D. Gill, Sean L. McGee, and Richard S. Page. 2025. "Loosening the Lid on Shoulder Osteoarthritis: How the Transcriptome and Metabolic Syndrome Correlate with End-Stage Disease" International Journal of Molecular Sciences 26, no. 7: 3145. https://doi.org/10.3390/ijms26073145
APA StyleLynskey, S. J., Ling, Z., Ziemann, M., Gill, S. D., McGee, S. L., & Page, R. S. (2025). Loosening the Lid on Shoulder Osteoarthritis: How the Transcriptome and Metabolic Syndrome Correlate with End-Stage Disease. International Journal of Molecular Sciences, 26(7), 3145. https://doi.org/10.3390/ijms26073145