Genome-Wide Identification and Expression Analysis Unveil the Involvement of the Succinic Semialdehyde Dehydrogenase (SSADH) Gene Family in Banana Low Temperature Stress
Abstract
1. Introduction
2. Results
2.1. Identification and Physicochemical Property
2.2. Gene Structure, Conserved Motifs, Functional Domain Prediction, and Phylogenetic
2.3. Chromosome Mapping and Collinearity Analysis
2.4. Ka, Ks, and Ka/Ks of SSADH Gene Family
2.5. Prediction Analysis of the SSADH Genes Promoter Cis-Acting Element
2.6. The Expression Analysis of MaSSADHs Under Low-Temperature Stress
2.7. Subcellular Localization and Transient Expression in N. benthamian Eaves of MaSSADH1-14
3. Discussion
4. Materials and Methods
4.1. Plant Material and Low Temperature Treatment
4.2. Identification, Physicochemical and Phylogenetic Tree
4.3. Gene Structure, Motifs and Domains
4.4. Cis-Acting Element Prediction
4.5. Chromosome Mapping and Collinearity
4.6. Ka/Ks Values Analysis
4.7. Transcriptome Data and qRT-PCR
4.8. Subcellular Localization
4.9. Transient Expression of in N. benthamiana Leaves
4.10. Measurement of the Contents of GABA
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brocker, C.; Vasiliou, M.; Carpenter, S.; Carpenter, C.; Zhang, Y.; Wang, X.; Kotchoni, S.O.; Wood, A.J.; Kirch, H.-H.; Kopečný, D.; et al. Aldehyde dehydrogenase (ALDH) superfamily in plants: Gene nomenclature and comparative genomics. Planta 2013, 237, 189–210. [Google Scholar] [CrossRef]
- Vasiliou, V.; Bairoch, A.; Tipton, K.F.; Nebert, D.W. Eukaryotic aldehyde dehydrogenase (ALDH) genes: Human polymorphisms, and recommended nomenclature based on divergent evolution and chromosomal mapping. Pharmacogenetics 1999, 9, 421–434. [Google Scholar]
- Lindahl, R. Aldehyde dehydrogenases and their role in carcinogenesis. Crit. Rev. Biochem. Mol. Biol. 1992, 27, 283–335. [Google Scholar]
- Yoshida, A.; Rzhetsky, A.; Hsu, L.C.; Chang, C. Human aldehyde dehydrogenase gene family. Eur. J. Biochem. 1998, 251, 549–557. [Google Scholar] [PubMed]
- Baek, N.-I.; Choi, S.Y.; Park, J.K.; Cho, S.-W.; Ahn, E.-M.; Jeon, S.G.; Lee, B.R.; Bahn, J.H.; Kim, Y.K.; Shon, I.H. Isolation and identification of succinic semialdehyde dehydrogenase inhibitory compound from the rhizome of Gastrodia elata Blume. Arch. Pharmacal Res. 1999, 22, 219–224. [Google Scholar]
- Ludewig, F.; Hüser, A.; Fromm, H.; Beauclair, L.; Bouché, N. Mutants of GABA transaminase (POP2) suppress the severe phenotype of succinic semialdehyde dehydrogenase (ssadh) mutants in Arabidopsis. PLoS ONE 2008, 3, e3383. [Google Scholar]
- Busch, K.B.; Fromm, H. Plant succinic semialdehyde dehydrogenase. Cloning, purification, localization in mitochondria, and regulation by adenine nucleotides. Plant Physiol. 1999, 121, 589–598. [Google Scholar] [CrossRef]
- Fan, Z.; Zhao, B.; Zeng, Y.; Lai, R.; Zhao, X.; Chen, Y.; Lin, Y.; Du, Y.; Lai, Z. MaMPK19, a Key Gene Enhancing Cold Resistance by Activating the CBF Pathway in Banana. Plant Physiol. Biochem. 2024, 217, 109290. [Google Scholar]
- Che-Othman, M.H.; Jacoby, R.P.; Millar, A.H.; Taylor, N.L. Wheat mitochondrial respiration shifts from the tricarboxylic acid cycle to the GABA shunt under salt stress. New Phytol. 2020, 225, 1166–1180. [Google Scholar] [CrossRef]
- Bown, A.W.; Shelp, B.J. Does the GABA shunt regulate cytosolic GABA. Trends Plant Sci. 2020, 25, 422–424. [Google Scholar] [CrossRef]
- Bouché, N.; Fait, A.; Bouchez, D.; Møller, S.G.; Fromm, H. Mitochondrial succinic-semialdehyde dehydrogenase of the γ-aminobutyrate shunt is required to restrict levels of reactive oxygen intermediates in plants. ProC. Natl. Acad. Sci. USA 2003, 100, 6843–6848. [Google Scholar] [CrossRef] [PubMed]
- Ayenew, B.; Degu, A.; Manela, N.; Perl, A.; Shamir, M.O.; Fait, A. Metabolite profiling and transcript analysis reveal specificities in the response of a berry derived cell culture to abiotic stresses. Front. Plant Sci. 2015, 6, 728. [Google Scholar] [CrossRef] [PubMed]
- Bor, M.; Seckin, B.; Ozgur, R.; Yilmaz, O.; Ozdemir, F.; Turkan, I. Comparative effects of drought, salt, heavy metal and heat stresses on gamma-aminobutyric acid levels of sesame (Sesamum indicum L). Acta Physiol. Plant. 2009, 31, 655–659. [Google Scholar]
- Cheng, B.; Li, Z.; Liang, L.; Cao, Y.; Zeng, W.; Zhang, X.; Ma, X.; Huang, L.; Nie, G.; Liu, W.; et al. The γ-aminobutyric acid (GABA) alleviates salt stress damage during seeds germination of white clover associated with Na+/K+ transportation, dehydrins accumulation, and stress-related genes expression in white clover. Int. J. Mol. Sci. 2018, 19, 2520. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Dou, N.; Zhang, H.; Wu, C. The versatile GABA in plants. Plant Signal. Behav. 2021, 16, 1862565. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Y.; Wang, J.; Khan, A.; Kang, Z.; Ma, Y.; Zhang, J.; Dang, H.; Li, T.; Hu, X. SlGAD2 is the target of SlTHM27,positively regulates cold tolerance by mediating anthocyanin biosynthesis in tomato. Hortic. Res. 2024, 11, 39–51. [Google Scholar]
- Liu, W.; Cheng, C.; Chen, F.; Ni, S.; Lin, Y.; Lai, Z. High-throughput sequencing of small RNAs revealed the diversified cold-responsive pathways during cold stress in the wild banana (Musa itinerans). BMC Plant Biol. 2018, 18, 308. [Google Scholar] [CrossRef] [PubMed]
- Moreano, J.P.S.; Xu, X.; Criollo, C.B.A.; Chen, X.; Lin, Y.; Munir, N.; Lai, Z. Genome-Wide Identification and Comprehensive Analyses of TCP Gene Family in Banana (Musa L.). Trop. Plant Biol. 2021, 14, 180–202. [Google Scholar]
- Han, Y.C.; Fu, C.C. Cold-inducible MaC2H2s are associated with cold stress response of banana fruit via regulating MaICE1. Plant Cell Rep. 2019, 38, 673–680. [Google Scholar] [CrossRef]
- Meng, J.; Hu, B.; Yi, G.; Li, X.; Chen, H.; Wang, Y.; Yuan, W.; Xing, Y.; Sheng, Q.; Su, Z.; et al. Genome-wide analyses of banana fasciclin-like AGP genes and their differential expression under low-temperature stress in chilling sensitive and tolerant cultivars. Plant Cell Rep. 2020, 39, 693–708. [Google Scholar]
- Song, Z.; Lai, X.; Yao, Y.; Qin, J.; Ding, X.; Zheng, Q.; Pang, X.; Chen, W.; Li, X.; Zhu, X. F-box protein EBF1 and transcription factor ABI5-like regulate banana fruit chilling-induced ripening Disorder. Plant Physiol. 2022, 188, 1312–1334. [Google Scholar] [PubMed]
- Yang, A.; Cao, S.; Yang, Z.; Cai, Y.; Zheng, Y. γ-Aminobutyric acid treatment reduces chilling injury and activates the defence response of peach fruit. Food Chem. 2011, 129, 1619–1622. [Google Scholar]
- Fait, A.; Yellin, A.; Fromm, H. GABA shunt deficiencies and accumulation of reactive oxygen intermediates: Insight from Arabidopsis mutants. FEBS Lett. 2005, 579, 415–420. [Google Scholar]
- Breitkreuz, K.E.; Allan, W.L.; Van Cauwenberghe, O.R.; Jakobs, C.; Talibi, D.; André, B.; Shelp, B.J. A novel gamma-hydroxybutyrate dehydrogenase: Identification and expression of an Arabidopsis cDNA and potential role under oxygen deficiency. J. Biol. Chem. 2003, 278, 41552–41556. [Google Scholar]
- Kotchoni, S.O.; Jimenez-Lopez, J.C.; Gao, D.; Edwards, V.; Gachomo, E.W.; Margam, V.M.; Seufferheld, M.J. Modeling-Dependent Protein Characterization of the Rice Aldehyde Dehydrogenase (ALDH) Superfamily Reveals Distinct Functional and Structural Features. PLoS ONE 2010, 5, e11516. [Google Scholar]
- Baurens, F.-C.; Bocs, S.; Rouard, M.; Matsumoto, T.; Miller, R.N.; Rodier-Goud, M.; Mbéguié-A.-Mbéguié, D.; Yahiaoui, N. Mechanisms of haplotype divergence at the RGA08 nucleotide-binding leucine-rich repeat gene locus in wild banana (Musa balbisiana). BMC Plant Biol. 2010, 10, 149. [Google Scholar]
- Wu, W.; Yang, Y.-L.; He, W.-M.; Rouard, M.; Li, W.-M.; Xu, M.; Roux, N.; Ge, X.-J. Whole genome sequencing of a banana wild relative Musa itinerans provides insights into lineage-specific diversification of the Musa genus. Sci. Rep. 2016, 6, 31586. [Google Scholar] [CrossRef]
- Zhang, J.; Guo, C.; Wang, B.; Zhang, M.; Chen, Y.; Chen, R. Cloning and Expression Analysis of a Water Stress-Induced ALDH Gene from Sugarcane. Sci. Agric. Sin. 2009, 42, 2676–2685. [Google Scholar]
- Zhu, C.; Ming, C.; Zhao-shi, X.; Lian-cheng, L.; Xue-ping, C.; You-zhi, M. Characteristics and Expression Patterns of the Aldehyde Dehydrogenase (ALDH) Gene Superfamily of Foxtail Millet (Setaria italica L.). PLoS ONE 2014, 9, e101136. [Google Scholar]
- He, X.; Zhang, J. Rapid subfunctionalization accompanied by prolonged and substantial neofunctionalization in duplicate gene evolution. Genetics 2005, 169, 1157–1164. [Google Scholar]
- D’Hont, A.; Denoeud, F.; Aury, J.M.; Baurens, F.-C.; Carreel, F.; Garsmeur, O.; Noel, B.; Bocs, S.; Droc, G.; Rouard, M.; et al. The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature 2012, 488, 213–217. [Google Scholar] [CrossRef]
- Luo, Y.; Wang, H.; Wang, Y.; Lu, Z.; Liu, Y.; Shan, Y.; Chen, X.; Ye, H.; Gao, L.; Xia, T. Expression and Optimization of Anthocyanin Reductase Gene of Tea Plant [Camellia sinensis (L.) O. Kuntze] in Escherichia coli. J. Tea Sci. 2011, 31, 326–332. [Google Scholar]
- Xu, G.; Guo, C.; Shan, H.; Kong, H. Divergence of duplicate genes in exon-intron structure. Proc. Natl. Acad. Sci. USA 2012, 109, 1187–1192. [Google Scholar] [CrossRef]
- Gorlova, O.; Fedorov, A.; Logothetis, C.; Amos, C.; Gorlov, I. Genes with a large intronic burden show greater evolutionary conservation on the protein level. BMC Evol. Biol. 2014, 14, 50. [Google Scholar] [CrossRef]
- Magadum, S.; Banerjee, U.; Murugan, P.; Gangapur, D.; Ravikesavan, R. Gene duplication as a major force in evolution. Gene 2013, 92, 155–161. [Google Scholar] [CrossRef]
- Lawton-Rauh, A. Evolutionary dynamics of duplicated genes in plants. Molecular Phylogenetics Evol. 2020, 29, 396–409. [Google Scholar] [CrossRef]
- Du, H.; Zhang, W.; Zhang, W.; Zhang, W.; Pan, H.; Pan, Y.; Bazylinski, D.A.; Wu, L.F.; Xiao, T.; Lin, W. Magnetosome gene duplication as an important driver in the evolution of magnetotaxis in the Alphaproteobacteria. Msystems 2019, 4, e00315–e00319. [Google Scholar] [CrossRef]
- Chen, J.; Wang, B.; Chung, J.-S.; Chai, H.; Liu, C.; Ruan, Y.; Shi, H. The role of promoter cis-element, mRNA capping, and ROS in the repression and salt-inducible expression of AtSOT12 in Arabidopsis. Front. Plant Sci. 2015, 6, 974. [Google Scholar] [CrossRef]
- Ramesh, S.A.; Tyerman, S.D.; Gilliham, M.; Xu, B. gamma-Aminobutyric acid (GABA) signalling in plants. Cell Mol. Life Sci. 2017, 74, 1577–1603. [Google Scholar]
- Seifikalhor, M.; Aliniaeifard, S.; Hassani, B.; Niknam, V.; Lastochkina, O. Diverse role of gamma-aminobutyric acid in dynamic plant cell responses. Plant Cell Rep. 2019, 38, 847–867. [Google Scholar] [CrossRef]
- Verma, V.; Ravindran, P.; Kumar, P.P. Plant hormone-mediated regulation of stress responses. BMC Plant Biol. 2016, 16, 86. [Google Scholar] [CrossRef]
- Küpers, J.J.; Oskam, L.; Pierik, R. Photoreceptors regulate plant developmental plasticity through auxin. Plants 2020, 9, 940. [Google Scholar] [CrossRef]
- Jang, G.; Yoon, Y.; Choi, Y.D. Crosstalk with jasmonic acid integrates multiple responses in plant development. Int. J. Mol. Sci. 2020, 21, 305. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, L.; Chen, X.; Wu, X.; Xiang, X.; Zhou, J.; Xia, X.; Shi, K.; Yu, J.; Foyer, C.H.; et al. SlHY5 integrates temperature, light, and hormone signaling to balance plant growth and cold tolerance. Plant Physiol. 2019, 179, 749–760. [Google Scholar] [CrossRef]
- Xu, Z.; Sun, L.; Zhou, Y.; Yang, W.; Cheng, T.; Wang, J.; Zhang, Q. Identification and expression analysis of the SQUAMOSA promoter-binding protein (SBP)-box gene family in Prunus mume. Mol. Genet. Genom. 2015, 290, 1701–1715. [Google Scholar] [CrossRef]
- Luo, W.; Li, Y.; Sun, Y.; Lu, L.; Zhao, Z.; Zhou, J.; Li, X. Comparative RNA-seq analysis reveals candidate genes associated with fruit set in pumpkin. Sci. Hortic. 2021, 288, 110255. [Google Scholar] [CrossRef]
- Prater, M.; Hamilton, R.S.; Wa Yung, H.; Sharkey, A.M.; Robson, P.; Abd Hamid, N.E.; Jauniaux, E.; Charnock-Jones, D.S.; Burton, G.J.; Cindrova-Davies, T. RNA-Seq reveals changes in human placental metabolism, transport and endocrinology across the first-second trimester transition. Biol. Open 2021, 10, 058222. [Google Scholar] [CrossRef]
- Droc, G.; Martin, G.; Guignon, V.; Summo, M.; Sempéré, G.; Durant, E.; Soriano, A.; Baurens, F.-C.; Cenci, A.; Breton, C.; et al. The banana genome hub: A community database for genomics in the Musaceae. Hortic. Res. 2022, 9, uhac221. [Google Scholar] [CrossRef]
- Zheng, J.; Zhang, Z.; Zhang, N.; Liang, Y.; Gong, Z.; Wang, J.; Ditta, A.; Sang, Z.; Wang, J.; Li, X. Identification and function analysis of GABA branch three gene families in the cotton related to abiotic stresses. BMC Plant Biol. 2024, 24, 57. [Google Scholar] [CrossRef]
- Chen, C.J.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.H.; Xia, R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef]
- Marchler-Bauer, A.; Bryant, S.H. CD-Search: Protein domain annotations on the fly. Nucleic Acids Res. 2004, 32 (Suppl. S2), W327–W331. [Google Scholar]
- Garg, V.K.; Avashthi, H.; Tiwari, A.; Jain, P.A.; Ramkete, P.W.; Kayastha, A.M.; Singh, V.K. MFPPI–multi FASTA ProtParam interface. Bio. Inf. 2016, 12, 74–77. [Google Scholar] [CrossRef]
- Chou, K.C.; Shen, H.B. Plant-mPLoc: A top-down strategy to augment the power for predicting plant protein subcellular localization. PLoS ONE 2010, 5, e11335. [Google Scholar] [CrossRef]
- Krogh, A.; Larsson, B.; von Heijne, G.; Sonnhammer, E.L. Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. J. Mol. Biol. 2001, 305, 567–580. [Google Scholar]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar]
- Bailey, T.L.; Boden, M.; Buske, F.A.; Frith, M.; Grant, C.E.; Clementi, L.; Ren, J.; Li, W.W.; Noble, W.S. MEME SUITE: Tools for motif discovery and searching. Nucleic Acids Res. 2009, 37 (Suppl. S2), W202–W208. [Google Scholar] [CrossRef]
- Gao, S.; Li, L.; Han, X.; Liu, T.; Jin, P.; Cai, L.; Xu, M.; Zhang, T.; Zhang, F.; Chen, J.; et al. Genome-wide identification of the histone acetyltransferase gene family in Triticum aestivum. BMC Genom. 2021, 22, 49. [Google Scholar]
- Tang, H.; Bowers, J.E.; Wang, X.; Ming, R.; Alam, M.; Paterson, A.H. Synteny and collinearity in plant genomes. Science 2008, 320, 486–488. [Google Scholar]
- Liu, W.; Cheng, C.; Lin, Y.; Xu, H.; Lai, Z. Genome-wide identification and characterization of mRNAs and lncRNAs involved in cold stress in the wild banana (Musa itinerans). PLoS ONE 2018, 13, e0200002. [Google Scholar] [CrossRef]
- Li, Y.; Li, X.; Wei, J.; Cai, K.; Zhang, H.; Ge, L.; Ren, Z.; Zhao, C.; Zhao, X. Genome-Wide Identification and Analysis of the WRKY Gene Family and Cold Stress Response in Acer truncatum. Genes 2021, 12, 1867. [Google Scholar] [CrossRef]
- Chen, L.; Zhong, H.; Kuang, J.; Li, J.; Lu, W.; Chen, J. Validation of reference genes for RT-qPCR studies of gene expression in banana fruit under different experimental conditions. Planta 2011, 234, 377–390. [Google Scholar] [CrossRef]
- Qiao, Z.; Li, J.; Zhang, X.; Guo, H.; He, C.; Zong, D. Genome-Wide Identification, Expression Analysis, and Subcellular Localization of DET2 Gene Family in Populus yunnanensis. Genes 2024, 15, 148. [Google Scholar] [CrossRef]
Gene Name | Gene ID | Size/Amino Acid | MW | pI | Instability Index | Aliphatic Index | GRAVY | Signal Peptide | THM | Subcellular Location |
---|---|---|---|---|---|---|---|---|---|---|
MaSSADH1-1 | Ma01_g22760 | 553 | 61,356.54 | 6.5 | 37.2 | 93.45 | −0.11 | NO | 0 | Mitochondrion |
MaSSADH1-2 | Ma03_g06120 | 539 | 58,811.42 | 7.15 | 36.22 | 90.54 | −0.06 | NO | 0 | Mitochondrion |
MaSSADH1-3 | Ma03_g27650 | 502 | 54,493.45 | 5.79 | 37.69 | 85.52 | −0.051 | NO | 0 | Cytoplasm |
MaSSADH1-4 | Ma04_g28920 | 538 | 57,767.19 | 7.58 | 40.36 | 85.99 | −0.057 | NO | 0 | Mitochondrion |
MaSSADH1-5 | Ma05_g05010 | 542 | 58,806.33 | 6.71 | 31.05 | 90.2 | −0.054 | NO | 0 | Mitochondrion |
MaSSADH1-6 | Ma05_g27170 | 501 | 54,588.82 | 5.89 | 37.46 | 88.04 | −0.008 | NO | 0 | Mitochondrion |
MaSSADH1-7 | Ma05_g29200 | 530 | 56,816.59 | 7.45 | 33.85 | 92.98 | 0.056 | NO | 0 | Nucleus |
MaSSADH1-8 | Ma06_g03680 | 496 | 53,168.62 | 7.11 | 36.86 | 93.61 | 0.039 | NO | 0 | Mitochondrion |
MaSSADH1-9 | Ma06_g06420 | 501 | 54,700.81 | 5.99 | 31.66 | 84.13 | −0.053 | NO | 0 | Cytoplasm |
MaSSADH1-10 | Ma06_g19080 | 487 | 53,283.31 | 9.36 | 34.71 | 101.72 | 0.068 | NO | 0 | Cytoplasm |
MaSSADH1-11 | Ma07_g20820 | 497 | 53,298.52 | 6.39 | 38.33 | 90.62 | −0.008 | NO | 0 | Cytoplasm |
MaSSADH1-12 | Ma08_g10390 | 595 | 65,813.21 | 6.9 | 30.76 | 94.67 | 0.083 | YES | 1 | vacuole |
MaSSADH1-13 | Ma08_g11500 | 537 | 59,878.98 | 8.98 | 52.41 | 108.23 | 0.077 | NO | 0 | Cytoplasm |
MaSSADH1-14 | Ma08_g24330 | 509 | 54,433.77 | 5.63 | 35.36 | 95.74 | 0.113 | NO | 0 | Chloroplast |
MaSSADH1-15 | Ma08_g30610 | 493 | 53,446.84 | 7.63 | 38.35 | 95.01 | 0.022 | NO | 0 | Cytoplasm |
MaSSADH1-16 | Ma09_g15520 | 505 | 55,101.55 | 5.21 | 34.09 | 92.75 | −0.018 | NO | 0 | Peroxisome |
MaSSADH1-17 | Ma10_g10980 | 484 | 52,750.29 | 8.95 | 32.72 | 100.52 | 0.069 | NO | 1 | Cytoplasm |
MaSSADH1-18 | Ma11_g04820 | 594 | 65,526.86 | 6.94 | 32.3 | 93.72 | 0.099 | NO | 1 | vacuole |
MaSSADH1-19 | Ma11_g10470 | 493 | 53,481.1 | 8.65 | 37.08 | 96.39 | 0.013 | NO | 0 | ER |
MbSSADH1-1 | Mba01_g05390 | 491 | 53,233.89 | 5.6 | 36.97 | 84.26 | −0.073 | NO | 0 | cytoskeleton |
MbSSADH1-2 | Mba01_g32920 | 516 | 57,139.74 | 6.93 | 36.82 | 92.98 | −0.131 | NO | 0 | Mitochondrion |
MbSSADH1-3 | Mba03_g06130 | 539 | 58,851.52 | 6.81 | 36.54 | 91.82 | −0.045 | NO | 0 | Mitochondrion |
MbSSADH1-4 | Mba04_g29540 | 538 | 57,592.98 | 6.77 | 40.62 | 86.17 | −0.039 | NO | 0 | Mitochondrion |
MbSSADH1-5 | Mba05_g12480 | 542 | 58,790.34 | 6.71 | 30.24 | 90.55 | −0.045 | NO | 0 | Mitochondrion |
MbSSADH1-6 | Mba05_g28500 | 535 | 57,348.96 | 5.64 | 31.95 | 93.01 | 0.063 | NO | 1 | Nucleus |
MbSSADH1-7 | Mba06_g03350 | 498 | 53,471.08 | 7.85 | 35.27 | 93.23 | 0.029 | NO | 0 | cytoskeleton |
MbSSADH1-8 | Mba06_g06030 | 519 | 57,033.67 | 5.69 | 34.15 | 89.65 | 0.02 | NO | 0 | cytoskeleton |
MbSSADH1-9 | Mba06_g18010 | 607 | 66,434.55 | 8.79 | 34.3 | 99.13 | 0.12 | NO | 0 | plas |
MbSSADH1-10 | Mba07_g19440 | 525 | 56,537.46 | 6.16 | 38.31 | 93.96 | 0.09 | NO | 1 | Cytoplasm |
MbSSADH1-11 | Mba08_g09970 | 595 | 65,859.14 | 6.22 | 29.49 | 95.16 | 0.089 | YES | 1 | vacuole |
MbSSADH1-12 | Mba08_g10980 | 494 | 55,125.19 | 8.87 | 45.12 | 101.23 | 0.064 | NO | 0 | Chloroplast |
MbSSADH1-13 | Mba08_g23970 | 366 | 39,846.99 | 5.94 | 38.95 | 99.62 | 0.056 | NO | 1 | Cytoplasm |
MbSSADH1-14 | Mba08_g30180 | 493 | 53,645.11 | 7.16 | 37.82 | 93.81 | 0.012 | NO | 0 | Cytoplasm |
MbSSADH1-15 | Mba09_g14730 | 463 | 50,612.74 | 5.52 | 35.67 | 94.21 | 0.03 | NO | 0 | Peroxisome |
MbSSADH1-16 | Mba10_g09530 | 415 | 45,476.94 | 9.24 | 33.29 | 97.73 | 0.012 | NO | 1 | Cytoplasm |
MbSSADH1-17 | Mba11_g04730 | 594 | 65,549.94 | 6.94 | 32.84 | 93.72 | 0.094 | NO | 1 | vacuole |
MbSSADH1-18 | Mba11_g09820 | 493 | 53,542.06 | 8.06 | 37.14 | 95.42 | −0.005 | NO | 0 | ER |
MiSSADH1-1 | Mi_g000749 | 537 | 59,571.34 | 6.08 | 37.03 | 93.5 | −0.117 | NO | 0 | Cytoplasm |
MiSSADH1-2 | Mi_g002257 | 476 | 52,002.4 | 8.07 | 40.14 | 97.77 | 0.049 | NO | 0 | Chloroplast |
MiSSADH1-3 | Mi_g003077 | 456 | 49,936.31 | 5.88 | 31.2 | 85.18 | −0.081 | NO | 0 | Cytoplasm |
MiSSADH1-4 | Mi_g006293 | 493 | 53,582.16 | 8.51 | 36.48 | 96 | −0.01 | NO | 0 | ER |
MiSSADH1-5 | Mi_g008747 | 538 | 57,800.3 | 7.56 | 40.86 | 87.06 | −0.056 | NO | 0 | Mitochondrion |
MiSSADH1-6 | Mi_g009992 | 472 | 52,510.92 | 8.14 | 48.8 | 99.17 | 0.034 | NO | 0 | Cytoplasm |
MiSSADH1-7 | Mi_g011667 | 511 | 55,684.91 | 6.2 | 32.23 | 92.43 | −0.038 | NO | 0 | Cytoplasm |
MiSSADH1-8 | Mi_g014343 | 497 | 53,341.56 | 6.11 | 39.1 | 91.23 | 0.006 | NO | 0 | Cytoplasm |
MiSSADH1-9 | Mi_g014566 | 487 | 53,083.58 | 8.6 | 33.37 | 100.49 | 0.054 | NO | 1 | Cytoplasm |
MiSSADH1-10 | Mi_g015510 | 487 | 53,289.34 | 9.33 | 33.25 | 101.72 | 0.073 | NO | 0 | Cytoplasm |
MiSSADH1-11 | Mi_g016157 | 498 | 53,257.46 | 5.9 | 34.52 | 95.3 | 0.12 | NO | 0 | Chloroplast |
MiSSADH1-12 | Mi_g016499 | 814 | 89,491.01 | 5.83 | 48.11 | 73.26 | −0.331 | NO | 0 | Nucleus |
MiSSADH1-13 | Mi_g019946 | 595 | 65,699.07 | 6.92 | 29.76 | 95.5 | 0.092 | NO | 1 | vacuole |
MiSSADH1-14 | Mi_g021384 | 505 | 55,125.65 | 5.27 | 34.25 | 91.6 | −0.022 | NO | 0 | Peroxisome |
MiSSADH1-15 | Mi_g023084 | 496 | 53,167.63 | 7.11 | 36.92 | 93.41 | 0.037 | NO | 0 | cytoskeleton |
MiSSADH1-16 | Mi_g026726 | 594 | 65,595.99 | 6.94 | 33.39 | 93.06 | 0.09 | NO | 1 | vacuole |
MiSSADH1-17 | Mi_g030503 | 542 | 58,743.3 | 6.9 | 30.88 | 90.39 | −0.038 | NO | 0 | Mitochondrion |
MiSSADH1-18 | Mi_g030913 | 509 | 55,443.88 | 5.78 | 36.45 | 88.76 | 0.02 | NO | 0 | Cytoplasm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, X.; Yang, F.; Zhang, X.; Tang, M.; Wan, K.; Lai, C.; Lai, Z.; Lin, Y. Genome-Wide Identification and Expression Analysis Unveil the Involvement of the Succinic Semialdehyde Dehydrogenase (SSADH) Gene Family in Banana Low Temperature Stress. Int. J. Mol. Sci. 2025, 26, 3006. https://doi.org/10.3390/ijms26073006
Guo X, Yang F, Zhang X, Tang M, Wan K, Lai C, Lai Z, Lin Y. Genome-Wide Identification and Expression Analysis Unveil the Involvement of the Succinic Semialdehyde Dehydrogenase (SSADH) Gene Family in Banana Low Temperature Stress. International Journal of Molecular Sciences. 2025; 26(7):3006. https://doi.org/10.3390/ijms26073006
Chicago/Turabian StyleGuo, Xiong, Fengjie Yang, Xueying Zhang, Mengjie Tang, Kui Wan, Chunwang Lai, Zhongxiong Lai, and Yuling Lin. 2025. "Genome-Wide Identification and Expression Analysis Unveil the Involvement of the Succinic Semialdehyde Dehydrogenase (SSADH) Gene Family in Banana Low Temperature Stress" International Journal of Molecular Sciences 26, no. 7: 3006. https://doi.org/10.3390/ijms26073006
APA StyleGuo, X., Yang, F., Zhang, X., Tang, M., Wan, K., Lai, C., Lai, Z., & Lin, Y. (2025). Genome-Wide Identification and Expression Analysis Unveil the Involvement of the Succinic Semialdehyde Dehydrogenase (SSADH) Gene Family in Banana Low Temperature Stress. International Journal of Molecular Sciences, 26(7), 3006. https://doi.org/10.3390/ijms26073006