Circulating Bilirubin Levels, but Not Their Genetic Determinants, Are Inversely Associated with Steatotic Liver Disease in Adolescents
Abstract
:1. Introduction
2. Results
2.1. Description of the GOCS Participants
2.2. Observational Associations Between Serum Total Bilirubin and SLD
2.3. Association Between Genetic Determinants of Bilirubin and SLD
3. Discussion
4. Materials and Methods
4.1. Study Design
4.2. Evaluation of Steatotic Liver Disease (SLD)
4.3. Anthropometry
4.4. Serum Biochemical Determinations
4.5. Genotyping of GOCS Participants
4.6. Estimation of Bilirubin Polygenic Scores in GOCS
4.7. Estimation of Ancestry and Genetic Principal Components in GOCS
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vítek, L. The role of bilirubin in diabetes, metabolic syndrome, and cardiovascular diseases. Front. Pharmacol. 2012, 3, 22085. [Google Scholar]
- Hinds, T.D.; Stec, D.E. Bilirubin, a cardiometabolic signaling molecule. Hypertension 2018, 72, 788–795. [Google Scholar] [CrossRef]
- Wagner, K.-H.; Wallner, M.; Mölzer, C.; Gazzin, S.; Bulmer, A.C.; Tiribelli, C.; Vitek, L. Looking to the horizon: The role of bilirubin in the development and prevention of age-related chronic diseases. Clin. Sci. 2015, 129, 1–25. [Google Scholar] [CrossRef]
- Tsai, M.-T.; Tarng, D.-C. Beyond a Measure of Liver Function—Bilirubin Acts as a Potential Cardiovascular Protector in Chronic Kidney Disease Patients. Int. J. Mol. Sci. 2018, 20, 117. [Google Scholar] [CrossRef] [PubMed]
- Roberts, M.S.; Magnusson, B.M.; Burczynski, F.J.; Weiss, M. Enterohepatic Circulation. Clin. Pharmacokinet. 2002, 41, 751–790. [Google Scholar] [CrossRef]
- Bosma, P.; Seppen, J.; Goldhoorn, B.; Bakker, C.; Elferink, R.O.; Chowdhury, J.; Chowdhury, N.; Jansen, P. Bilirubin UDP-glucuronosyltransferase 1 is the only relevant bilirubin glucuronidating isoform in man. J. Biol. Chem. 1994, 269, 17960–17964. [Google Scholar] [CrossRef]
- Erlinger, S.; Arias, I.M.; Dhumeaux, D. Inherited disorders of bilirubin transport and conjugation: New insights into molecular mechanisms and consequences. Gastroenterology 2014, 146, 1625–1638. [Google Scholar] [CrossRef] [PubMed]
- Bosma, P.J.; Chowdhury, J.R.; Bakker, C.; Gantla, S.; De Boer, A.; Oostra, B.A.; Lindhout, D.; Tytgat, G.N.J.; Jansen, P.L.M.; Oude Elferink, R.P.; et al. The Genetic Basis of the Reduced Expression of Bilirubin UDP-Glucuronosyltransferase 1 in Gilbert’s Syndrome. N. Engl. J. Med. 1995, 333, 1171–1175. [Google Scholar] [CrossRef]
- Coltell, O.; Asensio, E.M.; Sorlí, J.V.; Barragán, R.; Fernández-Carrión, R.; Portolés, O.; Ortega-Azorín, C.; Martínez-LaCruz, R.; González, J.I.; Zanón-Moreno, V.; et al. Genome-Wide Association Study (GWAS) on Bilirubin Concentrations in Subjects with Metabolic Syndrome: Sex-Specific GWAS Analysis and Gene-Diet Interactions in a Mediterranean Population. Nutrients 2019, 11, 90. [Google Scholar] [CrossRef]
- Benton, M.C.; Lea, R.A.; Macartney-Coxson, D.; Bellis, C.; Carless, M.A.; Curran, J.E.; Hanna, M.; Eccles, D.; Chambers, G.K.; Blangero, J.; et al. Serum bilirubin concentration is modified by UGT1A1 Haplotypes and influences risk of Type-2 diabetes in the Norfolk Island genetic isolate. BMC Genet. 2015, 16, 136. [Google Scholar] [CrossRef]
- Miranda, J.P.; Pereira, A.; Corvalán, C.; Miquel, J.F.; Alberti, G.; Gana, J.C.; Santos, J.L. Genetic determinants of serum bilirubin using inferred native American gene variants in Chilean adolescents. Front. Genet. 2024, 15, 1382103. [Google Scholar] [CrossRef]
- Méndez, L.; Lagos, M.; Quiroga, T.; Margozzini, P.; Azócar, L.; Molina, H.R.; Vera, A.; Villarroel, L.; Arrese, M.; Hampe, J.; et al. Prevalencia de síndrome de Gilbert y sus determinantes genéticas en población chilena. Rev. Med. Chil. 2013, 141, 1266–1274. [Google Scholar] [PubMed]
- VanWagner, L.B.; Green, R.M. Evaluating Elevated Bilirubin Levels in Asymptomatic Adults. JAMA 2015, 313, 516–517. [Google Scholar] [CrossRef] [PubMed]
- Breimer, L.H.; Mikhailidis, D.P. Does bilirubin protect against developing diabetes mellitus? J. Diabetes Complicat. 2016, 30, 728–737. [Google Scholar]
- Fevery, J. Bilirubin in clinical practice: A review. Liver Int. 2008, 28, 592–605. [Google Scholar] [CrossRef]
- Muraca, M.; Fevery, J. Influence of sex and sex steroids on bilirubin uridine diphosphate-glucuronosyltransferase activity of rat liver. Gastroenterology 1984, 87, 308–313. [Google Scholar] [CrossRef]
- Vítek, L.; Novotný, L.; Šperl, M.; Holaj, R.; Spáčil, J. The Inverse Association of Elevated Serum Bilirubin Levels with Subclinical Carotid Atherosclerosis. Cerebrovasc. Dis. 2006, 21, 408–414. [Google Scholar] [CrossRef]
- Wang, J.; Li, Y.; Han, X.; Hu, H.; Wang, F.; Li, X.; Yang, K.; Yuan, J.; Yao, P.; Miao, X.; et al. Serum bilirubin levels and risk of type 2 diabetes: Results from two independent cohorts in middle-aged and elderly Chinese. Sci. Rep. 2017, 7, 41338. [Google Scholar] [CrossRef]
- Cheriyath, P.; Gorrepati, V.S.; Peters, I.; Nookala, V.; Murphy, M.E.; Srouji, N.; Fischman, D. High Total Bilirubin as a Protective Factor for Diabetes Mellitus: An Analysis of NHANES Data From 1999–2006. J. Clin. Med. Res. 2010, 2, 201. [Google Scholar]
- Boland, B.S.; Dong, M.H.; Bettencourt, R.; Barrett-Connor, E.; Loomba, R. Association of Serum Bilirubin with Aging and Mortality. J. Clin. Exp. Hepatol. 2014, 4, 1–7. [Google Scholar] [CrossRef]
- Stocker, R.; Yamamoto, Y.; McDonagh, A.F.; Glazer, A.N.; Ames, B.N. Bilirubin Is an Antioxidant of Possible Physiological Importance. Science 1987, 235, 1043–1046. [Google Scholar] [CrossRef] [PubMed]
- Barañano, D.E.; Rao, M.; Ferris, C.D.; Snyder, S.H. Biliverdin reductase: A major physiologic cytoprotectant. Proc. Natl. Acad. Sci. USA 2002, 99, 16093–16098. [Google Scholar] [CrossRef] [PubMed]
- DiNicolantonio, J.J.; McCarty, M.F.; O’keefe, J.H. Antioxidant bilirubin works in multiple ways to reduce risk for obesity and its health complications. Open Hear. 2018, 5, e000914. [Google Scholar] [CrossRef]
- Zelenka, J.; Dvořák, A.; Alán, L.; Zadinová, M.; Haluzík, M.; Vítek, L. Hyperbilirubinemia Protects against Aging-Associated Inflammation and Metabolic Deterioration. Oxidative Med. Cell. Longev. 2016, 2016, 6190609. [Google Scholar] [CrossRef]
- Tsai, W.-N.; Wang, Y.-Y.; Liang, J.-T.; Lin, S.-Y.; Sheu, W.H.-H.; Chang, W.-D. Serum total bilirubin concentrations are inversely associated with total white blood cell counts in an adult population. Ann. Clin. Biochem. Int. J. Biochem. Lab. Med. 2014, 52, 251–258. [Google Scholar] [CrossRef]
- Kawamura, K.; Ishikawa, K.; Wada, Y.; Kimura, S.; Matsumoto, H.; Kohro, T.; Itabe, H.; Kodama, T.; Maruyama, Y. Bilirubin from heme oxygenase-1 attenuates vascular endothelial activation and dysfunction. Arter. Thromb. Vasc. Biol. 2005, 25, 155–160. [Google Scholar] [CrossRef]
- Bulmer, A.C.; Bakrania, B.; Du Toit, E.F.; Boon, A.-C.; Clark, P.J.; Powell, L.W.; Wagner, K.-H.; Headrick, J.P. Bilirubin acts as a multipotent guardian of cardiovascular integrity: More than just a radical idea. Am. J. Physiol. Circ. Physiol. 2018, 315, H429–H447. [Google Scholar] [CrossRef]
- Montagner, A.; Polizzi, A.; Fouché, E.; Ducheix, S.; Lippi, Y.; Lasserre, F.; Barquissau, V.; Régnier, M.; Lukowicz, C.; Benhamed, F.; et al. Liver PPARα is crucial for whole-body fatty acid homeostasis and is protective against NAFLD. Gut 2016, 65, 1202–1214. [Google Scholar] [CrossRef]
- Gordon, D.M.; Neifer, K.L.; Hamoud, A.-R.A.; Hawk, C.F.; Nestor-Kalinoski, A.L.; Miruzzi, S.A.; Morran, M.P.; Adeosun, S.O.; Sarver, J.G.; Erhardt, P.W.; et al. Bilirubin remodels murine white adipose tissue by reshaping mitochondrial activity and the coregulator profile of peroxisome proliferator–activated receptor α. J. Biol. Chem. 2020, 295, 9804–9822. [Google Scholar] [CrossRef]
- Vítek, L.; Tiribelli, C. Bilirubin: The yellow hormone? J. Hepatol. 2021, 75, 1485–1490. [Google Scholar] [CrossRef]
- Creeden, J.F.; Gordon, D.M.; Stec, D.E.; Hinds, T.D. Bilirubin as a metabolic hormone: The physiological relevance of low levels. Am. J. Physiol. Metab. 2020, 320, E191–E207. [Google Scholar] [CrossRef] [PubMed]
- Hinds, T.D.; Hosick, P.A.; Chen, S.; Tukey, R.H.; Hankins, M.W.; Nestor-Kalinoski, A.; Stec, D.E. Mice with hyperbilirubinemia due to Gilbert’s syndrome polymorphism are resistant to hepatic steatosis by decreased serine 73 phosphorylation of PPARα. Am. J. Physiol. Metab. 2017, 312, E244–E252. [Google Scholar] [CrossRef] [PubMed]
- Guzek, M.; Jakubowski, Z.; Bandosz, P.; Wyrzykowski, B.; Smoczyński, M.; Jabloiska, A.; Zdrojewski, T. Inverse association of serum bilirubin with metabolic syndrome and insulin resistance in Polish population. Prz. Epidemiol. 2012, 66, 495–501. [Google Scholar]
- Ohnaka, K.; Kono, S.; Inoguchi, T.; Yin, G.; Morita, M.; Adachi, M.; Kawate, H.; Takayanagi, R. Inverse associations of serum bilirubin with high sensitivity C-reactive protein, glycated hemoglobin, and prevalence of type 2 diabetes in middle-aged and elderly Japanese men and women. Diabetes Res. Clin. Pract. 2010, 88, 103–110. [Google Scholar] [CrossRef]
- Kwon, Y.J.; Lee, Y.J.; Park, B.J.; Hong, K.-W.; Jung, D.-H. Total serum bilirubin and 8-year incident type 2 diabetes mellitus: The Korean Genome and Epidemiology Study. Diabetes Metab. 2018, 44, 346–353. [Google Scholar] [CrossRef]
- Jung, C.H.; Lee, M.J.; Kang, Y.M.; Hwang, J.Y.; Jang, J.E.; Leem, J.; Park, J.-Y.; Kim, H.-K.; Lee, W.J. Higher serum bilirubin level as a protective factor for the development of diabetes in healthy Korean men: A 4year retrospective longitudinal study. Metabolism 2014, 63, 87–93. [Google Scholar] [CrossRef]
- Lin, L.-Y.; Kuo, H.-K.; Hwang, J.-J.; Lai, L.-P.; Chiang, F.-T.; Tseng, C.-D.; Lin, J.-L. Serum bilirubin is inversely associated with insulin resistance and metabolic syndrome among children and adolescents. Atherosclerosis 2009, 203, 563–568. [Google Scholar] [CrossRef]
- Wu, Y.; Li, M.; Xu, M.; Bi, Y.; Li, X.; Chen, Y.; Ning, G.; Wang, W. Low serum total bilirubin concentrations are associated with increased prevalence of metabolic syndrome in Chinese. J. Diabetes 2011, 3, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.; Jung, C.; Kang, Y.; Hwang, J.; Jang, J.; Leem, J.; Park, J.-Y.; Kim, H.-K.; Lee, W. Serum bilirubin as a predictor of incident metabolic syndrome: A 4-year retrospective longitudinal study of 6205 initially healthy Korean men. Diabetes Metab. 2014, 40, 305–309. [Google Scholar] [CrossRef]
- Abbasi, A.; Deetman, P.E.; Corpeleijn, E.; Gansevoort, R.T.; Gans, R.O.; Hillege, H.L.; van der Harst, P.; Stolk, R.P.; Navis, G.; Alizadeh, B.Z.; et al. Bilirubin as a Potential Causal Factor in Type 2 Diabetes Risk: A Mendelian Randomization Study. Diabetes 2014, 64, 1459–1469. [Google Scholar] [CrossRef]
- Kwon, K.-M.; Kam, J.-H.; Kim, M.-Y.; Chung, C.H.; Kim, J.-K.; Linton, J.A.; Eom, A.; Koh, S.-B.; Kang, H.-T. Inverse association between total bilirubin and metabolic syndrome in rural korean women. J. Women’s Heal. 2011, 20, 963–969. [Google Scholar] [CrossRef]
- Liang, C.; Yu, Z.; Bai, L.; Hou, W.; Tang, S.; Zhang, W.; Chen, X.; Hu, Z.; Duan, Z.; Zheng, S. Association of Serum Bilirubin With Metabolic Syndrome and Non-Alcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis. Front. Endocrinol. 2022, 13, 869579. [Google Scholar] [CrossRef]
- Adin, C.A. Bilirubin as a Therapeutic Molecule: Challenges and Opportunities. Antioxidants 2021, 10, 1536. [Google Scholar] [CrossRef] [PubMed]
- Alberti, G.; Faune, M.; Santos, J.L.; De Barbieri, F.; García, C.; Pereira, A.; Becerra, F.; Gana, J.C. Relation between Body Composition Trajectories from Childhood to Adolescence and Nonalcoholic Fatty Liver Disease Risk. Nutrients 2024, 16, 785. [Google Scholar] [CrossRef]
- Farías, C.; Cisternas, C.; Gana, J.C.; Alberti, G.; Echeverría, F.; Videla, L.A.; Mercado, L.; Muñoz, Y.; Valenzuela, R. Dietary and Nutritional Interventions in Nonalcoholic Fatty Liver Disease in Pediatrics. Nutrients 2023, 15, 4829. [Google Scholar] [CrossRef]
- Cuzmar, V.; Alberti, G.; Uauy, R.; Pereira, A.; García, C.; De Barbieri, F.; Corvalán, C.; Santos, J.L.; Mericq, V.; Villarroel, L.; et al. Early Obesity: Risk Factor for Fatty Liver Disease. J. Pediatr. Gastroenterol. Nutr. 2020, 70, 93–98. [Google Scholar]
- Stec, D.E.; Gordon, D.M.; Nestor-Kalinoski, A.L.; Donald, M.C.; Mitchell, Z.L.; Creeden, J.F.; Hinds, T.D. Biliverdin Reductase A (BVRA) Knockout in Adipocytes Induces Hypertrophy and Reduces Mitochondria in White Fat of Obese Mice. Biomolecules 2020, 10, 387. [Google Scholar] [CrossRef]
- Gazzin, S.; Vitek, L.; Watchko, J.; Shapiro, S.M.; Tiribelli, C. A Novel Perspective on the Biology of Bilirubin in Health and Disease. Trends Mol. Med. 2016, 22, 758–768. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; An, P.; Jia, X.; Yue, X.; Zheng, S.; Liu, S.; Chen, Y.; An, W.; Winkler, C.A.; Duan, Z. Genetically Regulated Bilirubin and Risk of Non-alcoholic Fatty Liver Disease: A Mendelian Randomization Study. Front. Genet. 2018, 9, 662. [Google Scholar] [CrossRef]
- Kunutsor, S.K.; Frysz, M.; Verweij, N.; Kieneker, L.M.; Bakker, S.J.L.; Dullaart, R.P.F. Circulating total bilirubin and risk of non-alcoholic fatty liver disease in the PREVEND study: Observational findings and a Mendelian randomization study. Eur. J. Epidemiol. 2019, 35, 123–137. [Google Scholar] [CrossRef]
- Tian, J.; Zhong, R.; Liu, C.; Tang, Y.; Gong, J.; Chang, J.; Lou, J.; Ke, J.; Li, J.; Zhang, Y.; et al. Association between bilirubin and risk of Non-Alcoholic Fatty Liver Disease based on a prospective cohort study. Sci. Rep. 2016, 6, 31006. [Google Scholar] [CrossRef] [PubMed]
- Shu, X.; Zheng, Y.; Chen, Z.; Guo, Q.; Wang, Y.; Ji, R.; Zhou, Y. Association between bilirubin and nonalcoholic fatty liver disease in the non-obese Chinese population: A cross-sectional study. Ann. Transl. Med. 2022, 10, 522. [Google Scholar] [CrossRef]
- Ma, X.; Zheng, X.; Liu, S.; Zhuang, L.; Wang, M.; Wang, Y.; Xin, Y.; Xuan, S. Relationship of circulating total bilirubin, UDP-glucuronosyltransferases 1A1 and the development of non-alcoholic fatty liver disease: A cross-sectional study. BMC Gastroenterol. 2022, 22, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Wang, Q.; Zhang, L.; Liu, J.; Wang, G. Serum Bilirubin Level Is Increased in Metabolically Healthy Obesity. Front. Endocrinol. 2022, 12, 792795. [Google Scholar] [CrossRef]
- Barbarino, J.M.; Haidar, C.E.; Klein, T.E.; Altman, R.B. PharmGKB summary: Very important pharmacogene information for UGT1A1. Pharmacogenet Genom. 2014, 24, 177. [Google Scholar] [CrossRef] [PubMed]
- Dekker, D.; Dorresteijn, M.J.; Pijnenburg, M.; Heemskerk, S.; Rasing-Hoogveld, A.; Burger, D.M.; Wagener, F.A.; Smits, P. The bilirubin-increasing drug atazanavir improves endothelial function in patients with type 2 diabetes mellitus. Arter. Thromb. Vasc. Biol. 2011, 31, 458–463. [Google Scholar] [CrossRef] [PubMed]
- Crane, H.M.; Nance, R.M.; Heckbert, S.R.; Ritchings, C.; Rosenblatt, L.; Budoff, M.; Wood, B.R.; Tirschwell, D.L.; Kim, H.N.; Mathews, W.C. Association Between Bilirubin, Atazanavir, and Cardiovascular Disease Events Among People Living With HIV Across the United States. J. Acquir. Immune Defic. Syndr. 1988, 81, E141–E147. [Google Scholar] [CrossRef]
- Ullah, A.; Stankevic, E.; Holm, L.A.; Stinson, S.E.; Juel, H.B.; Fonvig, C.E.; Lund, M.A.V.; Trier, C.; Engelbrechtsen, L.; Ängquist, L.; et al. Genetics of Plasma Bilirubin and Associations between Bilirubin and Cardiometabolic Risk Profiles in Danish Children and Adolescents. Antioxidants 2023, 12, 1613. [Google Scholar] [CrossRef]
- Kwak, M.-S.; Kim, D.; Chung, G.E.; Kang, S.J.; Park, M.J.; Kim, Y.J.; Yoon, J.-H.; Lee, H.-S. Serum bilirubin levels are inversely associated with nonalcoholic fatty liver disease. Clin. Mol. Hepatol. 2012, 18, 383–390. [Google Scholar] [CrossRef]
- Xiang, L.-L.; Cao, Y.-T.; Sun, J.; Li, R.-H.; Qi, F.; Zhang, Y.-J.; Zhang, W.-H.; Yan, L.; Zhou, X.-Q. Association between thyroid function and nonalcoholic fatty liver disease: A dose-response meta-analysis. Front. Endocrinol. 2024, 15, 1399517. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, J.; Liu, H. Correlation between the thyroid hormone levels and nonalcoholic fatty liver disease in type 2 diabetic patients with normal thyroid function. BMC Endocr. Disord. 2022, 22, 144. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Wu, X.; Zhang, Q.; Liu, L.; Meng, G.; Wu, H.; Zhang, S.; Wang, Y.; Zhang, T.; Wang, X.; et al. High-Normal Thyroid Function Predicts Incident Nonalcoholic Fatty Liver Disease Among Middle-Aged and Older Euthyroid Subjects. J. Gerontol. Ser. A 2021, 77, 197–203. [Google Scholar] [CrossRef]
- Masmoudi, T.; Hihi, A.K.; Vázquez, M.; Artur, Y.; Desvergne, B.; Wahli, W.; Goudonnet, H. Transcriptional Regulation by Triiodothyronine of the UDP-glucuronosyltransferase Family 1 Gene Complex in Rat Liver: Comparison with induction by 3-methylcholanthrene. J. Biol. Chem. 1997, 272, 17171–17175. [Google Scholar] [CrossRef]
- Li, V.Q.; Prentice, D.A.; Howard, M.L.; Mashford, M.L.; Desmond, P.V. The effect of hormones on the expression of five isoforms of UDP-glucuronosyltransferase in primary cultures of rat hepatocytes. Pharm. Res. 1999, 16, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Bruinstroop, E.; Dalan, R.; Cao, Y.; Bee, Y.M.; Chandran, K.; Cho, L.W.; Soh, S.B.; Teo, E.K.; Toh, S.-A.; Leow, M.K.S.; et al. Low-Dose Levothyroxine Reduces Intrahepatic Lipid Content in Patients With Type 2 Diabetes Mellitus and NAFLD. J. Clin. Endocrinol. Metab. 2018, 103, 2698–2706. [Google Scholar] [CrossRef]
- Liu, L.; Yu, Y.; Zhao, M.; Zheng, D.; Zhang, X.; Guan, Q.; Xu, C.; Gao, L.; Zhao, J.; Zhang, H. Benefits of Levothyroxine Replacement Therapy on Nonalcoholic Fatty Liver Disease in Subclinical Hypothyroidism Patients. Int. J. Endocrinol. 2017, 2017, 5753039. [Google Scholar] [CrossRef]
- Kokkorakis, M.; Boutari, C.; Hill, M.A.; Kotsis, V.; Loomba, R.; Sanyal, A.J.; Mantzoros, C.S. Resmetirom, the first approved drug for the man-agement of metabolic dysfunction-associated steatohepatitis: Trials, opportunities, and challenges. Metabolism 2024, 154, 155835. [Google Scholar] [CrossRef]
- Harrison, S.A.; Bedossa, P.; Guy, C.D.; Schattenberg, J.M.; Loomba, R.; Taub, R.; Labriola, D.; Moussa, S.E.; Neff, G.W.; Rinella, M.E.; et al. A Phase 3, Randomized, Controlled Trial of Resmetirom in NASH with Liver Fibrosis. N. Engl. J. Med. 2024, 390, 497–509. [Google Scholar] [CrossRef] [PubMed]
- Sinnott-Armstrong, N.; Tanigawa, Y.; Amar, D.; Mars, N.; Benner, C.; Aguirre, M.; Venkataraman, G.R.; Wainberg, M.; Ollila, H.M.; Kiiskinen, T.; et al. Genetics of 35 blood and urine biomarkers in the UK Biobank. Nat. Genet. 2021, 53, 185–194. [Google Scholar] [CrossRef]
- Privé, F.; Aschard, H.; Carmi, S.; Folkersen, L.; Hoggart, C.; O’Reilly, P.F.; Vilhjálmsson, B.J. Portability of 245 polygenic scores when derived from the UK Biobank and applied to 9 ancestry groups from the same cohort. Am. J. Hum. Genet. 2022, 109, 12–23. [Google Scholar] [CrossRef]
- Grover, S.; Del Greco, M.F.; Stein, C.M.; Ziegler, A. Mendelian Randomization. Methods Mol. Biol. 2017, 1666, 581–628. [Google Scholar] [PubMed]
- Abbasi, A. Mendelian randomization studies of biomarkers and type 2 diabetes. Endocr. Connect. 2015, 4, 249–260. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, U.; Weisstaub, G.; Santos, J.L.; Corvalán, C.; Uauy, R. GOCS cohort: Children’s eating behavior scores and BMI. Eur. J. Clin. Nutr. 2016, 70, 925–928. [Google Scholar] [CrossRef] [PubMed]
- De Onis, M.; Onyango, A.W.; Borghi, E.; Siyam, A.; Nishida, C.; Siekmann, J. Development of a WHO growth reference for school-aged children and adolescents. Bull. World Health Organ. 2007, 85, 660. [Google Scholar] [CrossRef]
- Tobar, H.E.; Cataldo, L.R.; González, T.; Rodríguez, R.; Serrano, V.; Arteaga, A.; Álvarez-Mercado, A.; Lagos, C.F.; Vicuña, L.; Miranda, J.P.; et al. Identification and functional analysis of missense mutations in the lecithin cholesterol acyltransferase gene in a Chilean patient with hypoalphalipoproteinemia. Lipids Heal. Dis. 2019, 18, 132. [Google Scholar] [CrossRef]
- Miranda, J.P.; Lardone, M.C.; Rodríguez, F.; Cutler, G.B.; Santos, J.L.; Corvalán, C.; Pereira, A.; Mericq, V. Genome-Wide Association Study and Polygenic Risk Scores of Serum DHEAS Levels in a Chilean Children Cohort. J. Clin. Endocrinol. Metab. 2021, 107, e1727–e1738. [Google Scholar] [CrossRef]
- Lardone, M.C.; Busch, A.S.; Santos, J.L.; Miranda, P.; Eyheramendy, S.; Pereira, A.; Juul, A.; Almstrup, K.; Mericq, V. A Polygenic Risk Score Suggests Shared Genetic Architecture of Voice Break With Early Markers of Pubertal Onset in Boys. J. Clin. Endocrinol. Metab. 2020, 105, e349–e357. [Google Scholar] [CrossRef]
- Das, S.; Forer, L.; Schönherr, S.; Sidore, C.; Locke, A.E.; Kwong, A.; Vrieze, S.I.; Chew, E.Y.; Levy, S.; McGue, M.; et al. Next-generation genotype imputation service and methods. Nat. Genet. 2016, 48, 1284–1287. [Google Scholar] [CrossRef]
- Maples, B.K.; Gravel, S.; Kenny, E.E.; Bustamante, C.D. RFMix: A Discriminative Modeling Approach for Rapid and Robust Lo-cal-Ancestry Inference. Am. J. Hum. Genet. 2013, 93, 278. [Google Scholar] [CrossRef]
- Price, A.L.; Patterson, N.J.; Plenge, R.M.; Weinblatt, M.E.; Shadick, N.A.; Reich, D. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 2006, 38, 904–909. [Google Scholar] [CrossRef]
Boys (N = 340) | Girls (N = 364) | |||||
---|---|---|---|---|---|---|
Controls (N = 309) Mean (SD) or Median (IQR) | SLD Cases (N = 31) Mean (SD) or Median (IQR) | p Value | Controls (N = 329) Mean (SD) or Median (IQR) | SLD Cases (N = 35) Mean (SD) or Median (IQR) | p Value | |
Age and anthropometry | ||||||
Age (years) | 14.94 (0.92) | 14.83 (0.82) | 0.476 | 15.78 (0.86) | 15.70 (0.90) | 0.61 |
z-score of BMI | 0.47 (1.13) | 2.15 (0.86) | <0.001 | 0.77 (0.99) | 2.14 (1.19) | <0.001 |
Waist circumference (cm) | 74.04 (9.16) | 92.06 (11.94) | <0.001 | 73.60 (8.74) | 88.19 (16.34) | <0.001 |
Circulating metabolite and enzyme measurements | ||||||
TB (mg/dL) | 0.47 (0.35–0.7) | 0.45 (0.31–0.56) | 0.019 | 0.33 (0.24–0.47) | 0.26 (0.19–0.35) | 0.009 |
ALP (U/L) | 195 (145–250) | 191 (142.5–233) | 0.532 | 89 (77–101) | 95 (84.5–112.5) | 0.096 |
ALT (U/L) | 16 (12–20) | 23 (17–29.5) | <0.001 | 17 (14–19) | 19 (16–20.5) | 0.032 |
AST (U/L) | 18 (14–20) | 21 (17–34) | 0.003 | 13 (10–17) | 16 (13–24.5) | 0.015 |
GGT (U/L) | 12 (10–14) | 16 (13–20.5) | 0.001 | 10 (8–13) | 14 (10.5–18) | 0.008 |
Global ancestry proportions | ||||||
NAT | 0.45 (0.10) | 0.49 (0.11) | 0.098 | 0.45 (0.09) | 0.46 (0.07) | 0.505 |
EUR | 0.53 (0.10) | 0.49 (0.11) | 0.110 | 0.53 (0.09) | 0.52 (0.07) | 0.464 |
AFR | 0.02 (0.01) | 0.02 (0.01) | 0.178 | 0.02 (0.01) | 0.02 (0.01) | 0.546 |
Cohort (N = 704) | Boys (N = 340) | Girls (N = 364) | ||||
---|---|---|---|---|---|---|
Continuous IRNT-TB or by Quintile * | ORadj (95% CI) | p Value | ORadj (95% CI) | p Value | ORadj (95% CI) | p Value |
Continuous | 0.70 (0.50–0.96) | 0.03 | 0.68 (0.40–1.12) | 0.14 | 0.70 (0.45–1.07) | 0.10 |
Q1 | ref | - | ref | - | ref | - |
Q2 | 0.73 (0.31–1.69) | 0.47 | 0.51 (0.16–1.98) | 0.34 | 0.53 (0.15–1.72) | 0.30 |
Q3 | 0.48 (0.18–1.21) | 0.13 | 0.86 (0.24–2.94) | 0.81 | 1.09 (0.35–3.40) | 0.88 |
Q4 | 0.40 (0.15–1.01) | 0.06 | 0.32 (0.07–1.21) | 0.10 | 0.17 (0.03–0.70) | 0.02 |
Q5 | 0.37 (0.13–1.00) | 0.06 | 0.26 (0.05–1.12) | 0.09 | 0.41 (0.10–1.49) | 0.19 |
Genotypes | ORadj (95% CI) | p Value | |
---|---|---|---|
Cohort | CC (N = 319) | ref | - |
CT (N = 312) | 1.40 (0.76–2.62) | 0.28 | |
TT (N = 73) | 0.75 (0.25–2.01) | 0.59 | |
Boys | CC (N = 143) | ref | - |
CT (N = 152) | 2.05 (0.79–5.72) | 0.15 | |
TT (N = 45) | 0.52 (0.09–2.35) | 0.42 | |
Girls | CC (N = 176) | ref | - |
CT (N = 160) | 1.00 (0.43–2.31) | 0.99 | |
TT (N = 28) | 0.98 (0.21–3.56) | 0.98 |
PGS000697 | PGS001942 | PGS002160 | ||||
---|---|---|---|---|---|---|
Continuous PGSs or by Quintiles * | ORadj (95% CI) | p Value | ORadj (95% CI) | p Value | ORadj (95% CI) | p Value |
Cohort (N = 704) | ||||||
Continuous | 1.23 (0.29–5.09) | 0.77 | 1.00 (0.24–4.01) | 1.00 | 1.28 (0.32–5.11) | 0.72 |
Q1 | ref | - | ref | - | ref | - |
Q2 | 0.70 (0.26–1.87) | 0.47 | 0.94 (0.36–2.48) | 0.90 | 0.80 (0.30–2.13) | 0.66 |
Q3 | 1.55 (0.60–4.08) | 0.36 | 1.55 (0.63–3.91) | 0.34 | 1.05 (0.39–2.80) | 0.93 |
Q4 | 0.99 (0.39–2.55) | 0.99 | 0.66 (0.23–1.83) | 0.43 | 0.94 (0.36–2.48) | 0.90 |
Q5 | 1.03 (0.41–2.61) | 0.96 | 1.18 (0.48–2.94) | 0.72 | 1.01 (0.41–2.59) | 0.98 |
Boys (N = 340) | ||||||
Continuous | 1.05 (0.12–8.95) | 0.96 | 0.94 (0.11–7.65) | 0.95 | 1.55 (0.18–13.3) | 0.69 |
Q1 | ref | - | ref | - | ref | - |
Q2 | 0.70 (0.11–3.91) | 0.69 | 0.37 (0.06–2.01) | 0.27 | 0.68 (0.13–3.51) | 0.64 |
Q3 | 1.70 (0.40–8.02) | 0.48 | 1.62 (0.42–6.78) | 0.49 | 1.32 (0.30–6.30) | 0.71 |
Q4 | 2.06 (0.54–9.04) | 0.30 | 1.45 (0.38–5.91) | 0.58 | 1.86 (0.47–8.37) | 0.38 |
Q5 | 0.88 (0.19–1.58) | 0.86 | 0.63 (0.15–2.73) | 0.53 | 0.75 (0.16–3.66) | 0.72 |
Girls (N = 364) | ||||||
Continuous | 1.09 (0.14–7.73) | 0.93 | 0.86 (0.12–5.73) | 0.87 | 0.93 (0.13–5.98) | 0.94 |
Q1 | ref | - | ref | - | ref | - |
Q2 | 1.09 (0.39–3.11) | 0.87 | 0.69 (0.23–1.99) | 0.50 | 1.64 (0.57–5.12) | 0.37 |
Q3 | 0.60 (0.17–1.90) | 0.39 | 0.74 (0.25–2.13) | 0.58 | 0.84 (0.23–2.93) | 0.78 |
Q4 | 0.48 (0.12–1.62) | 0.25 | 0.19 (0.03–0.79) | 0.04 | 0.61 (0.15–2.26) | 0.47 |
Q5 | 1.16 (0.41–3.28) | 0.78 | 1.19 (0.44–3.22) | 0.73 | 1.89 (0.65–5.90) | 0.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miranda, J.P.; Gana, J.C.; Alberti, G.; Galindo, K.; Pereira, A.; Santos, J.L. Circulating Bilirubin Levels, but Not Their Genetic Determinants, Are Inversely Associated with Steatotic Liver Disease in Adolescents. Int. J. Mol. Sci. 2025, 26, 2980. https://doi.org/10.3390/ijms26072980
Miranda JP, Gana JC, Alberti G, Galindo K, Pereira A, Santos JL. Circulating Bilirubin Levels, but Not Their Genetic Determinants, Are Inversely Associated with Steatotic Liver Disease in Adolescents. International Journal of Molecular Sciences. 2025; 26(7):2980. https://doi.org/10.3390/ijms26072980
Chicago/Turabian StyleMiranda, José Patricio, Juan Cristóbal Gana, Gigliola Alberti, Karen Galindo, Ana Pereira, and José Luis Santos. 2025. "Circulating Bilirubin Levels, but Not Their Genetic Determinants, Are Inversely Associated with Steatotic Liver Disease in Adolescents" International Journal of Molecular Sciences 26, no. 7: 2980. https://doi.org/10.3390/ijms26072980
APA StyleMiranda, J. P., Gana, J. C., Alberti, G., Galindo, K., Pereira, A., & Santos, J. L. (2025). Circulating Bilirubin Levels, but Not Their Genetic Determinants, Are Inversely Associated with Steatotic Liver Disease in Adolescents. International Journal of Molecular Sciences, 26(7), 2980. https://doi.org/10.3390/ijms26072980