Fumonisin B1 Exerts Immunosuppressive Effects Through Cytoskeleton Remodeling and Function Attenuation of Mature Dendritic Cells
Abstract
1. Introduction
2. Results
2.1. FB1 Reduces Viability but Does Not Induce Apoptosis of mDCs
2.2. FB1 Inhibits the Maturation and Immune Function of mDCs
2.3. FB1 Diminishes the Chemotactic Migration Ability of mDCs
2.4. FB1 Changes the Biophysical Characteristics and Morphology of mDCs
2.5. FB1 Disrupts the F-Actin Structure of mDCs
2.6. FB1 Regulates the Cytoskeleton-Binding Protein Expression of mDCs
3. Discussion
4. Materials and Methods
4.1. Reagents and Antibodies
4.2. Animals and Ethics
4.3. Isolation of Bone Marrow Cells and Generation of mDCs
4.4. Cell Viability and Apoptosis Assay
4.5. Measurement of Cell Electrophoretic Mobility (EPM)
4.6. Measurement of Cell Membrane Fluidity
4.7. Measurement of mDCs Transmigration in Transwell
4.8. Immunofluorescence
4.9. Real-Time Quantitative PCR (RT-qPCR) Assay
4.10. Mixed T Lymphocyte Reaction Experiment
4.11. Flow Cytometry Analysis
4.12. Atomic Force Microscopy (AFM) Analysis
4.13. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, J.; Wen, J.; Tang, Y.; Shi, J.; Mu, G.; Yan, R.; Cai, J.; Long, M. Research Progress on Fumonisin B1 Contamination and Toxicity: A Review. Molecules 2021, 26, 5238. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Luo, K.; Zhu, Q.; Peng, J.; Liu, C.; Wang, X.; Li, S.; Zhang, H. The natural occurrence, toxicity mechanisms and management strategies of Fumonisin B1: A review. Environ. Pollut. 2023, 320, 121065. [Google Scholar] [CrossRef] [PubMed]
- Huong, B.T.M.; Tuyen, L.D.; Madsen, H.; Brimer, L.; Friis, H.; Dalsgaard, A. Total Dietary Intake and Health Risks Associated with Exposure to Aflatoxin B1, Ochratoxin A and Fuminisins of Children in Lao Cai Province, Vietnam. Toxins 2019, 11, 638. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Yu, Q.; Ouyang, H.; Zhang, R.; Li, J.; Xian, R.; Wang, K.; Li, X.; Cao, C. Antagonistic Effect of Selenium on Fumonisin B1 Promotes Neutrophil Extracellular Traps Formation in Chicken Neutrophils. J. Agric. Food Chem. 2022, 70, 5911–5920. [Google Scholar]
- Steinman, R.M. Decisions About Dendritic Cells: Past, Present, and Future. Annu. Rev. Immunol. 2012, 30, 1–22. [Google Scholar]
- Liu, J.; Zhang, X.; Cheng, Y.; Cao, X. Dendritic cell migration in inflammation and immunity. Cell. Mol. Immunol. 2021, 18, 2461–2471. [Google Scholar]
- Li, Y.; Fan, Y.; Xia, B.; Xiao, Q.; Wang, Q.; Sun, W.; Zhang, H.; He, C. The immunosuppressive characteristics of FB1 by inhibition of maturation and function of BMDCs. Int. Immunopharmacol. 2017, 47, 206–211. [Google Scholar] [CrossRef]
- Stockmann-Juvala, H.; Alenius, H.; Savolainen, K. Effects of fumonisin B(1) on the expression of cytokines and chemokines in human dendritic cells. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2008, 46, 1444–1451. [Google Scholar] [CrossRef]
- Hao, Y.; Cheng, S.; Tanaka, Y.; Hosokawa, Y.; Yalikun, Y.; Li, M. Mechanical properties of single cells: Measurement methods and applications. Biotechnol. Adv. 2020, 45, 107648. [Google Scholar] [CrossRef]
- Cai, X.; Xing, X.; Cai, J.; Chen, Q.; Wu, S.; Huang, F. Connection between biomechanics and cytoskeleton structure of lymphocyte and Jurkat cells: An AFM study. Micron 2010, 41, 257–262. [Google Scholar] [CrossRef]
- Janmey, P.A.; Kinnunen, P.K. Biophysical properties of lipids and dynamic membranes. Trends Cell Biol. 2006, 16, 538–546. [Google Scholar] [CrossRef] [PubMed]
- Mylvaganam, S.; Freeman, S.A.; Grinstein, S. The cytoskeleton in phagocytosis and macropinocytosis. Curr. Biol. CB 2021, 31, R619–R632. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Hu, W.; Chen, W. Plasma Membrane Integrates Biophysical and Biochemical Regulation to Trigger Immune Receptor Functions. Front. Immunol. 2021, 12, 613185. [Google Scholar] [CrossRef]
- Lautenschläger, F.; Paschke, S.; Schinkinger, S.; Bruel, A.; Beil, M.; Guck, J. The regulatory role of cell mechanics for migration of differentiating myeloid cells. Proc. Natl. Acad. Sci. USA 2009, 106, 15696–15701. [Google Scholar] [CrossRef]
- Wang, M.; Jiang, H.; Liu, X.; Wang, X. Biophysics involved in the process of tumor immune escape. iScience 2022, 25, 104124. [Google Scholar] [CrossRef]
- Zeng, Z.; Liu, X.; Jiang, Y.; Wang, G.; Zhan, J.; Guo, J.; Yao, W.; Sun, D.; Ka, W.; Tang, Y.; et al. Biophysical studies on the differentiation of human CD14+ monocytes into dendritic cells. Cell Biochem. Biophys. 2006, 45, 19–30. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, Y.; Liu, J.L.; Zhang, J.H.; Zhang, S.C.; Ouyang, Y.; Huang, J.T.; Peng, X.Y.; Zeng, Z.; Hu, Z.Q. Fumonisin B1 Affects the Biophysical Properties, Migration and Cytoskeletal Structure of Human Umbilical Vein Endothelial Cells. Cell Biochem. Biophys. 2020, 78, 375–382. [Google Scholar] [CrossRef]
- Massey, A.; Stewart, J.; Smith, C.; Parvini, C.; McCormick, M.; Do, K.; Cartagena-Rivera, A.X. Mechanical properties of human tumour tissues and their implications for cancer development. Nat. Rev. Phys. 2024, 6, 269–282. [Google Scholar] [CrossRef]
- Seetharaman, S.; Etienne-Manneville, S. Cytoskeletal Crosstalk in Cell Migration. Trends Cell Biol. 2020, 30, 720–735. [Google Scholar] [CrossRef]
- Leblanc-Hotte, A.; Audiger, C.; Chabot-Roy, G.; Lombard-Vadnais, F.; Delisle, J.S.; Peter, Y.A.; Lesage, S. Immature and mature bone marrow-derived dendritic cells exhibit distinct intracellular mechanical properties. Sci. Rep. 2023, 13, 1967. [Google Scholar] [CrossRef]
- Hu, Z.Q.; Xue, H.; Long, J.H.; Wang, Y.; Jia, Y.; Qiu, W.; Zhou, J.; Wen, Z.Y.; Yao, W.J.; Zeng, Z. Biophysical Properties and Motility of Human Mature Dendritic Cells Deteriorated by Vascular Endothelial Growth Factor through Cytoskeleton Remodeling. Int. J. Mol. Sci. 2016, 17, 1756. [Google Scholar] [CrossRef] [PubMed]
- Long, J.; Hu, Z.; Xue, H.; Wang, Y.; Chen, J.; Tang, F.; Zhou, J.; Liu, L.; Qiu, W.; Zhang, S.; et al. Vascular endothelial growth factor (VEGF) impairs the motility and immune function of human mature dendritic cells through the VEGF receptor 2-RhoA-cofilin1 pathway. Cancer Sci. 2019, 110, 2357–2367. [Google Scholar] [PubMed]
- Liu, J.; Zhang, X.; Chen, K.; Cheng, Y.; Liu, S.; Xia, M.; Chen, Y.; Zhu, H.; Li, Z.; Cao, X. CCR7 Chemokine Receptor-Inducible lnc-Dpf3 Restrains Dendritic Cell Migration by Inhibiting HIF-1α-Mediated Glycolysis. Immunity 2019, 50, 600–615.e615. [Google Scholar] [PubMed]
- Heras-Murillo, I.; Adán-Barrientos, I.; Galán, M.; Wculek, S.K.; Sancho, D. Dendritic cells as orchestrators of anticancer immunity and immunotherapy. Nat. Rev. Clin. Oncol. 2024, 21, 257–277. [Google Scholar]
- Xu, X.; Liu, X.; Long, J.; Hu, Z.; Zheng, Q.; Zhang, C.; Li, L.; Wang, Y.; Jia, Y.; Qiu, W.; et al. Interleukin-10 reorganizes the cytoskeleton of mature dendritic cells leading to their impaired biophysical properties and motilities. PLoS ONE 2017, 12, e0172523. [Google Scholar] [CrossRef]
- Mehrishi, J.N.; Bauer, J. Electrophoresis of cells and the biological relevance of surface charge. Electrophoresis 2002, 23, 1984–1994. [Google Scholar]
- Baritaki, S.; Apostolakis, S.; Kanellou, P.; Dimanche-Boitrel, M.T.; Spandidos, D.A.; Bonavida, B. Reversal of tumor resistance to apoptotic stimuli by alteration of membrane fluidity: Therapeutic implications. Adv. Cancer Res. 2007, 98, 149–190. [Google Scholar]
- Zhang, S.Y.; Zhou, Z.R.; Qian, R.C. Recent Progress and Perspectives on Cell Surface Modification. Chem. Asian J. 2021, 16, 3250–3258. [Google Scholar] [CrossRef]
- Zhang, Z.; Fang, Q.; Xie, T.; Gong, X. Mechanism of ceramide synthase inhibition by fumonisin B1. Structure 2024, 32, 1419–1428.e1414. [Google Scholar]
- Huveneers, S.; Phng, L.K. Endothelial cell mechanics and dynamics in angiogenesis. Curr. Opin. Cell Biol. 2024, 91, 102441. [Google Scholar]
- Luo, Q.; Kuang, D.; Zhang, B.; Song, G. Cell stiffness determined by atomic force microscopy and its correlation with cell motility. Biochim. Biophys. Acta 2016, 1860, 1953–1960. [Google Scholar] [CrossRef] [PubMed]
- Kasas, S.; Wang, X.; Hirling, H.; Marsault, R.; Huni, B.; Yersin, A.; Regazzi, R.; Grenningloh, G.; Riederer, B.; Forrò, L.; et al. Superficial and deep changes of cellular mechanical properties following cytoskeleton disassembly. Cell Motil. Cytoskelet. 2005, 62, 124–132. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Mollaeian, K.; Shamim, M.H.; Ren, J. Effect of F-actin and Microtubules on Cellular Mechanical Behavior Studied Using Atomic Force Microscope and an Image Recognition-Based Cytoskeleton Quantification Approach. Int. J. Mol. Sci. 2020, 21, 392. [Google Scholar] [CrossRef]
- Xu, M.; Rutkowski, D.M.; Rebowski, G.; Boczkowska, M.; Pollard, L.W.; Dominguez, R.; Vavylonis, D.; Ostap, E.M. Myosin-I synergizes with Arp2/3 complex to enhance the pushing forces of branched actin networks. Sci. Adv. 2024, 10, eado5788. [Google Scholar] [CrossRef]
- Warner, H.; Wilson, B.J.; Caswell, P.T. Control of adhesion and protrusion in cell migration by Rho GTPases. Curr. Opin. Cell Biol. 2019, 56, 64–70. [Google Scholar] [CrossRef]
- Carman, P.J.; Barrie, K.R.; Rebowski, G.; Dominguez, R. Structures of the free and capped ends of the actin filament. Science 2023, 380, 1287–1292. [Google Scholar] [CrossRef]
- Blanchoin, L.; Pollard, T.D.; Mullins, R.D. Interactions of ADF/cofilin, Arp2/3 complex, capping protein and profilin in remodeling of branched actin filament networks. Curr. Biol. CB 2000, 10, 1273–1282. [Google Scholar] [CrossRef]
- Liu, X.; Xia, X.; Wang, X.; Zhou, J.; Sung, L.A.; Long, J.; Geng, X.; Zeng, Z.; Yao, W. Tropomodulin1 Expression Increases Upon Maturation in Dendritic Cells and Promotes Their Maturation and Immune Functions. Front. Immunol. 2020, 11, 587441. [Google Scholar] [CrossRef]
Gene Name | Primer Sequence (5’-3’) |
---|---|
GAPDH | F: ACCACAGTCCATGCCATCAC |
R: TCCACCACCCTGTTGCTGTA | |
MHC-II | F: GTGAACTGGAAGATCTTCGAGA |
R: ACTTGGTCAGTACTTTAGGTGG | |
CD40 | F: GTCATAACACCGCTGCTCCAGTG |
R: TCTGTCACCTGCCGCTCCTG | |
CD80 | F: CAACTGTCCAAGTCAGTGAAAG |
R: CACCACTTTGTCATGTTTTTGC | |
CD86 | R: CAGCAGTCTCTGGAGTAATAGG |
R: GATTCGGCTTCTTGTGACATAC | |
CCR7 | F: GATGACTACATCGGCGAGAATA |
R: ACGAAGCAGATGACAGAATACA | |
CDC42 | F: CAGACTACGACCGCTAAGTTAT |
R: CAGCAGTCTCTGGAGTAATAGG | |
CAPZB | F: CTGTGTGAAGATCTCCTGTCAT |
R: GTTACTCCACGGTGACCTATAG | |
Arp2/3 complex | F: GAGACGCTCGCGCTCAAGTTC |
R: CAGCTCCATGTGCCTGAAGTTCC | |
Cofilin | F: CAGAAGAAGTGAAGAAACGCAA |
R: AGGTTGCATCATAGAGTGCATA | |
Fascin1 | F: CTACTTTGACATCGAGTGGTGT |
R: CGGTTAATCAGCTTCATGAGGA | |
Profilin | F: GAAGACCTTCGTTAGCATTACG |
R: ATCCATTGTAAATTCCCCGTCT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Y.; Zhao, X.; Cheng, Y.; Shang, G.; Tang, K.; Wang, Y.; Peng, X.; Ou, S.; Hu, Z. Fumonisin B1 Exerts Immunosuppressive Effects Through Cytoskeleton Remodeling and Function Attenuation of Mature Dendritic Cells. Int. J. Mol. Sci. 2025, 26, 2876. https://doi.org/10.3390/ijms26072876
Yu Y, Zhao X, Cheng Y, Shang G, Tang K, Wang Y, Peng X, Ou S, Hu Z. Fumonisin B1 Exerts Immunosuppressive Effects Through Cytoskeleton Remodeling and Function Attenuation of Mature Dendritic Cells. International Journal of Molecular Sciences. 2025; 26(7):2876. https://doi.org/10.3390/ijms26072876
Chicago/Turabian StyleYu, Yanqin, Xue Zhao, Yao Cheng, Guofu Shang, Kaiyi Tang, Yun Wang, Xiaoyan Peng, Sha Ou, and Zuquan Hu. 2025. "Fumonisin B1 Exerts Immunosuppressive Effects Through Cytoskeleton Remodeling and Function Attenuation of Mature Dendritic Cells" International Journal of Molecular Sciences 26, no. 7: 2876. https://doi.org/10.3390/ijms26072876
APA StyleYu, Y., Zhao, X., Cheng, Y., Shang, G., Tang, K., Wang, Y., Peng, X., Ou, S., & Hu, Z. (2025). Fumonisin B1 Exerts Immunosuppressive Effects Through Cytoskeleton Remodeling and Function Attenuation of Mature Dendritic Cells. International Journal of Molecular Sciences, 26(7), 2876. https://doi.org/10.3390/ijms26072876