An Emerging Perspective on the Role of Fascia in Complex Regional Pain Syndrome: A Narrative Review
Abstract
:1. Introduction
2. Materials and Methods
3. Current Knowledge About Pathophysiology of CRPS
4. Innervation of Fasciae
5. Vascularization of Fasciae
6. Role of Fascia in CRPS
Study | Type of Study | Randomization | Subjects (M/F) | Age Range | Focus | Treatments | Readouts for Evaluation | Key Messages | Notes |
---|---|---|---|---|---|---|---|---|---|
Sinhorim et al. (2021) [44] | Scope review | N/A | N/A | Various | Thoracolumbar fascia | Various | Nociceptive role assessment | Fascia may contribute to pain processing | Review of in vivo/ex vivo studies |
Zullo et al. (2021) [45] | Molecular study | N/A | N/A | Various | Fibrosis and myofibroblast differentiation | Various | Role of sirtuins in fibrosis | Sirtuins as checkpoints in fibrosis modulation | Target for therapeutic intervention |
Schmidt et al. (2024) [46] | Field study | N/A | Human subjects | Various | Nociplastic pain | Clinical application | Pain grading system validation | Applicability of nociplastic pain grading | Pain classification improvement |
Ortiz et al. (2024) [47] | Experimental study | N/A | Mice model | Various | Peripheral inflammation | Fascia manipulation | Adenosine A1 receptor mediation | Fascia manipulation induces analgesia | Mechanistic insights |
Chapman et al. (2021) [48] | Experimental study | Yes | Human subjects | Various | Dorsal root ganglion stimulation | Neuromodulation | Lead migration prevention | New approach to reduce complications | Clinical relevance |
Forero et al. (2022) [49] | Case study | N/A | Human subject | Adult | CRPS type I | Erector spinae plane block | Long-term pain relief | Sustained analgesia for 2 years | Single case report |
Hoheisel et al. (2015) [9] | Experimental study | N/A | Rats | N/A | Fascia inflammation | Induced inflammation | Innervation alterations | Changes in fascia innervation patterns | Preclinical study |
Weinkauf et al. (2015) [50] | Experimental study | N/A | Human and animal models | Various | NGF-induced sensitization | Neuromodulation | Sensitization analysis | Differences in muscle vs. fascia responses | Preclinical relevance |
Zügel et al. (2018) [51] | Consensus statement | N/A | N/A | Various | Sports medicine and fascia | Tissue adaptation | Injury and diagnostics framework | Fascial research recommendations | Multidisciplinary consensus |
Pirri et al. (2022) [52] | Clinical case report | N/A | Human subjects | Various | Rigid retinacula in CRPS | Ultrasound and fascial manipulation | Imaging and treatment response | Improved pain and function | Fascial therapy insights |
Taha & Blaise (2012) [53] | Review | N/A | N/A | Various | CRPS pathogenesis | Various | Role of oxidative stress | Identified oxidative stress mechanisms | Foundational review |
Guo et al. (2018) [54] | Animal study | N/A | Rodents | Various | CRPS model | Fracture/cast-induced inflammation | Pain and inflammation assessment | Oxidative stress contributes to CRPS | Animal model insights |
Schranz et al. (2020) [57] | Case report | No | 1 (1 M) | Not specified | Manual therapy for CRPS | Counterstrain therapy | Symptom resolution, proprioception improvement | Counterstrain therapy improved proprioception and reduced symptoms | Single case report; needs further validation |
Marrone et al. (2024) [58] | Review | N/A | Multiple studies | Various | Fascial plane blocks for chronic pain | Fascial plane blocks | Pain relief, effectiveness in chronic pain management, including CRPS | Growing evidence supporting fascial plane blocks, but more studies needed | Calls for larger clinical trials |
Benkli et al. (2023) [59] | Case report | No | 1 (1 M) | Not specified | Refractory post-surgical neuralgia and CRPS | ESP catheter under US + fluoroscopy | Pain scores, opioid consumption | ESP catheterization reduced pain by 80% and opioid use by 50% | Long-term follow-up showed lasting benefits |
Bang et al. (2023) [60] | Case report | No | 2 (1 M/1 F) | Not specified | ESP catheterization in CRPS | ESP catheterization | Pain relief duration, opioid reduction | ESP catheterization effective for 14 days, reducing opioid use by 50% | Limited to case reports; further trials needed |
Future Perspectives in Diagnostics and Therapy of CRPS
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Stecco, C.; Adstrum, S.; Hedley, G.; Schleip, R.; Yucesoy, C.A. Update on fascial nomenclature. J. Bodyw. Mov. Ther. 2018, 22, 354. [Google Scholar] [CrossRef] [PubMed]
- Fede, C.; Pirri, C.; Fan, C.; Petrelli, L.; Guidolin, D.; De Caro, R.; Stecco, C. A Closer Look at the Cellular and Molecular Components of the Deep/Muscular Fasciae. Int. J. Mol. Sci. 2021, 22, 1411. [Google Scholar] [CrossRef] [PubMed]
- Willard, F.H.; Vleeming, A.; Schuenke, M.D.; Danneels, L.; Schleip, R. The thoracolumbar fascia: Anatomy, function and clinical considerations. J. Anat. 2012, 221, 507–536. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Taguchi, T.; Yasui, M.; Kubo, A.; Abe, M.; Kiyama, H.; Yamanaka, A.; Mizumura, K. Nociception Originating from the Crural Fascia in Rats. Pain 2013, 154, 1103–1114. [Google Scholar] [CrossRef]
- Mense, S.; Hoheisel, U. Evidence for the Existence of Nociceptors in Rat Thoracolumbar Fascia. J. Bodyw. Mov. Ther. 2016, 20, 623–628. [Google Scholar] [CrossRef]
- Barry, C.M.; Kestell, G.; Gillan, M.; Haberberger, R.V.; Gibbins, I.L. Sensory Nerve Fibers Containing Calcitonin Gene-Related Peptide in Gastrocnemius, Latissimus Dorsi and Erector Spinae Muscles and Thoracolumbar Fascia in Mice. Neuroscience 2015, 291, 106–117. [Google Scholar] [CrossRef]
- Schilder, A.; Magerl, W.; Hoheisel, U.; Klein, T.; Treede, R.D. Electrical High-Frequency Stimulation of the Human Thoracol umbar Fascia Evokes Long-Term Potentiation-like Pain Amplification. Pain 2016, 157, 2309–2317. [Google Scholar] [CrossRef]
- Schilder, A.; Hoheisel, U.; Magerl, W.; Benrath, J.; Klein, T.; Treede, R.D. Sensory findings after stimulation of the thoracolumbar fascia with hypertonic saline suggest its contribution to low back pain. Pain 2014, 155, 222–231. [Google Scholar] [CrossRef] [PubMed]
- Hoheisel, U.; Rosner, J.; Mense, S. Innervation Changes Induced by Inflammation of the Rat Thoracolumbar Fascia. Neuroscience 2015, 300, 351–359. [Google Scholar] [CrossRef]
- Marpalli, S.; Mohandas Rao, K.G.; Venkatesan, P.; George, B.M. The Morphological and Microscopical Characteristics of Poste rior Layer of Human Thoracolumbar Fascia; A Potential Source of Low Back Pain. Morphologie 2021, 105, 308–315. [Google Scholar] [CrossRef]
- Deising, S.; Weinkauf, B.; Blunk, J.; Obreja, O.; Schmelz, M.; Rukwied, R. NGF-Evoked Sensitization of Muscle Fascia Nocicep tors in Humans. Pain 2012, 153, 1673–1679. [Google Scholar] [CrossRef] [PubMed]
- Lancerotto, L.; Stecco, C.; Macchi, V.; Porzionato, A.; Stecco, A.; De Caro, R. Layers of the abdominal wall: Anatomical investigation of subcutaneous tissue and superficial fascia. Surg. Radiol. Anat. 2011, 33, 835–842. [Google Scholar] [CrossRef] [PubMed]
- Suarez-Rodriguez, V.; Fede, C.; Pirri, C.; Petrelli, L.; Loro-Ferrer, J.F.; Rodriguez-Ruiz, D.; De Caro, R.; Stecco, C. Fascial Innervation: A Systematic Review of the Literature. Int. J. Mol. Sci. 2022, 23, 5674. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pirri, C.; Caroccia, B.; Angelini, A.; Piazza, M.; Petrelli, L.; Caputo, I.; Montemurro, C.; Ruggieri, P.; De Caro, R.; Stecco, C. A New Player in the Mechanobiology of Deep Fascia: Yes-Associated Protein (YAP). Int. J. Mol. Sci. 2023, 24, 15389. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pirri, C.; Caroccia, B.; Angelini, A.; Petrelli, L.; Piazza, M.; Biz, C.; Ruggieri, P.; De Caro, R.; Stecco, C. Evidence of Renin-Angiotensin System Receptors in Deep Fascia: A Role in Extracellular Matrix Remodeling and Fibrogenesis? Biomedicines 2022, 10, 2608. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Devarajan, J.; Mena, S.; Cheng, J. Mechanisms of complex regional pain syndrome. Front. Pain Res. 2024, 5, 1385889. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Veldman, P.H.; Reynen, H.M.; Arntz, I.E.; Goris, R.J. Signs and symptoms of reflex sympathetic dystrophy: Prospective study of 829 patients. Lancet 1993, 342, 1012–1016. [Google Scholar] [CrossRef] [PubMed]
- Johnson, S.; Cowell, F.; Gillespie, S.; Goebel, A. Complex regional pain syndrome what is the outcome?—A systematic review of the course and impact of CRPS at 12 months from symptom onset and beyond. Eur. J. Pain 2022, 26, 1203–1220. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kortekaas, M.C.; Niehof, S.P.; Stolker, R.J.; Huygen, F.J. Pathophysiological Mechanisms Involved in Vasomotor Disturbances in Complex Regional Pain Syndrome and Implications for Therapy: A Review. Pain Pract. 2016, 16, 905–914. [Google Scholar] [CrossRef] [PubMed]
- Bussa, M.; Mascaro, A.; Cuffaro, L.; Rinaldi, S. Adult Complex Regional Pain Syndrome Type I: A Narrative Review. PM R. 2017, 9, 707–719. [Google Scholar] [CrossRef] [PubMed]
- Cohen, S.P.; Khunsriraksakul, C.; Yoo, Y.; Parker, E.; Samen-Akinsiku, C.D.K.; Patel, N.; Cohen, S.J.; Yuan, X.; Cheng, J.; Moon, J.Y. Sympathetic Blocks as a Predictor for Response to Ketamine Infusion in Patients with Complex Regional Pain Syndrome: A Multicenter Study. Pain Med. 2023, 24, 316–324. [Google Scholar] [CrossRef] [PubMed]
- Baron, R.; Schattschneider, J.; Binder, A.; Siebrecht, D.; Wasner, G. Relation between sympathetic vasoconstrictor activity and pain and hyperalgesia in complex regional pain syndromes: A case-control study. Lancet 2002, 359, 1655–1660. [Google Scholar] [CrossRef] [PubMed]
- Finch, P.M.; Drummond, E.S.; Dawson, L.F.; Phillips, J.K.; Drummond, P.D. Up-regulation of cutaneous α1 -adrenoceptors in complex regional pain syndrome type I. Pain Med. 2014, 15, 1945–1956. [Google Scholar] [CrossRef] [PubMed]
- Birklein, F.; Ajit, S.K.; Goebel, A.; Perez, R.S.G.M.; Sommer, C. Complex regional pain syndrome—Phenotypic characteristics and potential biomarkers. Nat. Rev. Neurol. 2018, 14, 272–284. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Harden, R.N.; McCabe, C.S.; Goebel, A.; Massey, M.; Suvar, T.; Grieve, S.; Bruehl, S. Complex Regional Pain Syndrome: Practical Diagnostic and Treatment Guidelines, 5th Edition. Pain Med. 2022, 23 (Suppl. S1), S1–S53. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ji, R.R.; Nackley, A.; Huh, Y.; Terrando, N.; Maixner, W. Neuroinflammation and Central Sensitization in Chronic and Widespread Pain. Anesthesiology 2018, 129, 343–366. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Harden, N.R.; Bruehl, S.; Perez, R.S.G.M.; Birklein, F.; Marinus, J.; Maihofner, C.; Lubenow, T.; Buvanendran, A.; Mackey, S.; Graciosa, J.; et al. Validation of proposed diagnostic criteria (the Budapest Criteria) for Complex Regional Pain Syndrome. Pain 2010, 150, 268–274. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Maihöfner, C.; Forster, C.; Birklein, F.; Neundörfer, B.; Handwerker, H.O. Brain processing during mechanical hyperalgesia in complex regional pain syndrome: A functional MRI study. Pain 2005, 114, 93–103. [Google Scholar] [CrossRef] [PubMed]
- Juottonen, K.; Gockel, M.; Silén, T.; Hurri, H.; Hari, R.; Forss, N. Altered central sensorimotor processing in patients with complex regional pain syndrome. Pain 2002, 98, 315–323. [Google Scholar] [CrossRef] [PubMed]
- De Logu, F.; De Prá, S.D.; de David Antoniazzi, C.T.; Kudsi, S.Q.; Ferro, P.R.; Landini, L.; Rigo, F.K.; de Bem Silveira, G.; Silveira, P.C.L.; Oliveira, S.M.; et al. Macrophages and Schwann cell TRPA1 mediate chronic allodynia in a mouse model of complex regional pain syndrome type I. Brain Behav. Immun. 2020, 88, 535–546. [Google Scholar] [CrossRef] [PubMed]
- Coderre, T.J.; Xanthos, D.N.; Francis, L.; Bennett, G.J. Chronic post-ischemia pain (CPIP): A novel animal model of complex regional pain syndrome-type I (CRPS-I; reflex sympathetic dystrophy) produced by prolonged hindpaw ischemia and reperfusion in the rat. Pain 2004, 112, 94–105. [Google Scholar] [CrossRef] [PubMed]
- Dinç, M.; Soydemir, Ö.C. Efficacy of N-acetylcysteine in reducing inflammation and oxidative stress to prevent complex regional pain syndrome type 1. Medicine 2024, 103, e39742. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wallace, D.C. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: A dawn for evolutionary medicine. Annu. Rev. Genet. 2005, 39, 359–407. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rodrigues, P.; Cassanego, G.B.; Peres, D.S.; Viero, F.T.; Kudsi, S.Q.; Ruviaro, N.A.; Aires, K.V.; Portela, V.M.; Bauermann, L.F.; Trevisan, G. Alpha-lipoic acid reduces nociception by reducing oxidative stress and neuroinflammation in a model of complex regional pain syndrome type I in mice. Behav. Brain Res. 2024, 459, 114790. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yin, C.; Hu, Q.; Wang, J.; Nie, H.; Liu, B.; Tai, Y.; Fang, J.; Du, J.; Shao, X.; et al. Nrf2 Activation Mediates Antiallodynic Effect of Electroacupuncture on a Rat Model of Complex Regional Pain Syndrome Type-I through Reducing Local Oxidative Stress and Inflammation. Oxid. Med. Cell. Longev. 2022, 2022, 8035109. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Goebel, A.; Bisla, J.; Carganillo, R.; Frank, B.; Gupta, R.; Kelly, J.; McCabe, C.; Murphy, C.; Padfield, N.; Phillips, C.; et al. Low-Dose Intravenous Immunoglobulin Treatment for Long-Standing Complex Regional Pain Syndrome: A Randomized Trial. Ann. Intern. Med. 2017, 167, 476–483. [Google Scholar] [CrossRef]
- Maria Frare, J.; Rodrigues, P.; Andrighetto Ruviaro, N.; Trevisan, G. Chronic post-ischemic pain (CPIP) a model of complex regional pain syndrome (CRPS-I): Role of oxidative stress and inflammation. Biochem. Pharmacol. 2024, 229, 116506. [Google Scholar] [CrossRef] [PubMed]
- Fede, C.; Petrelli, L.; Pirri, C.; Neuhuber, W.; Tiengo, C.; Biz, C.; De Caro, R.; Schleip, R.; Stecco, C. Innervation of human superficial fascia. Front. Neuroanat. 2022, 16, 981426. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fede, C.; Petrelli, L.; Guidolin, D.; Porzionato, A.; Pirri, C.; Fan, C.; De Caro, R.; Stecco, C. Evidence of a new hidden neural network into deep fasciae. Sci. Rep. 2021, 11, 12623. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fan, C.; Pirri, C.; Fede, C.; Guidolin, D.; Biz, C.; Petrelli, L.; Porzionato, A.; Macchi, V.; De Caro, R.; Stecco, C. Age-Related Alterations of Hyaluronan and Collagen in Extracellular Matrix of the Muscle Spindles. J. Clin. Med. 2021, 11, 86. [Google Scholar] [CrossRef]
- Stecco, A.; Giordani, F.; Fede, C.; Pirri, C.; De Caro, R.; Stecco, C. From Muscle to the Myofascial Unit: Current Evidence and Future Perspectives. Int. J. Mol. Sci. 2023, 24, 4527. [Google Scholar] [CrossRef] [PubMed]
- Pirri, C.; Petrelli, L.; Fede, C.; Guidolin, D.; Tiengo, C.; De Caro, R.; Stecco, C. Blood supply to the superficial fascia of the abdomen: An anatomical study. Clin. Anat. 2023, 36, 570–580. [Google Scholar] [CrossRef] [PubMed]
- Yamashiro, Y.; Yanagisawa, H. The molecular mechanism of mechanotransduction in vascular homeostasis and disease. Clin. Sci. 2020, 134, 2399–2418. [Google Scholar] [CrossRef] [PubMed]
- Sinhorim, L.; Amorim, M.D.S.; Ortiz, M.E.; Bittencourt, E.B.; Bianco, G.; da Silva, F.C.; Horewicz, V.V.; Schleip, R.; Reed, W.R.; Mazzardo-Martins, L.; et al. Potential Nociceptive Role of the Thoracolumbar Fascia: A Scope Review Involving In Vivo and Ex Vivo Studies. J. Clin. Med. 2021, 10, 4342. [Google Scholar] [CrossRef]
- Zullo, A.; Mancini, F.P.; Schleip, R.; Wearing, S.; Klingler, W. Fibrosis: Sirtuins at the checkpoints of myofibroblast differentiation and profibrotic activity. Wound Repair. Regen. 2021, 29, 650–666. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, H.; Drusko, A.; Renz, M.P.; Schlömp, L.; Tost, H.; Schuh-Hofer, S.; Tesarz, J.; Meyer-Lindenberg, A.; Treede, R.D. Application of the grading system for nociplastic pain in chronic primary and chronic secondary pain conditions: A field study. Pain 2024, 166, 196–211. [Google Scholar] [CrossRef] [PubMed]
- Eugenia Ortiz, M.; Sinhorim, L.; Hoffmann de Oliveira, B.; Hardt da Silva, R.; Melo de Souza, G.; de Souza, G.; Paula Piovezan, A.; Balduino Bittencourt, E.; Bianco, G.; Shiguemi Inoue Salgado, A.; et al. Analgesia by fascia manipulation is mediated by peripheral and spinal adenosine A1 receptor in a mouse model of peripheral inflammation. Neuroscience 2024, 555, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Chapman, K.B.; Spiegel, M.A.; Dickerson, D.M.; Billet, B.; Patel, K.V.; Hunter, C.; Antony, A.; van Helmond, N.; Deer, T.; Kallewaard, J.W.; et al. A paramedian approach for dorsal root ganglion stimulation placement developed to limit lead migration and fracture. Pain Pract. 2021, 21, 991–1000. [Google Scholar] [CrossRef] [PubMed]
- Forero, M.; Kamel, R.A.; Chan, P.L.; Maida, E. Two years follow-up of continuous erector spinae plane block in a patient with upper extremity complex regional pain syndrome type I. Reg. Anesth. Pain Med. 2022, 47, 434–436. [Google Scholar] [CrossRef] [PubMed]
- Weinkauf, B.; Deising, S.; Obreja, O.; Hoheisel, U.; Mense, S.; Schmelz, M.; Rukwied, R. Comparison of nerve growth factor-induced sensitization pattern in lumbar and tibial muscle and fascia. Muscle Nerve. 2015, 52, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Zügel, M.; Maganaris, C.N.; Wilke, J.; Jurkat-Rott, K.; Klingler, W.; Wearing, S.C.; Findley, T.; Barbe, M.F.; Steinacker, J.M.; Vleeming, A.; et al. Fascial tissue research in sports medicine: From molecules to tissue adaptation, injury and diagnostics: Consensus statement. Br. J. Sports Med. 2018, 52, 1497. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pirri, C.; Stecco, A.; Stecco, C.; Özçakar, L. Ultrasound imaging and Fascial Manipulation® for rigid retinacula in two cases of complex regional pain syndrome. Med. Ultrason. 2022, 24, 372–374. [Google Scholar] [CrossRef] [PubMed]
- Taha, R.; Blaise, G.A. Update on the pathogenesis of complex regional pain syndrome: Role of oxidative stress. Can. J. Anaesth. 2012, 59, 875–881. [Google Scholar] [CrossRef] [PubMed]
- Guo, T.Z.; Wei, T.; Huang, T.T.; Kingery, W.S.; Clark, J.D. Oxidative Stress Contributes to Fracture/Cast-Induced Inflammation and Pain in a Rat Model of Complex Regional Pain Syndrome. J. Pain 2018, 19, 1147–1156. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- De Schoenmacker, I.; Mollo, A.; Scheuren, P.S.; Sirucek, L.; Brunner, F.; Schweinhardt, P.; Curt, A.; Rosner, J.; Hubli, M. Central sensitization in CRPS patients with widespread pain: A cross-sectional study. Pain Med. 2023, 24, 974–984. [Google Scholar] [CrossRef]
- Wen, B.; Pan, Y.; Cheng, J.; Xu, L.; Xu, J. The Role of Neuroinflammation in Complex Regional Pain Syndrome: A Comprehensive Review. J. Pain Res. 2023, 16, 3061–3073. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schranz, K.; Meitz, D.; Powers, B.; Ables, A. Treating Complex Regional Pain Syndrome Using Counterstrain: A Novel Approach. Cureus 2020, 12, e10948. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Marrone, F.; Pullano, C.; De Cassai, A.; Fusco, P. Ultrasound-guided fascial plane blocks in chronic pain: A narrative review. J. Anesth. Analg. Crit. Care 2024, 4, 71. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Benkli, B.; Ansoanuur, G.; Hernandez, N. Case Report: Treatment of Refractory Post-Surgical Neuralgia with Erector Spinae Plane Block. Pain Pract. 2020, 20, 539–543. [Google Scholar] [CrossRef] [PubMed]
- Bang, S.; Choi, J.; Kim, E.D. A high thoracic erector spinae plane block used for sympathetic block in patients with upper extremity complex regional pain syndrome. J. Clin. Anesth. 2020, 60, 99–100. [Google Scholar]
Mechanism | Description | Implications | Key References |
---|---|---|---|
Inflammatory Response | CRPS is initiated by an excessive local inflammatory reaction following trauma. Pro-inflammatory cytokines, such as IL-1, IL-6 and TNF-α, contribute to increased vascular permeability, leading to swelling, redness, hyperalgesia and allodynia. Other mediators, like bradykinin, substance P and prostaglandins, further intensify pain. | Persistent inflammation perpetuates pain and contributes to long-term tissue damage and fibrosis. Targeting inflammatory pathways may provide therapeutic benefits. | [17,18,19] |
Autonomic Nervous System Dysregulation | Following trauma, the sympathetic nervous system exhibits abnormal activity, resulting in vasomotor dysfunction. Some authors suggest that CRPS may progress through stages, with early manifestations of increased sympathetic tone, leading to hyperemia and warmth, while later phases may be characterized by reduced sympathetic activity, resulting in cold, cyanotic skin. However, others propose that CRPS consists of distinct “warm” and “cold” subtypes rather than a linear progression. Regardless of classification, persistent vasoconstriction contributes to tissue hypoxia and fibrosis, perpetuating pain and dysfunction. | Autonomic dysfunction plays a critical role in the persistence of CRPS. Understanding whether the condition progresses through stages or exists as subtypes is crucial for tailoring treatments. Interventions targeting sympathetic regulation, including pharmacologic, interventional and rehabilitative approaches, may help alleviate symptoms. | [20,21,22,23,24,25,26] |
Central Sensitization | Enhanced excitability of neurons in the spinal cord and brain leads to exaggerated pain responses, even from non-noxious stimuli. Neuroplastic changes, including cortical reorganization, result in pain spreading beyond the original injury site. | Central mechanisms contribute significantly to CRPS chronicity. Addressing central sensitization with NMDA receptor antagonists and neuromodulation may be beneficial. | [27,28] |
Immune System Involvement | Macrophages, T cells, and mast cells infiltrate affected tissues, releasing pro-inflammatory cytokines that promote neuroinflammation. Autoantibodies against neural structures suggest an autoimmune contribution to CRPS. | Immunomodulatory therapies targeting cytokine release and autoantibody production are potential avenues for treatment. | [29,30] |
Oxidative Stress | Reduced blood flow, increased immune activity and ongoing inflammation create a state of oxidative stress. Reactive oxygen species (ROS) amplify pain signaling and contribute to tissue damage. Mitochondrial dysfunction exacerbates energy deficits, leading to neuronal injury. | Antioxidant therapies and mitochondrial-targeted treatments may reduce oxidative damage and improve symptoms. | [31,32,33,34,35,36,37,38] |
Multifactorial Nature of CRPS | CRPS arises from the interplay between inflammation, autonomic dysfunction, central sensitization, immune dysregulation and oxidative stress. This complexity explains symptom variability and treatment resistance. | Comprehensive, multi-targeted treatment approaches are necessary to effectively manage CRPS. Personalized therapeutic strategies may yield the best outcomes. | [31,32,33,34,35,36,37,38] |
Study | Type of Study | Randomization | Subjects (M/F) | Age Range | Onset of CRPS | Treatments | Readouts for Evaluation | Key Messages | Notes |
---|---|---|---|---|---|---|---|---|---|
Fede et al. (2022) [38] | Anatomical study | N/A | Human samples | N/A | N/A | Histological examination | Fascia innervation | Identified neural pathways in fascia | Fundamental anatomy study |
Suarez-Rodriguez et al. (2022) [13] | Systematic review | N/A | N/A | Various | Various | Various | Fascia innervation review | Reviewed literature on fascial innervation | Literature review |
Fede et al. (2021) [39] | Experimental study | N/A | Mice samples | N/A | N/A | Neural network analysis | Evidence of hidden neural networks | Found new neural networks in fascia | Foundational study |
Fan et al. (2021) [40] | Experimental study | N/A | Mice samples | Various | Various | ECM analysis | Hyaluronan and collagen alterations | Showed ECM changes with aging | Aging study |
Stecco et al. (2023) [41] | Review | N/A | N/A | Various | Various | Various | Myofascial unit concept | Proposed integrated view of myofascial units | Future research direction |
Study | Type of Study | Randomization | Subjects (M/F) | Age Range | Focus | Treatments | Readouts for Evaluation | Key Messages | Notes |
---|---|---|---|---|---|---|---|---|---|
Stecco et al. (2023) [41] | Review | N/A | N/A | Various | Myofascial unit | Various | Structural and functional insights | Defines myofascial unit | Future research |
Pirri et al. (2023) [42] | Anatomical study | N/A | Human Samples | N/A | Fascia blood supply | Dissection-based study | Analysis of vascular patterns | Provides anatomical basis for fascia perfusion | Foundational study |
Yamashiro & Yanagisawa (2020) [43] | Molecular study | N/A | N/A | Various | Mechanotransduction | Various | Molecular signaling | Explores vascular homeostasis | Molecular mechanisms discussed |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pirri, C.; Pirri, N.; Petrelli, L.; Fede, C.; De Caro, R.; Stecco, C. An Emerging Perspective on the Role of Fascia in Complex Regional Pain Syndrome: A Narrative Review. Int. J. Mol. Sci. 2025, 26, 2826. https://doi.org/10.3390/ijms26062826
Pirri C, Pirri N, Petrelli L, Fede C, De Caro R, Stecco C. An Emerging Perspective on the Role of Fascia in Complex Regional Pain Syndrome: A Narrative Review. International Journal of Molecular Sciences. 2025; 26(6):2826. https://doi.org/10.3390/ijms26062826
Chicago/Turabian StylePirri, Carmelo, Nina Pirri, Lucia Petrelli, Caterina Fede, Raffaele De Caro, and Carla Stecco. 2025. "An Emerging Perspective on the Role of Fascia in Complex Regional Pain Syndrome: A Narrative Review" International Journal of Molecular Sciences 26, no. 6: 2826. https://doi.org/10.3390/ijms26062826
APA StylePirri, C., Pirri, N., Petrelli, L., Fede, C., De Caro, R., & Stecco, C. (2025). An Emerging Perspective on the Role of Fascia in Complex Regional Pain Syndrome: A Narrative Review. International Journal of Molecular Sciences, 26(6), 2826. https://doi.org/10.3390/ijms26062826