Hydrothermal Carbonization of Heavy Metal-Contaminated Biomass: Migration, Transformation, and Ecological Stability Changes of Metals
Abstract
1. Introduction
2. Results and Discussion
2.1. Changes in the Yield and Elemental Composition of Hydrochar
2.2. Migration of Cu
2.2.1. Effect of Temperature on Copper Migration
2.2.2. Effect of Reaction Time on Copper Migration
2.2.3. Effect of Initial Cu Content on Copper Migration
2.3. Transformation of Cu
2.3.1. Chemical Speciation of Cu
2.3.2. Ecotoxicity Changes of Cu
2.4. Other Heavy Metals
3. Materials and Methods
3.1. Materials and Reagents
3.2. Hydrothermal Carbonization of Heavy Metal-Contaminated Biomass
3.3. Characterizations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cui, X.; Zhang, J.; Wang, X.; Pan, M.; Lin, Q.; Khan, K.Y.; Yan, B.; Li, T.; He, Z.; Yang, X.; et al. A review on the thermal treatment of heavy metal hyperaccumulator: Fates of heavy metals and generation of products. J. Hazard. Mater. 2021, 405, 123832. [Google Scholar] [CrossRef] [PubMed]
- Robson, T.C.; Braungardt, C.; Rieuwerts, J. Cadmium contamination of agricultural soils and crops resulting from sphalerite weathering. Environ. Pollut. 2014, 184, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Wang, Q.; Hua, M.; Wang, S.; Zhang, S. Sustainable biomass acts as an electron donor for Cr(VI) reduction during the subcritical hydrothermal process: Molecular insights into the role of hydrochar and liquid compounds. Environ. Sci. Technol. 2024, 58, 15855–15863. [Google Scholar] [CrossRef] [PubMed]
- Allouss, D.; Dupont, A.; Achouri, I.E.; Abatzoglou, N. Hydrothermal conversion of Cu-laden biomass to one-step doped hydrochar used as a potential adsorbent for 2-nitrophenol removal. Sustain. Chem. Pharm. 2024, 39, 101505. [Google Scholar] [CrossRef]
- Romano, P.; Stampone, N.; Di Giacomo, G. Evolution and prospects of hydrothermal carbonization. Energies 2023, 16, 3125. [Google Scholar] [CrossRef]
- Lima, E.T.G.; Sales, É.D.S.; Saraiva, R.d.A.; Rachide Nunes, R. Study on the auxin-like activity of organic compounds extracted from corn waste hydrochar prepared by hydrothermal carbonization. Environ. Technol. 2024, 45, 5558–5567. [Google Scholar] [CrossRef]
- Jiang, L.; Li, K.; Xia, L.; Gao, J.; Tang, L.; Jia, Y. KOH-modified hydrochar produced from Cd/Zn hyperaccumulator sedum alfredii hance for aqueous Cd(II) removal: Behavior and mechanism. J. Environ. Chem. Eng. 2023, 11, 110925. [Google Scholar] [CrossRef]
- Zhou, S.; Huo, X.; Hua, M.; Luo, G.; Fan, J.; Clark, J.H.; Zhang, S. Insights on the effect of heavy metals on subcritical hydrothermal recycling of heavy metal-contaminated biomass and its derived porous carbon properties using Cu as a case. ACS EST Eng. 2022, 2, 2245–2253. [Google Scholar] [CrossRef]
- Supee, A.H.; Zaini, M.A.A. hydrothermal carbonization of biomass: A commentary. Fuller. Nanotub. Carbon Nanostruct. 2023, 32, 119–127. [Google Scholar] [CrossRef]
- Song, H.; Zhou, J.; He, S.; Ma, Q.; Peng, L.; Yin, M.; Lin, H.; Zeng, Q. Efficient removal of heavy metals from contaminated sunflower straw by an acid-assisted hydrothermal process. Int. J. Environ. Res. Public Health 2023, 20, 1311. [Google Scholar] [CrossRef]
- Chai, Y.; Bai, M.; Chen, A.; Peng, L.; Shao, J.; Shang, C.; Peng, C.; Zhang, J.; Zhou, Y. Thermochemical conversion of heavy metal contaminated biomass: Fate of the metals and their impact on products. Sci. Total Environ. 2022, 822, 153426. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Chen, X.; Chen, S.; Li, H.; Peng, Y.; Zhu, A.; Charles Xu, C.; Yang, W. Recovery of arsenic and practical utilization of aqueous phase in hydrothermal liquefaction of hyperaccumulator. Chem. Eng. J. 2022, 439, 135514. [Google Scholar] [CrossRef]
- Cao, M.; Li, H.; Zhao, X.; Liu, Z. Rethinking quantified methods for arsenic speciation and risk in a biowaste hydrothermal liquefaction system. Chemosphere 2022, 308, 136153. [Google Scholar] [CrossRef] [PubMed]
- Yadav, P.; Reddy, S.N. Reaction kinetics for hydrothermal liquefaction of Cu-impregnated water hyacinth to bio-oil with product characterization. Ind. Crops Prod. 2023, 198, 116677. [Google Scholar] [CrossRef]
- Stobernack, N.; Malek, C. Hydrothermal carbonization combined with thermochemical treatment of sewage sludge: Effects of MgCl2 on the migration of phosphorus and heavy metal. Waste Manag. 2023, 165, 150–158. [Google Scholar] [CrossRef]
- Ro, K.S.; Jackson, M.A.; Szogi, A.A.; Compton, D.L.; Moser, B.R.; Berge, N.D. Sub- and near-critical hydrothermal carbonization of animal manures. Sustainability 2022, 14, 5052. [Google Scholar] [CrossRef]
- Lu, X.; Ma, X.; Qin, Z. Co-Hydrothermal Carbonization of Sewage Sludge with Wood Chip: Fuel Properties and Heavy Metal Transformation Behavior of Hydrochars. Energy Fuels 2021, 35, 15790–15801. [Google Scholar] [CrossRef]
- Guo, F.; Peng, K.; Zhao, X.; Jiang, X.; Qian, L.; Guo, C.; Rao, Z. Influence of impregnated copper and zinc on the pyrolysis of rice husk in a micro-fluidized bed reactor: Characterization and kinetics. Int. J. Hydrogen Energy 2018, 43, 21256–21268. [Google Scholar] [CrossRef]
- Hu, Z.; Liu, W. Conversion of biomasses and copper into catalysts for photocatalytic CO2 reduction. ACS Appl. Mater. Interfaces 2020, 12, 51366–51373. [Google Scholar] [CrossRef]
- Zou, X.; Debiagi, P.; Amjed, M.A.; Zhai, M.; Faravelli, T. Impact of high-temperature biomass pyrolysis on biochar formation and composition. J. Anal. Appl. Pyrolysis 2024, 179, 106463. [Google Scholar] [CrossRef]
- Chen, Z.; Ma, L.; Li, S.; Geng, J.; Song, Q.; Liu, J.; Wang, C.; Wang, H.; Li, J.; Qin, Z.; et al. Simple approach to carboxyl-rich materials through low-temperature heat treatment of hydrochar in air. Appl. Surf. Sci. 2011, 257, 8686–8691. [Google Scholar] [CrossRef]
- Zhou, G.; Jia, X.; Zhang, X.; Li, L. Multi-walled carbon nanotube-modified hydrochar: A potent carbon material for efficient remediation of cadmium-contaminated soil in coal gangue piling site. Chemosphere 2022, 307, 135605. [Google Scholar] [CrossRef] [PubMed]
- Weng, Z.; Kanchanatip, E.; Hantoko, D.; Yan, M.; Su, H.; Zhang, S.; Wang, G. Improving supercritical water gasification of sludge by oil palm empty fruit bunch addition: Promotion of syngas production and heavy metal stabilization. Chin. J. Chem. Eng. 2020, 28, 293–298. [Google Scholar] [CrossRef]
- Luan, H.; Liu, F.; Long, S.; Liu, Z.; Qi, Y.; Xiao, Z.; Fang, J. The migration, transformation, and risk assessment of heavy metals in residue and bio-oil obtained by the liquefaction of pig manure. Environ. Sci. Pollut. Res. 2020, 28, 15055–15069. [Google Scholar] [CrossRef]
- Bardhan, M.; Novera, T. Co-hydrothermal carbonization of different feedstocks to hydrochar as potential energy for the future world: A review. J. Clean. Prod. 2021, 298, 126734. [Google Scholar] [CrossRef]
- Xiao, B.; Jia, J.; Wang, W.; Zhang, B.; Ming, H.; Ma, S.; Kang, Y.; Zhao, M. A review on magnetic biochar for the removal of heavy metals from contaminated soils: Preparation, application, and microbial response. J. Hazard. Mater. Adv. 2023, 10, 100254. [Google Scholar] [CrossRef]
- JCPDS 04-0836(2024); PDF-5+: A Comprehensive Powder Diffraction File™ for Materials Characterization. International Centre for Diffraction Data: Newtown Square, PA, USA, 2024.
- Yang, C.; Xue, W.; Yin, H.; Lu, Z.; Wang, A.; Shen, L.; Jiang, Y. Hydrogenation of 3-nitro-4-methoxy-acetylaniline with H2 to 3-amino-4-methoxy-acetylaniline catalyzed by bimetallic copper/nickel nanoparticles. New J. Chem. 2017, 41, 3358–3366. [Google Scholar] [CrossRef]
- Supriadi, C.P.; Kartini, E.; Honggowiranto, W.; Basuki, K.T. Synthesis and characterization of carbon material obtained from coconut coir dust by hydrothermal and pyrolytic processes. Int. J. Technol. 2017, 8, 1470–1478. [Google Scholar] [CrossRef]
- Duan, J.; Ji, H.; Xu, T.; Pan, F.; Liu, X.; Liu, W.; Zhao, D. Simultaneous adsorption of uranium (VI) and 2-chlorophenol by activated carbon fiber supported/modified titanate nanotubes (TNTs/ACF): Effectiveness and synergistic effects. Chem. Eng. J. 2021, 406, 126752. [Google Scholar] [CrossRef]
- Divakaran, R.; Baby Meena, K.R. A novel method for synthesis of pure metal and metal oxide nanocrystals in the dry state using chitosan complexes. Int. J. Sci. Technol. Eng. 2018, 4, 1–7. [Google Scholar]
- Zhao, B.; Li, H.H.; Yang, X.L.; Zhao, W.B.; Chen, Y.; Di, D.L.; Xiao, J.; Chen, G.C. Optimization conversion of willow biomass derived from phytoremediation into value-added hydrochars: Effects of temperature and medium on Cd/Zn distribution and application potentials. Energy Convers. Manag. X 2024, 24, 100698. [Google Scholar] [CrossRef]
- Yan, X.; Wei, J.; An, K.; Liu, J.; Chen, L.; Zhang, X.; Li, C. Graphitization of CVD diamond grain boundaries during transient heat treatment. Diam. Relat. Mater. 2021, 116, 108433. [Google Scholar] [CrossRef]
- Zhang, J.Z.; Wang, W.Q.; Li, N. Self-organization behavior of sub-micron CdO grains grown during vapour-solid transition. Defect. Diffus. Forum Defects Diffus. Met. 2008, 278, 45–54. [Google Scholar] [CrossRef]
- ASTM D4442-20(2020); Standard Test Methods for Direct Moisture Content Measurement of Wood and Wood-Based Materials. ASTM International: West Conshohocken, PA, USA, 2020.
- ASTM D2915-17(2022); Standard Practice for Sampling and Data-Analysis for Structural Wood and Wood-Based Products. ASTM International: West Conshohocken, PA, USA, 2022.
- Liu, W.; Tian, K.; Jiang, H.; Zhang, X.; Ding, H.; Yu, H. Selectively improving the bio-oil quality by catalytic fast pyrolysis of heavy-metal-polluted biomass: Take copper (Cu) as an example. Environ. Sci. Technol. 2012, 46, 7849–7856. [Google Scholar] [CrossRef]
- Liu, W.; Zeng, F.; Jiang, H.; Zhang, X.; Yu, H. Techno-economic evaluation of the integrated biosorption-pyrolysis technology for lead (Pb) recovery from aqueous solution. Bioresour. Technol. 2011, 102, 6260–6265. [Google Scholar] [CrossRef]
- ASTM D1107-96(2013); Standard Test Method for Ethanol-Toluene Solubility of Wood. ASTM International: West Conshohocken, PA, USA, 2013.
- Zhang, J.; Wang, Y.; Wang, X.; Wu, W.; Cui, X.; Cheng, Z.; Yan, B.; Yang, X.; He, Z.; Chen, G. Hydrothermal conversion of cd/zn hyperaccumulator (Sedum alfredii) for heavy metal separation and hydrochar production. J. Hazard. Mater. 2022, 423, 127122. [Google Scholar] [CrossRef]
- Zhong, J.; Yan, X.; Wu, C.; Wu, Y.; Zhang, H.; Bu, Y. Hydrothermal carbonization of coking sludge: Migration behavior of heavy metals and magnetic separation performance of hydrochar. J. Environ. Chem. Eng. 2024, 12, 114141. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, J.; Tian, Y.; Liu, C.; Zhang, S.; Cao, L. Effective removal of tetracycline antibiotics from water by magnetic functionalized biochar derived from rice waste. Environ. Pollut. 2023, 330, 121681. [Google Scholar] [CrossRef]
Samples | N(%) | C(%) | H(%) | S(%) | O(%) a | O/C b | H/C b | Yield(%) |
---|---|---|---|---|---|---|---|---|
Cu-170-2-25 | 1.94 | 53.31 | 5.98 | 0.12 | 38.65 | 0.54 | 1.35 | 47.54 c |
Cu-200-2-25 | 2.23 | 57.42 | 5.16 | 0.22 | 34.97 | 0.46 | 1.08 | 26.30 |
Cu-230-2-0 | 1.79 | 57.22 | 5.73 | 0 | 35.26 | 0.46 | 1.20 | 32.29 |
Cu-230-1-25 | 2.32 | 58.24 | 5.16 | 0.18 | 34.10 | 0.44 | 1.06 | 37.94 |
Cu-230-2-25 | 1.94 | 62.27 | 4.86 | 0.1 | 30.83 | 0.37 | 0.94 | 39.35 |
Cu-230-2-50 | 1.98 | 65.06 | 4.89 | 0.05 | 28.02 | 0.32 | 0.90 | 43.35 |
Cu-230-3-25 | 2.09 | 65.79 | 4.96 | 0.02 | 27.15 | 0.31 | 0.90 | 38.13 |
Cu-260-2-25 | 1.94 | 66.43 | 4.94 | 0.04 | 26.66 | 0.30 | 0.89 | 42.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Zhang, S.; Wei, C.; Hou, H.; Song, G.; Cao, L.; Zhang, J. Hydrothermal Carbonization of Heavy Metal-Contaminated Biomass: Migration, Transformation, and Ecological Stability Changes of Metals. Int. J. Mol. Sci. 2025, 26, 2551. https://doi.org/10.3390/ijms26062551
Wang J, Zhang S, Wei C, Hou H, Song G, Cao L, Zhang J. Hydrothermal Carbonization of Heavy Metal-Contaminated Biomass: Migration, Transformation, and Ecological Stability Changes of Metals. International Journal of Molecular Sciences. 2025; 26(6):2551. https://doi.org/10.3390/ijms26062551
Chicago/Turabian StyleWang, Jieni, Shuqin Zhang, Chenlin Wei, Haodong Hou, Guozhen Song, Leichang Cao, and Jinglai Zhang. 2025. "Hydrothermal Carbonization of Heavy Metal-Contaminated Biomass: Migration, Transformation, and Ecological Stability Changes of Metals" International Journal of Molecular Sciences 26, no. 6: 2551. https://doi.org/10.3390/ijms26062551
APA StyleWang, J., Zhang, S., Wei, C., Hou, H., Song, G., Cao, L., & Zhang, J. (2025). Hydrothermal Carbonization of Heavy Metal-Contaminated Biomass: Migration, Transformation, and Ecological Stability Changes of Metals. International Journal of Molecular Sciences, 26(6), 2551. https://doi.org/10.3390/ijms26062551