A Systems Biology Approach for Prioritizing ASD Genes in Large or Noisy Datasets
Abstract
:1. Introduction
2. Results
2.1. SFARI-Based Network Model
2.2. Validation on ASD Patients
3. Discussion
4. Materials and Methods
4.1. PPI Network Generation Workflow
4.2. Topological Analysis of the Network
4.3. Gene Expression Analysis in ASD-Related Brain Regions
4.4. Array-Comparative Genomic Hybridization
4.5. Over-Representation Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
array-CGH | Array-comparative genomic hybridization |
ASD | Autism spectrum disorder |
CNV | Copy number variant |
ER | Enrichment ratio |
FDR | False discovery rate |
GWAS | Genome-wide association studies |
HGNC | Human Genome Nomenclature Committee |
HUPO-PSI | Human Proteome Organization Proteomics Standards Initiative |
IMEx | International Molecular Exchange Consortium |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
NDD | Neurodevelopmental disorder |
ORA | Over-representation analysis |
PPI | Protein–Protein Interaction |
PSICQUIC | Proteomics Standard Initiative Common QUery InterfaCe |
SFARI | Simons Foundation Autism Research Initiative |
VUS | Variant of uncertain significance |
WebGestalt | WEB-based GEne SeT AnaLysis Toolkit |
References
- Hodges, H.; Fealko, C.; Soares, N. Autism Spectrum Disorder: Definition, Epidemiology, Causes, and Clinical Evaluation. Transl. Pediatr. 2020, 9, S55–S65. [Google Scholar] [CrossRef]
- Zeidan, J.; Fombonne, E.; Scorah, J.; Ibrahim, A.; Durkin, M.S.; Saxena, S.; Yusuf, A.; Shih, A.; Elsabbagh, M. Global Prevalence of Autism: A Systematic Review Update. Autism Res. 2022, 15, 778–790. [Google Scholar] [CrossRef] [PubMed]
- Banerjee-Basu, S.; Packer, A. SFARI Gene: An Evolving Database for the Autism Research Community. Dis. Model. Mech. 2010, 3, 133–135. [Google Scholar] [CrossRef]
- Fernandez, B.A.; Scherer, S.W. Syndromic Autism Spectrum Disorders: Moving from a Clinically Defined to a Molecularly Defined Approach. Dialogues Clin. Neurosci. 2017, 19, 353–371. [Google Scholar] [CrossRef]
- Choi, L.; An, J.-Y. Genetic Architecture of Autism Spectrum Disorder: Lessons from Large-Scale Genomic Studies. Neurosci. Biobehav. Rev. 2021, 128, 244–257. [Google Scholar] [CrossRef] [PubMed]
- de Sousa Nóbrega, I.; Teles e Silva, A.L.; Yokota-Moreno, B.Y.; Sertié, A.L. The Importance of Large-Scale Genomic Studies to Unravel Genetic Risk Factors for Autism. Int. J. Mol. Sci. 2024, 25, 5816. [Google Scholar] [CrossRef] [PubMed]
- Cheung, S.W.; Bi, W. Novel Applications of Array Comparative Genomic Hybridization in Molecular Diagnostics. Expert Rev. Mol. Diagn. 2018, 18, 531–542. [Google Scholar] [CrossRef] [PubMed]
- Barabási, A.-L.; Gulbahce, N.; Loscalzo, J. Network Medicine: A Network-Based Approach to Human Disease. Nat. Rev. Genet. 2011, 12, 56–68. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wu, R.; Lu, J.; Jiang, Y.; Huang, T.; Cai, Y.-D. Protein-Protein Interaction Networks as Miners of Biological Discovery. Proteomics 2022, 22, e2100190. [Google Scholar] [CrossRef]
- Orchard, S.; Kerrien, S.; Abbani, S.; Aranda, B.; Bhate, J.; Bidwell, S.; Bridge, A.; Briganti, L.; Brinkman, F.S.L.; Cesareni, G.; et al. Protein Interaction Data Curation: The International Molecular Exchange (IMEx) Consortium. Nat. Methods 2012, 9, 345–350. [Google Scholar] [CrossRef] [PubMed]
- Porras, P.; Orchard, S.; Licata, L. IMEx Databases: Displaying Molecular Interactions into a Single, Standards-Compliant Dataset. Methods Mol. Biol. 2022, 2449, 27–42. [Google Scholar] [CrossRef]
- Zito, A.; Lualdi, M.; Granata, P.; Cocciadiferro, D.; Novelli, A.; Alberio, T.; Casalone, R.; Fasano, M. Gene Set Enrichment Analysis of Interaction Networks Weighted by Node Centrality. Front. Genet. 2021, 12, 577623. [Google Scholar] [CrossRef] [PubMed]
- Monti, C.; Zilocchi, M.; Colugnat, I.; Alberio, T. Proteomics Turns Functional. J. Proteom. 2019, 198, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Curtis, R.K.; Oresic, M.; Vidal-Puig, A. Pathways to the Analysis of Microarray Data. Trends Biotechnol. 2005, 23, 429–435. [Google Scholar] [CrossRef]
- Khatri, P.; Sirota, M.; Butte, A.J. Ten Years of Pathway Analysis: Current Approaches and Outstanding Challenges. PLoS Comput. Biol. 2012, 8, e1002375. [Google Scholar] [CrossRef]
- Yeganeh, P.N.; Mostafavi, M.T. Causal Disturbance Analysis: A Novel Graph Centrality Based Method for Pathway Enrichment Analysis. IEEE/ACM Trans. Comput. Biol. Bioinform. 2020, 17, 1613–1624. [Google Scholar] [CrossRef] [PubMed]
- Dunn, R.; Dudbridge, F.; Sanderson, C.M. The Use of Edge-Betweenness Clustering to Investigate Biological Function in Protein Interaction Networks. BMC Bioinform. 2005, 6, 39. [Google Scholar] [CrossRef]
- Piñero, J.; Queralt-Rosinach, N.; Bravo, À.; Deu-Pons, J.; Bauer-Mehren, A.; Baron, M.; Sanz, F.; Furlong, L.I. DisGeNET: A Discovery Platform for the Dynamical Exploration of Human Diseases and Their Genes. Database J. Biol. Databases Curation 2015, 2015, bav028. [Google Scholar] [CrossRef]
- Granata, P.; Cocciadiferro, D.; Zito, A.; Pessina, C.; Bassani, A.; Zambonin, F.; Novelli, A.; Fasano, M.; Casalone, R. Whole Exome Sequencing in 16p13.11 Microdeletion Patients Reveals New Variants Through Deductive and Systems Medicine Approaches. Front. Genet. 2022, 13, 798607. [Google Scholar] [CrossRef] [PubMed]
- Doi, H.; Fujisawa, T.X.; Iwanaga, R.; Matsuzaki, J.; Kawasaki, C.; Tochigi, M.; Sasaki, T.; Kato, N.; Shinohara, K. Association between Single Nucleotide Polymorphisms in Estrogen Receptor 1/2 Genes and Symptomatic Severity of Autism Spectrum Disorder. Res. Dev. Disabil. 2018, 82, 20–26. [Google Scholar] [CrossRef]
- Labonne, J.D.J.; Driessen, T.M.; Harris, M.E.; Kong, I.-K.; Brakta, S.; Theisen, J.; Sangare, M.; Layman, L.C.; Kim, C.-H.; Lim, J.; et al. Comparative Genomic Mapping Implicates LRRK2 for Intellectual Disability and Autism at 12q12, and HDHD1, as Well as PNPLA4, for X-Linked Intellectual Disability at Xp22.31. J. Clin. Med. 2020, 9, 274. [Google Scholar] [CrossRef] [PubMed]
- Celestino-Soper, P.B.; Skinner, C.; Schroer, R.; Eng, P.; Shenai, J.; Nowaczyk, M.M.; Terespolsky, D.; Cushing, D.; Patel, G.S.; Immken, L.; et al. Deletions in Chromosome 6p22.3-P24.3, Including ATXN1, Are Associated with Developmental Delay and Autism Spectrum Disorders. Mol. Cytogenet. 2012, 5, 17. [Google Scholar] [CrossRef] [PubMed]
- Gracia-Darder, I.; Llull Ramos, A.; Giacaman, A.; Gómez Bellvert, C.; Obrador-Hevia, A.; Jubert Esteve, E.; Martín-Santiago, A. Report of a Case of RAVEN, Hair Heterochromia and Autism in the Setting of FGFR2 Mutation. Pediatr. Dermatol. 2023, 40, 382–384. [Google Scholar] [CrossRef] [PubMed]
- Ginsberg, M.R.; Rubin, R.A.; Falcone, T.; Ting, A.H.; Natowicz, M.R. Brain Transcriptional and Epigenetic Associations with Autism. PLoS ONE 2012, 7, e44736. [Google Scholar] [CrossRef] [PubMed]
- Russo, A.J. Increased Epidermal Growth Factor Receptor (EGFR) Associated with Hepatocyte Growth Factor (HGF) and Symptom Severity in Children with Autism Spectrum Disorders (ASDs). J. Cent. Nerv. Syst. Dis. 2014, 6, 79–83. [Google Scholar] [CrossRef]
- Li, H.; Wang, X.; Hu, C.; Li, H.; Xu, Z.; Lei, P.; Luo, X.; Hao, Y. JUN and PDGFRA as Crucial Candidate Genes for Childhood Autism Spectrum Disorder. Front. Neuroinform. 2022, 16, 800079. [Google Scholar] [CrossRef]
- Wen, Y.; Herbert, M.R. Connecting the Dots: Overlaps between Autism and Cancer Suggest Possible Common Mechanisms Regarding Signaling Pathways Related to Metabolic Alterations. Med. Hypotheses 2017, 103, 118–123. [Google Scholar] [CrossRef] [PubMed]
- Deutsch, S.; Wells, N.; Urbano, M.; Burket, J.; Pickle, J. Autism Presenting in the Context of a Genetic Variant of CFTR and Early HSV Exposure Confounded by Chronic Pain, Altered Gut Microbiota and Paternal Abandonment; Limitations of Current Pharmacotherapy and Barriers to Personalized Treatment Recommendations. Pers. Med. Psychiatry 2017, 3, 24–39. [Google Scholar] [CrossRef]
- Jung, Y.; Nolta, J.A. BMI1 Regulation of Self-Renewal and Multipotency in Human Mesenchymal Stem Cells. Curr. Stem Cell Res. Ther. 2016, 11, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Alonso-Gonzalez, A.; Calaza, M.; Rodriguez-Fontenla, C.; Carracedo, A. Novel Gene-Based Analysis of ASD GWAS: Insight Into the Biological Role of Associated Genes. Front. Genet. 2019, 10, 733. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Lin, M.; Hrabovsky, A.; Pedrosa, E.; Dean, J.; Jain, S.; Zheng, D.; Lachman, H.M. ZNF804A Transcriptional Networks in Differentiating Neurons Derived from Induced Pluripotent Stem Cells of Human Origin. PLoS ONE 2015, 10, e0124597. [Google Scholar] [CrossRef]
- Kuhlen, M.; Taeubner, J.; Wieczorek, D.; Borkhardt, A. Autism Spectrum Disorder and Li-Fraumeni Syndrome: Purely Coincidental or Mechanistically Associated? Mol. Cell. Pediatr. 2017, 4, 8. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Zhang, K.; Cao, X.; Zhao, Y.; Ullah Khan, N.; Liu, X.; Tang, X.; Chen, M.; Zhang, H.; Shen, L. iTRAQ-Based Proteomics Analysis of Rat Cerebral Cortex Exposed to Valproic Acid before Delivery. ACS Chem. Neurosci. 2022, 13, 648–663. [Google Scholar] [CrossRef] [PubMed]
- Miller, C.J.; Golovina, E.; Wicker, J.S.; Jacobsen, J.C.; O’Sullivan, J.M. De Novo Network Analysis Reveals Autism Causal Genes and Developmental Links to Co-Occurring Traits. Life Sci. Alliance 2023, 6, e202302142. [Google Scholar] [CrossRef]
- Crawley, J.N.; Heyer, W.-D.; LaSalle, J.M. Autism and Cancer Share Risk Genes, Pathways, and Drug Targets. Trends Genet. 2016, 32, 139–146. [Google Scholar] [CrossRef]
- Watanabe, C.; Imaizumi, T.; Kawai, H.; Suda, K.; Honma, Y.; Ichihashi, M.; Ema, M.; Mizutani, K. Aging of the Vascular System and Neural Diseases. Front. Aging Neurosci. 2020, 12, 557384. [Google Scholar] [CrossRef] [PubMed]
- Ouellette, J.; Toussay, X.; Comin, C.; da F. Costa, L.; Ho, M.; Lacalle-Aurioles, M.; Freitas-Andrade, M.; Liu, Y.; Leclerc, S.; Pan, Y.; et al. Vascular Contributions to 16p11.2 Deletion Autism Syndrome Modeled in Mice. Nat. Neurosci. 2020, 23, 1090–1101. [Google Scholar] [CrossRef]
- Urano-Tashiro, Y.; Sasaki, H.; Sugawara-Kawasaki, M.; Yamada, T.; Sugiyama, A.; Akiyama, H.; Kawasaki, Y.; Tashiro, F. Implication of Akt-Dependent Prp19α/14-3-3β/Cdc5L Complex Formation in Neuronal Differentiation. J. Neurosci. Res. 2010, 88, 2787–2797. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Chen, J.; Liang, F.; Zhang, J.; Qu, W.; Huang, X.; Cheng, X.; Zhao, X.; Yang, Z.; Xu, S.; et al. RYBP Modulates Embryonic Neurogenesis Involving the Notch Signaling Pathway in a PRC1-Independent Pattern. Stem Cell Rep. 2021, 16, 2988–3004. [Google Scholar] [CrossRef]
- Alhosaini, K.; Ansari, M.A.; Nadeem, A.; Attia, S.M.; Bakheet, S.A.; Al-Ayadhi, L.Y.; Mahmood, H.M.; Al-Mazroua, H.A.; Ahmad, S.F. Dysregulation of Ki-67 Expression in T Cells of Children with Autism Spectrum Disorder. Children 2021, 8, 116. [Google Scholar] [CrossRef]
- Frega, M.; Selten, M.; Mossink, B.; Keller, J.M.; Linda, K.; Moerschen, R.; Qu, J.; Koerner, P.; Jansen, S.; Oudakker, A.; et al. Distinct Pathogenic Genes Causing Intellectual Disability and Autism Exhibit a Common Neuronal Network Hyperactivity Phenotype. Cell Rep. 2020, 30, 173–186.e6. [Google Scholar] [CrossRef]
- Nicotera, A.G.; Amore, G.; Saia, M.C.; Vinci, M.; Musumeci, A.; Chiavetta, V.; Federico, C.; Spoto, G.; Saccone, S.; Di Rosa, G.; et al. Fibroblast Growth Factor Receptor 2 (FGFR2), a New Gene Involved in the Genesis of Autism Spectrum Disorder. Neuromolecular Med. 2023, 25, 650–656. [Google Scholar] [CrossRef] [PubMed]
- Esmaiel, N.N.; Ashaat, E.A.; Mosaad, R.; Fayez, A.; Ibrahim, M.; Abdallah, Z.Y.; Issa, M.Y.; Salem, S.; Ramadan, A.; El Wakeel, M.A.; et al. The Potential Impact of COMT Gene Variants on Dopamine Regulation and Phenotypic Traits of ASD Patients. Behav. Brain Res. 2020, 378, 112272. [Google Scholar] [CrossRef] [PubMed]
- Barone, R.; Cirnigliaro, L.; Saccuzzo, L.; Valdese, S.; Pettinato, F.; Prato, A.; Bernardini, L.; Fichera, M.; Rizzo, R. PARK2 Microdeletion in a Multiplex Family with Autism Spectrum Disorder. Int. J. Dev. Neurosci. 2023, 83, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Kanduri, C.; Kantojärvi, K.; Salo, P.M.; Vanhala, R.; Buck, G.; Blancher, C.; Lähdesmäki, H.; Järvelä, I. The Landscape of Copy Number Variations in Finnish Families with Autism Spectrum Disorders. Autism Res. 2016, 9, 9–16. [Google Scholar] [CrossRef]
- Kim, N.; Kim, K.H.; Lim, W.-J.; Kim, J.; Kim, S.A.; Yoo, H.J. Whole Exome Sequencing Identifies Novel De Novo Variants Interacting with Six Gene Networks in Autism Spectrum Disorder. Genes 2021, 12, 1. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Qin, Z.; Ricke, K.M.; Cruz, S.A.; Stewart, A.F.R.; Chen, H.-H. Hyperactivated PTP1B Phosphatase in Parvalbumin Neurons Alters Anterior Cingulate Inhibitory Circuits and Induces Autism-like Behaviors. Nat. Commun. 2020, 11, 1017. [Google Scholar] [CrossRef]
- McDonald-McGinn, D.M.; Sullivan, K.E.; Marino, B.; Philip, N.; Swillen, A.; Vorstman, J.A.S.; Zackai, E.H.; Emanuel, B.S.; Vermeesch, J.R.; Morrow, B.E.; et al. 22q11.2 Deletion Syndrome. Nat. Rev. Dis. Primer 2015, 1, 15071. [Google Scholar] [CrossRef] [PubMed]
- Horsthemke, B.; Wagstaff, J. Mechanisms of Imprinting of the Prader-Willi/Angelman Region. Am. J. Med. Genet. 2008, 146A, 2041–2052. [Google Scholar] [CrossRef] [PubMed]
- Khatri, N.; Man, H.-Y. The Autism and Angelman Syndrome Protein Ube3A/E6AP: The Gene, E3 Ligase Ubiquitination Targets and Neurobiological Functions. Front. Mol. Neurosci. 2019, 12, 109. [Google Scholar] [CrossRef] [PubMed]
- Veltman, M.W.M.; Craig, E.E.; Bolton, P.F. Autism Spectrum Disorders in Prader-Willi and Angelman Syndromes: A Systematic Review. Psychiatr. Genet. 2005, 15, 243–254. [Google Scholar] [CrossRef] [PubMed]
- Ciechanover, A.; Orian, A.; Schwartz, A.L. Ubiquitin-Mediated Proteolysis: Biological Regulation via Destruction. BioEssays 2000, 22, 442–451. [Google Scholar] [CrossRef]
- Howlett, A.C. Cannabinoid Receptor Signaling. Handb. Exp. Pharmacol. 2005, 168, 53–79. [Google Scholar] [CrossRef]
- Chakrabarti, B.; Persico, A.; Battista, N.; Maccarrone, M. Endocannabinoid Signaling in Autism. Neurotherapeutics 2015, 12, 837–847. [Google Scholar] [CrossRef] [PubMed]
- Hacohen, M.; Stolar, O.E.; Berkovitch, M.; Elkana, O.; Kohn, E.; Hazan, A.; Heyman, E.; Sobol, Y.; Waissengreen, D.; Gal, E.; et al. Children and Adolescents with ASD Treated with CBD-Rich Cannabis Exhibit Significant Improvements Particularly in Social Symptoms: An Open Label Study. Transl. Psychiatry 2022, 12, 375. [Google Scholar] [CrossRef]
- Rice, L.J.; Cannon, L.; Dadlani, N.; Cheung, M.M.Y.; Einfeld, S.L.; Efron, D.; Dossetor, D.R.; Elliott, E.J. Efficacy of Cannabinoids in Neurodevelopmental and Neuropsychiatric Disorders among Children and Adolescents: A Systematic Review. Eur. Child Adolesc. Psychiatry 2023, 33, 505–526. [Google Scholar] [CrossRef]
- Aluko, O.M.; Lawal, S.A.; Ijomone, O.M.; Aschner, M. Perturbed MAPK Signaling in ASD: Impact of Metal Neurotoxicity. Curr. Opin. Toxicol. 2021, 26, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Su, G.; Morris, J.H.; Demchak, B.; Bader, G.D. Biological Network Exploration with Cytoscape 3. Curr. Protoc. Bioinform. 2014, 47, 8.13.1–8.13.24. [Google Scholar] [CrossRef] [PubMed]
- Aranda, B.; Blankenburg, H.; Kerrien, S.; Brinkman, F.S.L.; Ceol, A.; Chautard, E.; Dana, J.M.; De Las Rivas, J.; Dumousseau, M.; Galeota, E.; et al. PSICQUIC and PSISCORE: Accessing and Scoring Molecular Interactions. Nat. Methods 2011, 8, 528–529. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Wang, J.; Jaehnig, E.J.; Shi, Z.; Zhang, B. WebGestalt 2019: Gene Set Analysis Toolkit with Revamped UIs and APIs. Nucleic Acids Res. 2019, 47, W199–W205. [Google Scholar] [CrossRef]
Gene | SFARI Score | Syndromic | Betweenness Centrality | Relative Betweenness Centrality a (%) | Expression in Brain b (TPM) | Brain Expression c | OMIM Phenotype d |
---|---|---|---|---|---|---|---|
ESR1 | 0.0441 | 100 | 1.334 | low | |||
LRRK2 | 0.0349 | 79.14 | 4.878 | low | #607060 | ||
APP | 0.0240 | 54.42 | 561.1 | high | #104300, #605714 | ||
JUN | 0.0200 | 45.35 | 97.62 | high | |||
CFTR | 0.0189 | 42.86 | 0.9818 | low | |||
HTT | 0.0179 | 40.59 | 37.64 | medium | #143100, #617435 | ||
DISC1 | 2 | 0 | 0.0169 | 38.32 | 2.495 | low | #604906 |
MYC | 0.0161 | 36.51 | 3.305 | low | |||
CUL3 | 1 | 0 | 0.0150 | 34.01 | 22.88 | medium | #619239 |
EGFR | 0.0138 | 31.29 | 7.925 | low | |||
BMI1 | 0.0105 | 23.81 | 50.56 | high | |||
GRB2 | 0.0102 | 23.13 | 98.53 | high | |||
YWHAG | 3 | 1 | 0.0097 | 22.00 | 554.5 | high | #617665 |
MAPT | 3 | 0 | 0.0096 | 21.77 | 223 | high | #600274, #172700, #601104, #260540, #168600 |
HSP90AB1 | 0.0090 | 20.41 | 928.2 | high | |||
MEOX2 | 0.0087 | 19.73 | 0.6813 | low | |||
SNW1 | 0.0083 | 18.82 | 64.66 | high | |||
HSCB | 0.0080 | 18.14 | 14.33 | medium | |||
SPRED1 | 0.0075 | 17.01 | 19.18 | medium | #611431 | ||
HRAS | 1 | 0 | 0.0072 | 16.33 | 77.62 | high | #218040 |
HSPB1 | 0.0066 | 14.97 | 164.3 | high | #606595, #608634 | ||
CANX | 0.0066 | 14.97 | 164 | high | |||
ATXN1 | 0.0066 | 14.97 | 12.41 | medium | #164400 | ||
FGFR3 | 0.0065 | 14.74 | 148.4 | high | #616482 | ||
YWHAZ | 3 | 0 | 0.0063 | 14.29 | 236.1 | high | |
NEK4 | 0.0059 | 13.38 | 15.81 | medium | |||
RYBP | 0.0059 | 13.38 | 18.68 | medium | |||
ERBB2 | 0.0057 | 12.93 | 9.006 | low | |||
CDC5L | 0.0057 | 12.93 | 21.79 | medium | |||
HSPD1 | 0.0057 | 12.93 | 141.3 | high |
Gene | SFARI Score | Syndromic | Betweenness Centrality | Relative Betweenness Centrality a (%) | Expression in Brain b (TPM) | Brain Expression c | OMIM Phenotype d |
---|---|---|---|---|---|---|---|
MKI67 | 0.00299 | 6.78 | 0.04925 | low | |||
RAC1 | 1 | 0.00248 | 5.62 | 351.2 | high | #617751 | |
PRKN | 2 | 0 | 0.00209 | 4.74 | 7.774 | low | #600116 |
SMARCB1 | 0.00154 | 3.49 | 98.65 | high | |||
LMO2 | 0.00118 | 2.68 | 27.56 | normal | |||
PRKAB2 | 0.00114 | 2.59 | 38.85 | normal | |||
CEP128 | 0.00108 | 2.45 | 1.317 | low | |||
MAPK3 | 2 | 0 | 0.00104 | 2.36 | 123.1 | high | |
F2RL1 | 0.00103 | 2.34 | 1.243 | low | |||
KCNMA1 | 2 | 0 | 0.00096 | 2.18 | 14.71 | normal | #618596, #617643 |
FGFR2 | 0.00086 | 1.95 | 130.1 | high | |||
LGALS8 | 0.00077 | 1.75 | 30.62 | normal | |||
HAX1 | 0.00074 | 1.68 | 87.22 | high | |||
PTPN1 | 0.00072 | 1.63 | 21.84 | normal | |||
NDN | 0.00071 | 1.61 | 95.52 | high | |||
NOTCH2NLA | 0.00070 | 1.59 | 0.4823 | low | |||
UBE3A | 1 | 1 | 0.00060 | 1.36 | 16.90 | normal | #105830 |
CRKL | 0.00057 | 1.29 | 71.85 | high | |||
MKRN3 | 0.00054 | 1.22 | 3.434 | low | |||
PSMB1 | 0.00054 | 1.22 | 77.33 | high | #620038 | ||
OIP5 | 0.00053 | 1.20 | 0.7748 | low | |||
COMT | 0.00052 | 1.18 | 56.20 | high | #181500 | ||
GLRX3 | 0.00044 | 1 | 17.09 | normal | |||
AKAP9 | 2 | 0 | 0.00044 | 1 | 22.25 | normal | |
HERC2 | 1 | 0.00042 | 0.95 | 31.09 | normal | #615516 | |
TPM3 | 0.00039 | 0.88 | 58.94 | high | |||
CHRNA7 | 2 | 0 | 0.00038 | 0.86 | 0.3922 | low | |
ZMYND11 | 2 | 0 | 0.00037 | 0.84 | 97.83 | high | #616083 |
MFHAS1 | 0.00036 | 0.82 | 12.92 | normal | |||
GABRB3 | 1 | 0 | 0.00036 | 0.82 | 21.47 | normal | #617113 |
Input List | Pathway | Genes | FDR | ER |
---|---|---|---|---|
All | 22q11.2 deletion syndrome a | FGFR2, CRKL, COMT, LZTR1, CLTCL1, PI4KA, SNAP29, THAP7, DGCR8, TRMT2A, GSC2, KLHL22, SLC25A1, C22orf39, DGCR6, ESS2, UFD1, MED15, MRPL40, HIRA, GP1BB, CLDN5, DGCR6L, ARVCF, TSSK2, RANBP1, GNB1L, CDC45, HIRIP3, SCARF2, RTN4R, HES1, RTL10, SERPIND1, AIFM3, SLC7A4 | <2.2 × 10−16 | 13.0 |
Cannabinoid receptor signaling a | MAPK3, MAPK8, ADORA2A, PRKACG, DAGLB, MAPK10, AHR | 0.00499 | 7.5 | |
Prader–Willi and Angelman syndromes a | NDN, UBE3A, MKRN3, HERC2, GABRB3, CYFIP1, SNRPN, TUBGCP5, NIPA2, OCA2, NIPA1, ATP10A, GABRA5, GABRG3 | 0.0000014 | 7.1 | |
Top 80% | 22q11.2 deletion syndrome a,* | FGFR2, CRKL, COMT, LZTR1, CLTCL1, PI4KA, SNAP29, THAP7, DGCR8, TRMT2A, GSC2, KLHL22, SLC25A1, C22orf39, DGCR6, ESS2, UFD1, MED15, MRPL40, HIRA, GP1BB, CLDN5, DGCR6L, ARVCF, TSSK2, RANBP1, GNB1L, CDC45, HIRIP3, SCARF2, RTN4R, HES1 | <2.2 × 10−16 | 13.3 |
Cannabinoid receptor signaling a | MAPK3, MAPK8, ADORA2A, PRKACG, DAGLB, MAPK10 | 0.03237 | 7.4 | |
Prader–Willi and Angelman syndromes a,* | NDN, UBE3A, MKRN3, HERC2, GABRB3, CYFIP1, SNRPN, TUBGCP5 | 0.04690 | 4.7 | |
Top 50% | Ubiquitin-mediated proteolysis b | PRKN, UBE3A, HERC2, UBR5, BIRC6, ITCH, MID1, FANCL, SMURF2, PIAS3 | 0.01269 | 4.8 |
22q11.2 deletion syndrome a,* | FGFR2, CRKL, COMT, LZTR1, CLTCL1, PI4KA, SNAP29, THAP7, DGCR8, TRMT2A, GSC2, KLHL22, SLC25A1, C22orf39, DGCR6, ESS2, UFD1, MED15, MRPL40, HIRA, GP1BB | <2.2 × 10−16 | 12.4 | |
Prader–Willi and Angelman syndromes a | NDN, UBE3A, MKRN3, HERC2, GABRB3, CYFIP1, SNRPN, TUBGCP5 | 0.00601 | 6.6 | |
Top 20% | FCERI-mediated MAPK activation | RAC1, MAPK3, MAPK8, GRAP2 | 0.04033 | 19.7 |
Neutrophil degranulation c | RAC1, PSMB1, ATP6AP2, MVP, CAT, ILF2, S100A7, SNAP29, PECAM1, ALDOA, CYFIP1, PSMD7 | 0.04033 | 3.9 | |
22q11.2 deletion syndrome a,* | FGFR2, CRKL, COMT, LZTR1, CLTCL1, PI4KA, SNAP29, THAP7, DGCR8 | 0.00006 | 10.8 | |
Prader–Willi and Angelman syndromes a | NDN, UBE3A, MKRN3, HERC2, GABRB3, CYFIP1, SNRPN | 0.00045 | 11.8 |
Pathway | Genes | FDR | ER |
---|---|---|---|
RNA polymerase b | POLR2B, POLR3C, POLR3E, POLR3F | 0.034 | 12.0 |
Fc epsilon RI signaling pathway b | ALOX5, MAPK10, MAPK3, MAPK8, RAC1 | 0.042 | 6.9 |
Salmonella infection b | MAPK10, MAPK3, MAPK8, RAC1, RILP, TJP1 | 0.034 | 6.5 |
Progesterone-mediated oocyte maturation b | KIF22, MAD1L1, MAPK10, MAPK3, MAPK8, PRKACG | 0.042 | 5.6 |
Tight junction b | DLG2, MAPK10, MAPK8, PPP2R2D, PRKAB2, PRKACG, RAC1, TJP1, TJP2 | 0.025 | 4.9 |
Ubiquitin-mediated proteolysis b | BIRC6, FANCL, HERC2, ITCH, PRKN, UBE3A, UBR5 | 0.042 | 4.8 |
FCERI-mediated MAPK activation c | GRAP2, MAPK10, MAPK3, MAPK8, RAC1 | 0.046 | 13.9 |
22q11.2 deletion syndrome a | AIFM3, C22orf39, DGCR6, DGCR6L, DGCR8, ESS2, FGFR2, GSC2, HIRA, LZTR1, MRPL40, PI4KA, SLC25A1, THAP7, TRMT2A | 1.63 × 10−10 | 12.8 |
Prader–Willi and Angelman syndromes a | CYFIP1, HERC2, MKRN3, NDN, SNRPN, TUBGCP5, UBE3A | 0.0043 | 8.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Remori, V.; Bondi, H.; Airoldi, M.; Pavinato, L.; Borini, G.; Carli, D.; Brusco, A.; Fasano, M. A Systems Biology Approach for Prioritizing ASD Genes in Large or Noisy Datasets. Int. J. Mol. Sci. 2025, 26, 2078. https://doi.org/10.3390/ijms26052078
Remori V, Bondi H, Airoldi M, Pavinato L, Borini G, Carli D, Brusco A, Fasano M. A Systems Biology Approach for Prioritizing ASD Genes in Large or Noisy Datasets. International Journal of Molecular Sciences. 2025; 26(5):2078. https://doi.org/10.3390/ijms26052078
Chicago/Turabian StyleRemori, Veronica, Heather Bondi, Manuel Airoldi, Lisa Pavinato, Giulia Borini, Diana Carli, Alfredo Brusco, and Mauro Fasano. 2025. "A Systems Biology Approach for Prioritizing ASD Genes in Large or Noisy Datasets" International Journal of Molecular Sciences 26, no. 5: 2078. https://doi.org/10.3390/ijms26052078
APA StyleRemori, V., Bondi, H., Airoldi, M., Pavinato, L., Borini, G., Carli, D., Brusco, A., & Fasano, M. (2025). A Systems Biology Approach for Prioritizing ASD Genes in Large or Noisy Datasets. International Journal of Molecular Sciences, 26(5), 2078. https://doi.org/10.3390/ijms26052078