Molecular Docking of Lactoferrin with Apoptosis-Related Proteins Insights into Its Anticancer Mechanism
Abstract
:1. Introduction
1.1. Cancer Overview
1.2. Apoptosis and Cancer
1.3. Evasion of Apoptosis in Cancer
1.4. Lactoferrin and Its Role in Cancer
2. Results
2.1. AlphaFold-Predicted Models of Human Lactoferrin, Caspase-3, Caspase-9, Caspase-8, Akt, Fas, Bcl-2, p53 and XIAP Proteins
2.1.1. HLf-Akt
2.1.2. HLf-Bcl-2
2.1.3. HLf-Caspase-3
2.1.4. HLf-Caspase-8
2.1.5. HLf-Caspase-9
2.1.6. HLf-p53
2.1.7. HLf-Fas
2.1.8. HLf-XIAP
2.2. Interaction Profile of hLf with Apoptotic Proteins
Negative Control Docking Outcomes
3. Discussion
3.1. HLf and Fas
3.2. HLf and Caspases
3.3. HLf and p53
3.4. HLf and Akt
3.5. HLf and Bcl-2
3.6. HLf and XIAP
- Potentially disrupting Akt substrate binding, affecting survival signaling.
- Interacting with XIAP, inhibiting suppression of Caspase-3 and Caspase-9.
- Stabilizing Caspase-3, ensuring efficient execution of apoptosis.
3.7. Negative Control Docking
4. Materials and Methods
4.1. Protein Sequence Retrieval
4.2. Structure Prediction and Molecular Docking
- Predicted Template Modeling (pTM) score: Measures the reliability of the overall structural prediction, where values close to 1 indicate high confidence.
- Interface pTM (ipTM) score: Evaluates the confidence in the predicted binding interface of the protein-protein complex.
- Predicted Aligned Error (PAE): Quantifies the relative positional confidence between residues across the protein complex. Lower PAE values indicate greater confidence in the predicted spatial relationships.
4.3. Protein-Protein Interaction Analysis
- Hydrogen bonds: Donor-acceptor interactions with distances calculated.
- Salt bridges: Electrostatic interactions between charged residues.
- Non-bonded contacts: Van der Waals and hydrophobic interactions.
4.4. Negative Control Docking Experiment
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization Cancer. Health Topics; WHO: Geneva, Switzerland, 2022. [Google Scholar]
- Kowalczyk, P.; Kaczyńska, K.; Kleczkowska, P.; Bukowska-Ośko, I.; Kramkowski, K.; Sulejczak, D. The Lactoferrin Phenomenon—A Miracle Molecule. Molecules 2022, 27, 2941. [Google Scholar] [CrossRef] [PubMed]
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA A Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Pfeffer, C.; Singh, A. Apoptosis: A Target for Anticancer Therapy. Int. J. Mol. Sci. 2018, 19, 448. [Google Scholar] [CrossRef] [PubMed]
- El-Fakharany, E.M. Nanoformulation of Lactoferrin Potentiates Its Activity and Enhances Novel Biotechnological Applications. Int. J. Biol. Macromol. 2020, 165, 970–984. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Wang, S.; Zhou, Q. The Resistance Mechanisms of Lung Cancer Immunotherapy. Front. Oncol. 2020, 10, 568059. [Google Scholar] [CrossRef] [PubMed]
- Qiao, M.; Jiang, T.; Ren, S.; Zhou, C. Combination Strategies on the Basis of Immune Checkpoint Inhibitors in Non–Small-Cell Lung Cancer: Where Do We Stand? Clin. Lung Cancer 2018, 19, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Mariño, G.; Niso-Santano, M.; Baehrecke, E.H.; Kroemer, G. Self-Consumption: The Interplay of Autophagy and Apoptosis. Nat. Rev. Mol. Cell Biol. 2014, 15, 81–94. [Google Scholar] [CrossRef]
- Lee, S.; Park, S.; Pyo, C.; Yoo, N.; Kim, J.; Choi, S. Requirement of the JNK-Associated Bcl-2 Pathway for Human Lactoferrin-Induced Apoptosis in the Jurkat Leukemia T Cell Line. Biochimie 2009, 91, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Gibbons, J.A.; Kanwar, J.R.; Kanwar, R.K. Iron-Free and Iron-Saturated Bovine Lactoferrin Inhibit Survivin Expression and Differentially Modulate Apoptosis in Breast Cancer. BMC Cancer 2015, 15, 425. [Google Scholar] [CrossRef]
- Elmore, S. Apoptosis: A Review of Programmed Cell Death. Toxicol. Pathol. 2007, 35, 495–516. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.X.; Jiang, H.R.; Li, H.B.; Zhang, T.N.; Zhou, Q.; Liu, N. Apoptosis of Stomach Cancer Cell SGC-7901 and Regulation of Akt Signaling Way Induced by Bovine Lactoferrin. J. Dairy Sci. 2010, 93, 2344–2350. [Google Scholar] [CrossRef] [PubMed]
- Bukowska-Ośko, I.; Sulejczak, D.; Kaczyńska, K.; Kleczkowska, P.; Kramkowski, K.; Popiel, M.; Wietrak, E.; Kowalczyk, P. Lactoferrin as a Human Genome “Guardian”—An Overall Point of View. Int. J. Mol. Sci. 2022, 23, 5248. [Google Scholar] [CrossRef] [PubMed]
- Galluzzi, L.; Vitale, I.; Aaronson, S.A.; Abrams, J.M.; Adam, D.; Agostinis, P.; Alnemri, E.S.; Altucci, L.; Amelio, I.; Andrews, D.W.; et al. Molecular Mechanisms of Cell Death: Recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 2018, 25, 486–541. [Google Scholar] [CrossRef]
- Jan, R.; Chaudhry, G.-S. Understanding Apoptosis and Apoptotic Pathways Targeted Cancer Therapeutics. Adv. Pharm. Bull. 2019, 9, 205–218. [Google Scholar] [CrossRef]
- Vazanova, A.; Jurecekova, J.; Balharek, T.; Marcinek, J.; Stasko, J.; Dzian, A.; Plank, L.; Zubor, P.; Racay, P.; Hatok, J. Differential mRNA Expression of the Main Apoptotic Proteins in Normal and Malignant Cells and Its Relation to in Vitro Resistance. Cancer Cell Int. 2018, 18, 33. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D.; Weinberg, R.A. Hallmarks of Cancer: The Next Generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef]
- Zhang, Y.; Lima, C.F.; Rodrigues, L.R. Anticancer Effects of Lactoferrin: Underlying Mechanisms and Future Trends in Cancer Therapy. Nutr. Rev. 2014, 72, 763–773. [Google Scholar] [CrossRef] [PubMed]
- Avrutsky, M.I.; Troy, C.M. Caspase-9: A Multimodal Therapeutic Target With Diverse Cellular Expression in Human Disease. Front. Pharmacol. 2021, 12, 701301. [Google Scholar] [CrossRef]
- Araya, L.E.; Soni, I.V.; Hardy, J.A.; Julien, O. Deorphanizing Caspase-3 and Caspase-9 Substrates In and Out of Apoptosis with Deep Substrate Profiling. ACS Chem. Biol. 2021, 16, 2280–2296. [Google Scholar] [CrossRef]
- Mohamed, M.S.; Bishr, M.K.; Almutairi, F.M.; Ali, A.G. Inhibitors of Apoptosis: Clinical Implications in Cancer. Apoptosis 2017, 22, 1487–1509. [Google Scholar] [CrossRef] [PubMed]
- El-Sawy, E.R.; El-Shahid, Z.A.; Soliman, A.A.F.; Nassrallah, A.; Abdelwahab, A.B.; Kirsch, G.; Abdelmegeed, H. Synthetic Analogs of Marine Alkaloid Aplysinopsin Suppress Anti-Apoptotic Protein Bcl2 in Prostate Cancer. Molecules 2022, 28, 109. [Google Scholar] [CrossRef] [PubMed]
- Kashyap, D.; Garg, V.K.; Goel, N. Intrinsic and Extrinsic Pathways of Apoptosis: Role in Cancer Development and Prognosis. In Advances in Protein Chemistry and Structural Biology; Elsevier: Amsterdam, The Netherlands, 2021; Volume 125, pp. 73–120. ISBN 978-0-323-85315-6. [Google Scholar]
- Ponomarev, A.; Gilazieva, Z.; Solovyeva, V.; Allegrucci, C.; Rizvanov, A. Intrinsic and Extrinsic Factors Impacting Cancer Stemness and Tumor Progression. Cancers 2022, 14, 970. [Google Scholar] [CrossRef]
- Basu, A.; Lambring, C.B. Akt Isoforms: A Family Affair in Breast Cancer. Cancers 2021, 13, 3445. [Google Scholar] [CrossRef] [PubMed]
- Testa, J.R.; Bellacosa, A. AKT Plays a Central Role in Tumorigenesis. Proc. Natl. Acad. Sci. USA 2001, 98, 10983–10985. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.; Mu, J.; Kim, J.K.; Thorvaldsen, J.L.; Chu, Q.; Iii, E.B.C.; Kaestner, K.H.; Bartolomei, M.S.; Shulman, G.I.; Birnbaum, M.J. Insulin Resistance and a Diabetes Mellitus–Like Syndrome in Mice Lacking the Protein Kinase Akt2 (PKBβ). Science 2001, 292, 1728–1731. [Google Scholar] [CrossRef] [PubMed]
- Hers, I.; Vincent, E.E.; Tavaré, J.M. Akt Signalling in Health and Disease. Cell Signal. 2011, 23, 1515–1527. [Google Scholar] [CrossRef] [PubMed]
- Rudolph, M.; Anzeneder, T.; Schulz, A.; Beckmann, G.; Byrne, A.T.; Jeffers, M.; Pena, C.; Politz, O.; Köchert, K.; Vonk, R.; et al. AKT1 E17K Mutation Profiling in Breast Cancer: Prevalence, Concurrent Oncogenic Alterations, and Blood-Based Detection. BMC Cancer 2016, 16, 622. [Google Scholar] [CrossRef]
- Lee, H.; Haque, S.; Gupta, R.; Kolitz, J.E.; Allen, S.L.; Rai, K.; Chiorazzi, N.; Mongini, P.K.A. Bcl2 Protein Progressively Declines during Robust CLL Clonal Expansion: Potential Impact on Venetoclax Clinical Efficacy and Insights on Mechanism. Lymphatics 2024, 2, 50–78. [Google Scholar] [CrossRef] [PubMed]
- Sobol, B.; Azzam Nieto, O.; Eberlein, E.L.; Scherr, A.-L.; Ismail, L.; Kessler, A.; Nader, L.; Schwab, M.; Hoffmeister, P.; Schmitt, N.; et al. Specific Targeting of Antiapoptotic Bcl-2 Proteins as a Radiosensitizing Approach in Solid Tumors. Int. J. Mol. Sci. 2022, 23, 7850. [Google Scholar] [CrossRef]
- Westphal, D.; Kluck, R.M.; Dewson, G. Building Blocks of the Apoptotic Pore: How Bax and Bak Are Activated and Oligomerize during Apoptosis. Cell Death Differ. 2014, 21, 196–205. [Google Scholar] [CrossRef]
- Chao, D.T.; Korsmeyer, S.J. Bcl-2 FAMILY: Regulators of Cell Death. Annu. Rev. Immunol. 1998, 16, 395–419. [Google Scholar] [CrossRef] [PubMed]
- Kirkin, V.; Joos, S.; Zörnig, M. The Role of Bcl-2 Family Members in Tumorigenesis. Biochim. Biophys. Acta-Mol. Cell Res. 2004, 1644, 229–249. [Google Scholar] [CrossRef] [PubMed]
- Elzoghby, A.O.; Abdelmoneem, M.A.; Hassanin, I.A.; Abd Elwakil, M.M.; Elnaggar, M.A.; Mokhtar, S.; Fang, J.-Y.; Elkhodairy, K.A. Lactoferrin, a Multi-Functional Glycoprotein: Active Therapeutic, Drug Nanocarrier & Targeting Ligand. Biomaterials 2020, 263, 120355. [Google Scholar] [CrossRef]
- Lawrence, M.S.; Stojanov, P.; Mermel, C.H.; Robinson, J.T.; Garraway, L.A.; Golub, T.R.; Meyerson, M.; Gabriel, S.B.; Lander, E.S.; Getz, G. Discovery and Saturation Analysis of Cancer Genes across 21 Tumour Types. Nature 2014, 505, 495–501. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, T.; Su, W.; Dou, Z.; Zhao, D.; Jin, X.; Lei, H.; Wang, J.; Xie, X.; Cheng, B.; et al. Mutant P53 in Cancer: From Molecular Mechanism to Therapeutic Modulation. Cell Death Dis. 2022, 13, 974. [Google Scholar] [CrossRef]
- Nagata, S. Apoptosis by Death Factor. Cell 1997, 88, 355–365. [Google Scholar] [CrossRef] [PubMed]
- Kykalos, S.; Mathaiou, S.; Karayiannakis, A.J.; Patsouras, D.; Lambropoulou, M.; Simopoulos, C. Tissue Expression of the Proteins Fas and Fas Ligand in Colorectal Cancer and Liver Metastases. J. Gastrointest. Cancer 2012, 43, 224–228. [Google Scholar] [CrossRef] [PubMed]
- Kural, M.H.; Djakbarova, U.; Cakir, B.; Tanaka, Y.; Madraki, Y.; Qian, H.; Park, J.; Sewanan, L.R.; Kural, C.; Niklason, L.E. Inhibition of Fas Receptor Endocytosis Sensitizes Cancer Cells to Fas-Induced Apoptosis. bioRxiv 2022. [Google Scholar] [CrossRef]
- Wimmer, K.; Sachet, M.; Oehler, R. Circulating Biomarkers of Cell Death. Clin. Chim. Acta 2020, 500, 87–97. [Google Scholar] [CrossRef]
- Jakubowska, K.; Guzińska-Ustymowicz, K.; Famulski, W.; Cepowicz, D.; Jagodzińska, D.; Pryczynicz, A. Reduced Expression of Caspase-8 and Cleaved Caspase-3 in Pancreatic Ductal Adenocarcinoma Cells. Oncol. Lett. 2016, 11, 1879–1884. [Google Scholar] [CrossRef]
- Soung, Y.; Lee, J.; Kim, S.; Park, W.; Nam, S.; Lee, J.; Yoo, N.; Lee, S. Somatic Mutations of CASP3 Gene in Human Cancers. Hum. Genet. 2004, 115, 112–115. [Google Scholar] [CrossRef]
- Devarajan, E.; Sahin, A.A.; Chen, J.S.; Krishnamurthy, R.R.; Aggarwal, N.; Brun, A.-M.; Sapino, A.; Zhang, F.; Sharma, D.; Yang, X.-H.; et al. Down-Regulation of Caspase 3 in Breast Cancer: A Possible Mechanism for Chemoresistance. Oncogene 2002, 21, 8843–8851. [Google Scholar] [CrossRef] [PubMed]
- Tu, H.; Costa, M. XIAP’s Profile in Human Cancer. Biomolecules 2020, 10, 1493. [Google Scholar] [CrossRef] [PubMed]
- Hensley, P.; Mishra, M.; Kyprianou, N. Targeting Caspases in Cancer Therapeutics. Biol. Chem. 2013, 394, 831–843. [Google Scholar] [CrossRef] [PubMed]
- Hopkins-Donaldson, S.; Ziegler, A.; Kurtz, S.; Bigosch, C.; Kandioler, D.; Ludwig, C.; Zangemeister-Wittke, U.; Stahel, R. Silencing of Death Receptor and Caspase-8 Expression in Small Cell Lung Carcinoma Cell Lines and Tumors by DNA Methylation. Cell Death Differ. 2003, 10, 356–364. [Google Scholar] [CrossRef] [PubMed]
- Park, J.Y.; Park, J.M.; Jang, J.S.; Choi, J.E.; Kim, K.M.; Cha, S.I.; Kim, C.H.; Kang, Y.M.; Lee, W.K.; Kam, S.; et al. Caspase 9 Promoter Polymorphisms and Risk of Primary Lung Cancer. Hum. Mol. Genet. 2006, 15, 1963–1971. [Google Scholar] [CrossRef] [PubMed]
- Gangwar, R.; Mandhani, A.; Mittal, R.D. Caspase 9 and Caspase 8 Gene Polymorphisms and Susceptibility to Bladder Cancer in North Indian Population. Ann. Surg. Oncol. 2009, 16, 2028–2034. [Google Scholar] [CrossRef]
- Theodoropoulos, G.E.; Michalopoulos, N.V.; Panoussopoulos, S.-G.; Taka, S.; Gazouli, M. Effects of Caspase-9 and Survivin Gene Polymorphisms in Pancreatic Cancer Risk and Tumor Characteristics. Pancreas 2010, 39, 976–980. [Google Scholar] [CrossRef] [PubMed]
- Liamarkopoulos, E.; Gazouli, M.; Aravantinos, G.; Tzanakis, N.; Theodoropoulos, G.; Rizos, S.; Nikiteas, N. Caspase 8 and Caspase 9 Gene Polymorphisms and Susceptibility to Gastric Cancer. Gastric Cancer 2011, 14, 317–321. [Google Scholar] [CrossRef] [PubMed]
- Theodoropoulos, G.E.; Gazouli, M.; Vaiopoulou, A.; Leandrou, M.; Nikouli, S.; Vassou, E.; Kouraklis, G.; Nikiteas, N. Polymorphisms of Caspase 8 and Caspase 9 Gene and Colorectal Cancer Susceptibility and Prognosis. Int. J. Color Dis. 2011, 26, 1113–1118. [Google Scholar] [CrossRef]
- Hanifeh, M.; Ataei, F. XIAP as a Multifaceted Molecule in Cellular Signaling. Apoptosis 2022, 27, 441–453. [Google Scholar] [CrossRef]
- Wang, D.-G.; Sun, Y.-B.; Ye, F.; Li, W.; Kharbuja, P.; Gao, L.; Zhang, D.Y.; Suo, J. Anti-Tumor Activity of the X-Linked Inhibitor of Apoptosis (XIAP) Inhibitor Embelin in Gastric Cancer Cells. Mol. Cell Biochem. 2014, 386, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Shaw, T.J.; Lacasse, E.C.; Durkin, J.P.; Vanderhyden, B.C. Downregulation of XIAP Expression in Ovarian Cancer Cells Induces Cell Death in Vitro and in Vivo. Intl. J. Cancer 2008, 122, 1430–1434. [Google Scholar] [CrossRef]
- Yabal, M.; Müller, N.; Adler, H.; Knies, N.; Groß, C.J.; Damgaard, R.B.; Kanegane, H.; Ringelhan, M.; Kaufmann, T.; Heikenwälder, M.; et al. XIAP Restricts TNF-and RIP3-Dependent Cell Death and Inflammasome Activation. Cell Rep. 2014, 7, 1796–1808. [Google Scholar] [CrossRef]
- Giansanti, F.; Panella, G.; Leboffe, L.; Antonini, G. Lactoferrin from Milk: Nutraceutical and Pharmacological Properties. Pharmaceuticals 2016, 9, 61. [Google Scholar] [CrossRef] [PubMed]
- Sabra, S.; Agwa, M.M. Lactoferrin, a Unique Molecule with Diverse Therapeutical and Nanotechnological Applications. Int. J. Biol. Macromol. 2020, 164, 1046–1060. [Google Scholar] [CrossRef]
- Hao, L.; Shan, Q.; Wei, J.; Ma, F.; Sun, P. Lactoferrin: Major Physiological Functions and Applications. CPPS 2018, 20, 139–144. [Google Scholar] [CrossRef]
- Ashraf, M.F.; Zubair, D.; Bashir, M.N.; Alagawany, M.; Ahmed, S.; Shah, Q.A.; Buzdar, J.A.; Arain, M.A. Nutraceutical and Health-Promoting Potential of Lactoferrin, an Iron-Binding Protein in Human and Animal: Current Knowledge. Biol. Trace Elem. Res. 2024, 202, 56–72. [Google Scholar] [CrossRef]
- Kosim, M.Y.; Fukazawa, T.; Miyauchi, M.; Hirohashi, N.; Tanimoto, K. P53 Status Modifies Cytotoxic Activity of Lactoferrin under Hypoxic Conditions. Front. Pharmacol. 2022, 13, 988335. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.-M.; Pyo, C.-W.; Kim, Y.; Choi, S.-Y. Neutrophil Lactoferrin Upregulates the Human P53 Gene through Induction of NF-κB Activation Cascade. Oncogene 2004, 23, 8282–8291. [Google Scholar] [CrossRef] [PubMed]
- Iglesias-Figueroa, B.F.; Siqueiros-Cendón, T.S.; Gutierrez, D.A.; Aguilera, R.J.; Espinoza-Sánchez, E.A.; Arévalo-Gallegos, S.; Varela-Ramirez, A.; Rascón-Cruz, Q. Recombinant Human Lactoferrin Induces Apoptosis, Disruption of F-Actin Structure and Cell Cycle Arrest with Selective Cytotoxicity on Human Triple Negative Breast Cancer Cells. Apoptosis 2019, 24, 562–577. [Google Scholar] [CrossRef] [PubMed]
- Rascón-Cruz, Q.; Espinoza-Sánchez, E.A.; Siqueiros-Cendón, T.S.; Nakamura-Bencomo, S.I.; Arévalo-Gallegos, S.; Iglesias-Figueroa, B.F. Lactoferrin: A Glycoprotein Involved in Immunomodulation, Anticancer, and Antimicrobial Processes. Molecules 2021, 26, 205. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Galdámez, H.V.; Fattel-Fazenda, S.; Flores-Téllez, T.N.J.; Aguilar-Chaparro, M.A.; Mendoza-García, J.; Díaz-Fernández, L.C.; Romo-Medina, E.; Sánchez-Pérez, Y.; Arellanes-Robledo, J.; De La Garza, M.; et al. Iron-Saturated Bovine Lactoferrin: A Promising Chemopreventive Agent for Hepatocellular Carcinoma. Food Funct. 2024, 15, 4586–4602. [Google Scholar] [CrossRef]
- Abramson, J.; Adler, J.; Dunger, J.; Evans, R.; Green, T.; Pritzel, A.; Ronneberger, O.; Willmore, L.; Ballard, A.J.; Bambrick, J.; et al. Accurate Structure Prediction of Biomolecular Interactions with AlphaFold 3. Nature 2024, 630, 493–500. [Google Scholar] [CrossRef] [PubMed]
- Laskowski, R.A. PDBsum1: A Standalone Program for Generating PDBsum Analyses. Protein Sci. 2022, 31, e4473. [Google Scholar] [CrossRef]
- Fujita, K.-I. Lactoferrin Enhances Fas Expression and Apoptosis in the Colon Mucosa of Azoxymethane-Treated Rats. Carcinogenesis 2004, 25, 1961–1966. [Google Scholar] [CrossRef] [PubMed]
- Fujita, K.; Matsuda, E.; Sekine, K.; Iigo, M.; Tsuda, H. Lactoferrin Modifies Apoptosis-Related Gene Expression in the Colon of the Azoxymethane-Treated Rat. Cancer Lett. 2004, 213, 21–29. [Google Scholar] [CrossRef]
- Sayers, E.W.; Bolton, E.E.; Brister, J.R.; Canese, K.; Chan, J.; Comeau, D.C.; Connor, R.; Funk, K.; Kelly, C.; Kim, S.; et al. Database Resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2022, 50, D20–D26. [Google Scholar] [CrossRef] [PubMed]
- Schneider, P.; Bodmer, J.-L.; Holler, N.; Mattmann, C.; Scuderi, P.; Terskikh, A.; Peitsch, M.C.; Tschopp, J. Characterization of Fas (Apo-1, CD95)-Fas Ligand Interaction. J. Biol. Chem. 1997, 272, 18827–18833. [Google Scholar] [CrossRef] [PubMed]
- Haymour, L.; Jean, M.; Smulski, C.; Legembre, P. CD95 (Fas) and CD95L (FasL)-Mediated Non-Canonical Signaling Pathways. Biochim. Biophys. Acta-Rev. Cancer 2023, 1878, 189004. [Google Scholar] [CrossRef]
- Magis, C.; Van Der Sloot, A.M.; Serrano, L.; Notredame, C. An Improved Understanding of TNFL/TNFR Interactions Using Structure-Based Classifications. Trends Biochem. Sci. 2012, 37, 353–363. [Google Scholar] [CrossRef] [PubMed]
- Starling, G.C.; Bajorath, J.; Emswiler, J.; Ledbetter, J.A.; Aruffo, A.; Kiener, P.A. Identification of Amino Acid Residues Important for Ligand Binding to Fas. J. Exp. Med. 1997, 185, 1487–1492. [Google Scholar] [CrossRef] [PubMed]
- Mader, J.S.; Salsman, J.; Conrad, D.M.; Hoskin, D.W. Bovine Lactoferricin Selectively Induces Apoptosis in Human Leukemia and Carcinoma Cell Lines. Mol. Cancer Ther. 2005, 4, 612–624. [Google Scholar] [CrossRef]
- Sakai, T.; Banno, Y.; Kato, Y.; Nozawa, Y.; Kawaguchi, M. Pepsin-Digested Bovine Lactoferrin Induces Apoptotic Cell Death With JNK/SAPK Activation in Oral Cancer Cells. J. Pharmacol. Sci. 2005, 98, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Tu, J.; Zhou, C.; Li, J.; Huang, L.; Tao, L.; Zhao, L. The Effect of Lfcin-B on Non-Small Cell Lung Cancer H460 Cells Is Mediated by Inhibiting VEGF Expression and Inducing Apoptosis. Arch. Pharm. Res. 2015, 38, 261–271. [Google Scholar] [CrossRef]
- Pan, W.-R.; Chen, P.-W.; Chen, Y.-L.S.; Hsu, H.-C.; Lin, C.-C.; Chen, W.-J. Bovine Lactoferricin B Induces Apoptosis of Human Gastric Cancer Cell Line AGS by Inhibition of Autophagy at a Late Stage. J. Dairy Sci. 2013, 96, 7511–7520. [Google Scholar] [CrossRef] [PubMed]
- Asadi, M.; Taghizadeh, S.; Kaviani, E.; Vakili, O.; Taheri-Anganeh, M.; Tahamtan, M.; Savardashtaki, A. Caspase-3: Structure, Function, and Biotechnological Aspects. Biotechnol. App. Biochem. 2022, 69, 1633–1645. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Zhou, L.; Zhao, T.; Liu, X.; Zhang, P.; Liu, Y.; Zheng, X.; Li, Q. Caspase-9: Structure, Mechanisms and Clinical Application. Oncotarget 2017, 8, 23996–24008. [Google Scholar] [CrossRef]
- Rosier, B.J.H.M.; Markvoort, A.J.; Gumí Audenis, B.; Roodhuizen, J.A.L.; Den Hamer, A.; Brunsveld, L.; De Greef, T.F.A. Proximity-Induced Caspase-9 Activation on a DNA Origami-Based Synthetic Apoptosome. Nat. Catal. 2020, 3, 295–306. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Q.; Jiang, Q.; Bai, B.; Du, X.; Wang, F.; Wu, L.; Lu, X.; Bao, Y.; Li, H.; et al. Genetic Screening and Functional Analysis of CASP 9 Mutations in a Chinese Cohort with Neural Tube Defects. CNS Neurosci. Ther. 2018, 24, 394–403. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Zeng, W.; Li, H.; Chen, H.; Wei, G.; Yang, X.; Zhang, T.; Wang, H. Rare Mutations in Apoptosis Related Genes APAF1, CASP9, and CASP3 Contribute to Human Neural Tube Defects. Cell Death Dis. 2018, 9, 43. [Google Scholar] [CrossRef]
- Chu, Z.-L.; Pio, F.; Xie, Z.; Welsh, K.; Krajewska, M.; Krajewski, S.; Godzik, A.; Reed, J.C. A Novel Enhancer of the Apaf1 Apoptosome Involved in Cytochrome C-Dependent Caspase Activation and Apoptosis. J. Biol. Chem. 2001, 276, 9239–9245. [Google Scholar] [CrossRef]
- Cardone, M.H.; Roy, N.; Stennicke, H.R.; Salvesen, G.S.; Franke, T.F.; Stanbridge, E.; Frisch, S.; Reed, J.C. Regulation of Cell Death Protease Caspase-9 by Phosphorylation. Science 1998, 282, 1318–1321. [Google Scholar] [CrossRef] [PubMed]
- Brady, S.C.; Allan, L.A.; Clarke, P.R. Regulation of Caspase 9 through Phosphorylation by Protein Kinase C Zeta in Response to Hyperosmotic Stress. Mol. Cell Biol. 2005, 25, 10543–10555. [Google Scholar] [CrossRef] [PubMed]
- Denault, J.-B.; Eckelman, B.P.; Shin, H.; Pop, C.; Salvesen, G.S. Caspase 3 Attenuates XIAP (X-Linked Inhibitor of Apoptosis Protein)–Mediated Inhibition of Caspase 9. Biochem. J. 2007, 405, 11–19. [Google Scholar] [CrossRef] [PubMed]
- An, H.-K.; Chung, K.M.; Park, H.; Hong, J.; Gim, J.-E.; Choi, H.; Lee, Y.W.; Choi, J.; Mun, J.Y.; Yu, S.-W. CASP9 (Caspase 9) Is Essential for Autophagosome Maturation through Regulation of Mitochondrial Homeostasis. Autophagy 2020, 16, 1598–1617. [Google Scholar] [CrossRef]
- Fox, J.L.; Hughes, M.A.; Meng, X.; Sarnowska, N.A.; Powley, I.R.; Jukes-Jones, R.; Dinsdale, D.; Ragan, T.J.; Fairall, L.; Schwabe, J.W.R.; et al. Cryo-EM Structural Analysis of FADD:Caspase-8 Complexes Defines the Catalytic Dimer Architecture for Co-Ordinated Control of Cell Fate. Nat. Commun. 2021, 12, 819. [Google Scholar] [CrossRef]
- Mandal, R.; Barrón, J.C.; Kostova, I.; Becker, S.; Strebhardt, K. Caspase-8: The Double-Edged Sword. Biochim. Biophys. Acta-Rev. Cancer 2020, 1873, 188357. [Google Scholar] [CrossRef]
- Moradian, F.; Mehralitabar, H. In Silico Studies of Lactoferrin as an Anti-Cancer, Anti-Viral, and Anti-Bacterial, Bioactive Compound and Disease Diagnostic Marker. J. Microbiol. Biotechnol. 2024. [Google Scholar] [CrossRef]
- Yang, J.; Cron, P.; Good, V.M.; Thompson, V.; Hemmings, B.A.; Barford, D. Crystal Structure of an Activated Akt/Protein Kinase B Ternary Complex with GSK3-Peptide and AMP-PNP. Nat. Struct. Biol. 2002, 9, 940–944. [Google Scholar] [CrossRef]
- Birkinshaw, R.W.; Gong, J.; Luo, C.S.; Lio, D.; White, C.A.; Anderson, M.A.; Blombery, P.; Lessene, G.; Majewski, I.J.; Thijssen, R.; et al. Structures of Bcl-2 in Complex with Venetoclax Reveal the Molecular Basis of Resistance Mutations. Nat. Commun. 2019, 10, 2385. [Google Scholar] [CrossRef]
- Emiloju, O.E.; Yin, J.; Koubek, E.; Reid, J.M.; Borad, M.J.; Lou, Y.; Seetharam, M.; Edelman, M.J.; Sausville, E.A.; Jiang, Y.; et al. Phase 1 Trial of Navitoclax and Sorafenib in Patients with Relapsed or Refractory Solid Tumors with Hepatocellular Carcinoma Expansion Cohort. Investig. New Drugs 2024, 42, 127–135. [Google Scholar] [CrossRef]
- Liu, J.; Li, S.; Wang, Q.; Feng, Y.; Xing, H.; Yang, X.; Guo, Y.; Guo, Y.; Sun, H.; Liu, X.; et al. Sonrotoclax Overcomes BCL2 G101V Mutation–Induced Venetoclax Resistance in Preclinical Models of Hematologic Malignancy. Blood 2024, 143, 1825–1836. [Google Scholar] [CrossRef]
- Luo, F.; Li, H.; Ma, W.; Cao, J.; Chen, Q.; Lu, F.; Qiu, M.; Zhou, P.; Xia, Z.; Zeng, K.; et al. The BCL-2 Inhibitor APG-2575 Resets Tumor-Associated Macrophages toward the M1 Phenotype, Promoting a Favorable Response to Anti-PD-1 Therapy via NLRP3 Activation. Cell Mol. Immunol. 2023, 21, 60–79. [Google Scholar] [CrossRef] [PubMed]
- Schimmer, A.D.; Dalili, S.; Batey, R.A.; Riedl, S.J. Targeting XIAP for the Treatment of Malignancy. Cell Death Differ. 2006, 13, 179–188. [Google Scholar] [CrossRef]
- Huang, Y.; Park, Y.C.; Rich, R.L.; Segal, D.; Myszka, D.G.; Wu, H. Structural Basis of Caspase Inhibition by XIAP. Cell 2001, 104, 781–790. [Google Scholar] [CrossRef]
- Bornstein, B.; Gottfried, Y.; Edison, N.; Shekhtman, A.; Lev, T.; Glaser, F.; Larisch, S. ARTS Binds to a Distinct Domain in XIAP-BIR3 and Promotes Apoptosis by a Mechanism That Is Different from Other IAP-Antagonists. Apoptosis 2011, 16, 869–881. [Google Scholar] [CrossRef] [PubMed]
- Holcik, M.; Gibson, H.; Korneluk, R.G. XIAP: Apoptotic Brake and Promising Therapeutic Target. Apoptosis 2001, 6, 253–261. [Google Scholar] [CrossRef]
- Cremona, M.; Vandenberg, C.J.; Farrelly, A.M.; Madden, S.F.; Morgan, C.; Kalachand, R.; McAlpine, J.N.; Toomey, S.; Huntsman, D.G.; Grogan, L.; et al. BRCA Mutations Lead to XIAP Overexpression and Sensitise Ovarian Cancer to Inhibitor of Apoptosis (IAP) Family Inhibitors. Br. J. Cancer 2022, 127, 488–499. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Yang, Y.; Zhao, X.; Fan, Y.; Zhou, L.; Rong, J.; Yu, Y. Circular RNA Circ0005276 Promotes the Proliferation and Migration of Prostate Cancer Cells by Interacting with FUS to Transcriptionally Activate XIAP. Cell Death Dis. 2019, 10, 792. [Google Scholar] [CrossRef]
- Fong, W.G.; Liston, P.; Rajcan-Separovic, E.; Jean, M.S.; Craig, C.; Korneluk, R.G. Expression and Genetic Analysis of XIAP-Associated Factor 1 (XAF1) in Cancer Cell Lines. Genomics 2000, 70, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Meng, E.C.; Couchs, G.S.; Croll, T.I.; Morris, J.H.; Ferrin, T.E. UCSF ChimeraX: Structure Visualization for Researchers, Educators, and Developers. Protein Sci. 2021, 30, 70–82. [Google Scholar] [CrossRef] [PubMed]
Protein | Functions in Apoptosis | Cancer Implications | References |
---|---|---|---|
Akt | Anti-apoptotic protein. Stimulates cell proliferation survival, alters gene transcription and inhibits glycogen synthase kinase (GSK), resulting in enhanced glucose metabolism. | AKT1 gene mutation E17K may serve as an oncogene observed in breast, colorectal, lung, and ovarian cancers. PI3K-AKT signaling pathway is frequently mutated in cancer and is one of the most dysregulated signaling pathways in tumorigenesis. | [25,26,27,28,29] |
Bcl-2 | Anti-apoptotic protein. Binds to pro-apoptotic family members, sequestering them and thereby preventing the release of cytochrome c and other pro-apoptotic factors from the mitochondria thus inhibiting cell death. | Bcl-2 is elevated in cancers like prostate, lung, colorectal, gastric, renal, neuroblastoma, non-Hodgkin’s lymphoma, and leukemia. Bcl-2 overexpression is indicative of cancer promotion and metastasis. Bcl-2 plays an important role in resistance of cancer cells to chemotherapy or radiation therapy | [18,30,31,32,33,34,35] |
p53 | Tumor suppressor. Translocates from the cytosol to the nucleus, where it activates the expression of pro-apoptotic and autophagic genes. Additionally, p53 can translocate to the mitochondrial membrane, where it regulates MOMP. | TP53 gene is one of the most frequently mutated genes in cancers, including breast, colorectal, lung, ovarian, and glioblastoma. Mutations disrupt p53’s DNA-binding domain, preventing apoptosis activation and promoting tumor progression. | [8,36,37] |
Fas | Death receptor. Activates the extrinsic apoptotic pathway via DISC (Death-Inducing Signaling Complex) formation upon Fas ligand binding. | Several studies have identified Fas as a positive prognostic marker in cancer. Some cancers demonstrate reduced cell surface levels of Fas and thus evade the control system via ligand-induced apoptosis | [38,39,40] |
Caspase-3 | The major executioner caspase. Cleaves cellular proteins, leading to cell dismantling during apoptosis. | The reduction of Caspase-3 in various cancer cells disrupts apoptosis, contributing to their survival and progression. Caspase-3 (CASP3) is linked to cancer through somatic mutations, although these mutations are not highly prevalent. XIAP inhibits Caspase-3, leading to apoptosis resistance and promoting tumor progression. | [41,42,43,44,45] |
Caspase-8 | Initiator caspase in the extrinsic pathway. Activated through death receptor signaling. Once activated, it triggers the activation of executioner caspases (Caspase-3 and -7). | Mutations, suppression or hypermethylation of Caspase-8 (CASP8) are linked to resistance to death receptor-mediated apoptosis in cancers, including gastric, lung, breast, pancreatic, and glioblastoma cancer. Restoring the expression of Caspase-8 (CASP8) in some cancers may lead to non-apoptotic roles like cell migration | [41,42,43,46,47] |
Caspase-9 | Initiator caspase in the intrinsic pathway. Activated by the apoptosome complex (cytochrome c, Apaf-1 (Apoptosis protease-activating factor-1)). Once activated, it triggers the activation of executioner caspases (Caspase-3 and -7). | Caspase-9 (CASP9) polymorphisms are significantly associated with the risk of lung, bladder, pancreatic, colorectal, and gastric cancers. | [41,48,49,50,51,52] |
XIAP | Crucial protein that plays a multifaceted role in regulating cell death and immune responses, it belongs to the inhibitor of apoptosis protein (IAP) family, which comprises eight different proteins that share a zinc-binding baculovirus IAP-repeat (BIR) domain. It is the most potent inhibitor of caspases; it binds directly to and inhibits Caspases 3 and 9. | Elevated XIAP expression is found in various cancer types and is associated with poor prognosis and resistance to chemotherapy. XIAP contributes to cancer development by inhibiting apoptosis and promoting cell survival. | [53,54,55,56] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Angel-Lerma, L.E.; Carrillo-Campos, J.; Siañez-Estrada, L.I.; Siqueiros-Cendón, T.S.; León-Flores, D.B.; Espinoza-Sánchez, E.A.; Arévalo-Gallegos, S.; Iglesias-Figueroa, B.F.; Rascón-Cruz, Q. Molecular Docking of Lactoferrin with Apoptosis-Related Proteins Insights into Its Anticancer Mechanism. Int. J. Mol. Sci. 2025, 26, 2023. https://doi.org/10.3390/ijms26052023
Angel-Lerma LE, Carrillo-Campos J, Siañez-Estrada LI, Siqueiros-Cendón TS, León-Flores DB, Espinoza-Sánchez EA, Arévalo-Gallegos S, Iglesias-Figueroa BF, Rascón-Cruz Q. Molecular Docking of Lactoferrin with Apoptosis-Related Proteins Insights into Its Anticancer Mechanism. International Journal of Molecular Sciences. 2025; 26(5):2023. https://doi.org/10.3390/ijms26052023
Chicago/Turabian StyleAngel-Lerma, Lidia Esmeralda, Javier Carrillo-Campos, Luis Ignacio Siañez-Estrada, Tania Samanta Siqueiros-Cendón, Dyada Blanca León-Flores, Edward Alexander Espinoza-Sánchez, Sigifredo Arévalo-Gallegos, Blanca Flor Iglesias-Figueroa, and Quintín Rascón-Cruz. 2025. "Molecular Docking of Lactoferrin with Apoptosis-Related Proteins Insights into Its Anticancer Mechanism" International Journal of Molecular Sciences 26, no. 5: 2023. https://doi.org/10.3390/ijms26052023
APA StyleAngel-Lerma, L. E., Carrillo-Campos, J., Siañez-Estrada, L. I., Siqueiros-Cendón, T. S., León-Flores, D. B., Espinoza-Sánchez, E. A., Arévalo-Gallegos, S., Iglesias-Figueroa, B. F., & Rascón-Cruz, Q. (2025). Molecular Docking of Lactoferrin with Apoptosis-Related Proteins Insights into Its Anticancer Mechanism. International Journal of Molecular Sciences, 26(5), 2023. https://doi.org/10.3390/ijms26052023