Predictions of the Biological Effects of the Main Components of Tarragon Essential Oil
Abstract
1. Introduction
2. Results
2.1. Identification of Volatile Compounds in Tarragon Extracts
2.2. ADMET Profiles of the Main Compounds of Tarragon
2.3. Antibacterial Activity of the Main Compounds of Tarragon Essential Oil
2.4. Cytotoxicity of the Main Compounds of Tarragon Essential Oils
2.5. Molecular Docking Study Concerning the Interactions of the Compounds Found in Tarragon Essential Oils with the Regulator of G-Protein Signaling 17
3. Discussion
3.1. Comparison Between the Computational Tools Used to Obtain the ADMET Profiles of Compounds Identified in Tarragon Essential Oils
3.2. ADMET Profiles of the Main Compounds of Tarragon
3.3. Antibacterial Activity of the Main Compounds of Tarragon Essential Oil
3.4. Cytotoxicity of the Main Compounds of Tarragon Essential Oils
3.5. Molecular Docking Analysis
4. Materials and Methods
4.1. Tarragon Extracts
4.2. Identification of Volatile Compounds in Tarragon Essential Oils
4.3. Prediction of ADME Profiles and Human Health Effects of the Compounds Identified in Higher Amounts in the Obtained Tarragon Essential Oils
4.4. Molecular Docking Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ADME | Absorption, distribution, metabolism, excretion |
ADMET | Absorption, distribution, metabolism, excretion, toxicity |
Ames | Ames mutagenesis |
BBB | blood–brain barrier |
BCRP | breast cancer resistance protein |
BSEP | bile salt export pump |
CLp | plasmatic clearance |
CYP | cytochrome P |
LRIc/LRIr | linear retention index calculated/reference |
HemT | hemolytic toxicity |
hERG | Cardiotoxicity |
MATE1 | multidrug and toxin extrusion protein 1 |
MH | hydrogenated monoterpenes |
MO | oxygenated monoterpenes |
MRP1 | multidrug resistance protein 1 |
NphT | Nephrotoxicity |
NT | neurotoxicity |
P-gp | P glycoprotein |
QSAR | quantitative structure–activity relationship |
RepT | reproductive toxicity |
RT | respiratory toxicity |
SH | hydrogenated sesquiterpenes |
SO | oxygenated sesquiterpenes |
SSens | skin sensitization |
References
- Herbal Extract Market Size—Global Industry, Share, Analysis, Trends and Forecast 2023–2032. Available online: https://www.acumenresearchandconsulting.com/herbal-extract-market (accessed on 12 December 2024).
- Europe Plant Extracts Market Research Report. Available online: https://www.marketdataforecast.com/market-reports/europe-plant-extracts-market (accessed on 28 December 2024).
- World Health Organization. WHO Traditional Medicine Strategy 2014–2023. Available online: https://www.who.int/publications/i/item/9789241506096 (accessed on 30 December 2024).
- Silva, B.N.; Teixeira, J.A.; Cadavez, V.; Gonzales-Barron, U. Mild Heat Treatment and Biopreservatives for Artisanal Raw Milk Cheeses: Reducing Microbial Spoilage and Extending Shelf-Life through Thermisation, Plant Extracts and Lactic Acid Bacteria. Foods 2023, 12, 3206. [Google Scholar] [CrossRef]
- Kiliś-Pstrusińska, K.; Wiela-Hojeńska, A. Nephrotoxicity of Herbal Products in Europe—A Review of an Underestimated Problem. Int. J. Mol. Sci. 2021, 22, 4132. [Google Scholar] [CrossRef]
- Başaran, N.; Paslı, D.; Başaran, A.A. Unpredictable Adverse Effects of Herbal Products. Food Chem. Toxicol. 2022, 159, 112762. [Google Scholar] [CrossRef] [PubMed]
- Barba-Ostria, C.; Carrera-Pacheco, S.E.; Gonzalez-Pastor, R.; Heredia-Moya, J.; Mayorga-Ramos, A.; Rodríguez-Pólit, C.; Zúñiga-Miranda, J.; Arias-Almeida, B.; Guamán, L.P. Evaluation of Biological Activity of Natural Compounds: Current Trends and Methods. Molecules 2022, 27, 4490. [Google Scholar] [CrossRef]
- Pripdeevech, P.; Wongpornchai, S. Tarragon. In Handbook of Herbs and Spices; Peter, K.V., Ed.; Elsevier: Amsterdam, The Netherlands, 2012; pp. 504–511. ISBN 978-0-85709-040-9. [Google Scholar]
- Marc (Vlaic), R.A.; Mureșan, V.; Mureșan, A.E.; Mureșan, C.C.; Tanislav, A.E.; Pușcaș, A.; Marţiș (Petruţ), G.S.; Ungur, R.A. Spicy and Aromatic Plants for Meat and Meat Analogues Applications. Plants 2022, 11, 960. [Google Scholar] [CrossRef] [PubMed]
- Silva, B.N.; Cadavez, V.; Caleja, C.; Pereira, E.; Calhelha, R.C.; Molina, A.K.; Finimundy, T.; Kostić, M.; Soković, M.; Teixeira, J.A.; et al. Chemical Profiles and Bioactivities of Polyphenolic Extracts of Lavandula soechas L., Artemisia dracunculus L. and Ocimum basilicum L. Food Chem. 2024, 451, 139308. [Google Scholar] [CrossRef]
- Obolskiy, D.; Pischel, I.; Feistel, B.; Glotov, N.; Heinrich, M. Artemisia dracunculus L. (Tarragon): A Critical Review of Its Traditional Use, Chemical Composition, Pharmacology, and Safety. J. Agric. Food Chem. 2011, 59, 11367–11384. [Google Scholar] [CrossRef] [PubMed]
- Sharafati Chaleshtori, R.; Rokni, N.; Razavilar, V.; Rafieian Kopaei, M. The Evaluation of the Antibacterial and Antioxidant Activity of Tarragon (Artemisia dracunculus L.) Essential Oil and Its Chemical Composition. Jundishapur. J. Microbiol. 2013, 6. [Google Scholar] [CrossRef]
- Hassanzadeh, M.K.; Tayarani Najaran, Z.; Nasery, M.; Emami, S.A. Tarragon (Artemisia dracunculus L.) Oils. In Essential Oils in Food Preservation, Flavor and Safety; Elsevier: Amsterdam, The Netherlands, 2016; pp. 813–817. [Google Scholar]
- Behbahani, B.A.; Shahidi, F.; Yazdi, F.T.; Mortazavi, S.A.; Mohebbi, M. Antioxidant Activity and Antimicrobial Effect of Tarragon (Artemisia dracunculus) Extract and Chemical Composition of Its Essential Oil. J. Food Meas. Charact. 2017, 11, 847–863. [Google Scholar] [CrossRef]
- Ekiert, H.; Świątkowska, J.; Knut, E.; Klin, P.; Rzepiela, A.; Tomczyk, M.; Szopa, A. Artemisia dracunculus (Tarragon): A Review of Its Traditional Uses, Phytochemistry and Pharmacology. Front. Pharmacol. 2021, 12, 653993. [Google Scholar] [CrossRef]
- Tarragon Market Size 2024–2028. Available online: https://www.technavio.com/report/tarragon-market-industry-analysis (accessed on 28 December 2024).
- Bristol, D.W. NTP 3-Month Toxicity Studies of Estragole (CAS No. 140-67-0) Administered by Gavage to F344/N Rats and B6C3F1 Mice. Toxic. Rep. Ser. 2011, 1–111. Available online: https://ntp.niehs.nih.gov/sites/default/files/ntp/htdocs/st_rpts/tox082.pdf (accessed on 12 December 2024).
- Kalantari, H.; Galehdari, H.; Zaree, Z.; Gesztelyi, R.; Varga, B.; Haines, D.; Bombicz, M.; Tosaki, A.; Juhasz, B. Toxicological and Mutagenic Analysis of Artemisia dracunculus (Tarragon) Extract. Food Chem. Toxicol. 2013, 51, 26–32. [Google Scholar] [CrossRef]
- Durić, K.; Kovac Besovic, E.E.; Niksic, H.; Muratovic, S.; Sofic, E. Anticoagulant Activity of Some Artemisia dracunculus Leaf Extracts. Biomol. Biomed. 2015, 15, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Denisow-Pietrzyk, M.; Pietrzyk, Ł.; Denisow, B. Asteraceae Species as Potential Environmental Factors of Allergy. Environ. Sci. Pollut. Res. 2019, 26, 6290–6300. [Google Scholar] [CrossRef] [PubMed]
- Vârban, D.; Zăhan, M.; Crișan, I.; Pop, C.R.; Gál, E.; Ștefan, R.; Rotar, A.M.; Muscă, A.S.; Meseșan, S.D.; Horga, V.; et al. Unraveling the Potential of Organic Oregano and Tarragon Essential Oils: Profiling Composition, FT-IR and Bioactivities. Plants 2023, 12, 4017. [Google Scholar] [CrossRef]
- PubChem Beta-Ocimene. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/beta-Ocimene (accessed on 29 December 2024).
- Dascalu, D.; Isvoran, A.; Ianovici, N. Predictions of the Biological Effects of Several Acyclic Monoterpenes as Chemical Constituents of Essential Oils Extracted from Plants. Molecules 2023, 28, 4640. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority (EFSA). Protocol for the Scientific Opinion on the Evaluation of the Safety in Use of Preparations from the Fruits of Sweet and Bitter Fennel (Foeniculum Vulgare Mill. and Foeniculum Piperitum (Ucria) C. Presl). EFSA Support. Publ. 2023, 20, 1–32. [Google Scholar] [CrossRef]
- Babushok, V.I.; Linstrom, P.J.; Zenkevich, I.G. Retention Indices for Frequently Reported Compounds of Plant Essential Oils. J. Phys. Chem. Ref. Data 2011, 40, 043101. [Google Scholar] [CrossRef]
- Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; et al. PubChem 2023 Update. Nucleic Acids Res. 2023, 51, D1373–D1380. [Google Scholar] [CrossRef] [PubMed]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A Visualization System for Exploratory Research and Analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Yu, Z.; Wang, Y.; Chen, L.; Lou, C.; Yang, C.; Li, W.; Liu, G.; Tang, Y. AdmetSAR3.0: A Comprehensive Platform for Exploration, Prediction and Optimization of Chemical ADMET Properties. Nucleic Acids Res. 2024, 52, W432–W438. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Shi, S.; Yi, J.; Wang, N.; He, Y.; Wu, Z.; Peng, J.; Deng, Y.; Wang, W.; Wu, C.; et al. ADMETlab 3.0: An Updated Comprehensive Online ADMET Prediction Platform Enhanced with Broader Coverage, Improved Performance, API Functionality and Decision Support. Nucleic Acids Res. 2024, 52, W422–W431. [Google Scholar] [CrossRef] [PubMed]
- Pogodin, P.V.; Lagunin, A.A.; Rudik, A.V.; Druzhilovskiy, D.S.; Filimonov, D.A.; Poroikov, V.V. AntiBac-Pred: A Web Application for Predicting Antibacterial Activity of Chemical Compounds. J. Chem. Inf. Model. 2019, 59, 4513–4518. [Google Scholar] [CrossRef] [PubMed]
- Kamran, S.; Sinniah, A.; Abdulghani, M.A.M.; Alshawsh, M.A. Therapeutic Potential of Certain Terpenoids as Anticancer Agents: A Scoping Review. Cancers 2022, 14, 1100. [Google Scholar] [CrossRef] [PubMed]
- Wróblewska-Łuczka, P.; Cabaj, J.; Bargieł, J.; Łuszczki, J.J. Anticancer Effect of Terpenes: Focus on Malignant Melanoma. Pharmacol. Rep. 2023, 75, 1115–1125. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, A.; Joshi, H.; Kandari, D.; Aggarwal, D.; Chauhan, R.; Tuli, H.S.; Mehrotra, A.; Sood, A.; Sharma, U.; Mathkor, D.M.; et al. Oridonin: A Natural Terpenoid Having the Potential to Modulate Apoptosis and Survival Signaling in Cancer. Phytomedicine Plus 2025, 5, 100721. [Google Scholar] [CrossRef]
- Lagunin, A.A.; Rudik, A.V.; Pogodin, P.V.; Savosina, P.I.; Tarasova, O.A.; Dmitriev, A.V.; Ivanov, S.M.; Biziukova, N.Y.; Druzhilovskiy, D.S.; Filimonov, D.A.; et al. CLC-Pred 2.0: A Freely Available Web Application for In Silico Prediction of Human Cell Line Cytotoxicity and Molecular Mechanisms of Action for Druglike Compounds. Int. J. Mol. Sci. 2023, 24, 1689. [Google Scholar] [CrossRef] [PubMed]
- Berman, H.; Henrick, K.; Nakamura, H. Announcing the Worldwide Protein Data Bank. Nat. Struct. Mol. Biol. 2003, 10, 980. [Google Scholar] [CrossRef] [PubMed]
- Soundararajan, M.; Willard, F.S.; Kimple, A.J.; Turnbull, A.P.; Ball, L.J.; Schoch, G.A.; Gileadi, C.; Fedorov, O.Y.; Dowler, E.F.; Higman, V.A.; et al. Structural Diversity in the RGS Domain and Its Interaction with Heterotrimeric G Protein α-Subunits. Proc. Natl. Acad. Sci. USA 2008, 105, 6457–6462. [Google Scholar] [CrossRef]
- Sieng, M.; Hayes, M.P.; O’Brien, J.B.; Andrew Fowler, C.; Houtman, J.C.; Roman, D.L.; Lyon, A.M. High-Resolution Structure of RGS17 Suggests a Role for Ca2+ in Promoting the GTPase-Activating Protein Activity by RZ Subfamily Members. J. Biol. Chem. 2019, 294, 8148–8160. [Google Scholar] [CrossRef]
- Dulsat, J.; López-Nieto, B.; Estrada-Tejedor, R.; Borrell, J.I. Evaluation of Free Online ADMET Tools for Academic or Small Biotech Environments. Molecules 2023, 28, 776. [Google Scholar] [CrossRef]
- Voiculescu, D.I.; Roman, D.L.; Ostafe, V.; Isvoran, A. A Cheminformatics Study Regarding the Human Health Risks Assessment of the Stereoisomers of Difenoconazole. Molecules 2022, 27, 4682. [Google Scholar] [CrossRef]
- Roman, M.; Roman, D.L.; Ostafe, V.; Ciorsac, A.; Isvoran, A. Computational Assessment of Pharmacokinetics and Biological Effects of Some Anabolic and Androgen Steroids. Pharm. Res. 2018, 35, 41. [Google Scholar] [CrossRef] [PubMed]
- Roman, D.L.; Roman, M.; Som, C.; Schmutz, M.; Hernandez, E.; Wick, P.; Casalini, T.; Perale, G.; Ostafe, V.; Isvoran, A. Computational Assessment of the Pharmacological Profiles of Degradation Products of Chitosan. Front. Bioeng. Biotechnol. 2019, 7. [Google Scholar] [CrossRef] [PubMed]
- Roman, D.L.; Isvoran, A.; Filip, M.; Ostafe, V.; Zinn, M. In Silico Assessment of Pharmacological Profile of Low Molecular Weight Oligo-Hydroxyalkanoates. Front. Bioeng. Biotechnol. 2020, 8, 584010. [Google Scholar] [CrossRef]
- Gridan, I.M.; Ciorsac, A.A.; Isvoran, A. Prediction of ADME-Tox Properties and Toxicological Endpoints of Triazole Fungicides Used for Cereals Protection. ADMET DMPK 2019, 7, 161–173. [Google Scholar] [CrossRef]
- Bitang, A.; Bitang, V.; Grosu, V.; Ciorsac, A.; Isvoran, A. ADMET Profiles of Selected Anabolic Steroid Derivatives. J. Serbian Chem. Soc. 2024, 89, 367–382. [Google Scholar] [CrossRef]
- Wigh, D.S.; Goodman, J.M.; Lapkin, A.A. A Review of Molecular Representation in the Age of Machine Learning. WIREs Comput. Mol. Sci. 2022, 12, e1603. [Google Scholar] [CrossRef]
- Wojtunik-Kulesza, K.A. Toxicity of Selected Monoterpenes and Essential Oils Rich in These Compounds. Molecules 2022, 27, 1716. [Google Scholar] [CrossRef] [PubMed]
- Papada, E.; Gioxari, A.; Amerikanou, C.; Galanis, N.; Kaliora, A.C. An Absorption and Plasma Kinetics Study of Monoterpenes Present in Mastiha Oil in Humans. Foods 2020, 9, 1019. [Google Scholar] [CrossRef] [PubMed]
- Dewanjee, S.; Dua, T.; Bhattacharjee, N.; Das, A.; Gangopadhyay, M.; Khanra, R.; Joardar, S.; Riaz, M.; Feo, V.; Zia-Ul-Haq, M. Natural Products as Alternative Choices for P-Glycoprotein (P-Gp) Inhibition. Molecules 2017, 22, 871. [Google Scholar] [CrossRef] [PubMed]
- Eddin, L.B.; Jha, N.K.; Meeran, M.F.N.; Kesari, K.K.; Beiram, R.; Ojha, S. Neuroprotective Potential of Limonene and Limonene Containing Natural Products. Molecules 2021, 26, 4535. [Google Scholar] [CrossRef] [PubMed]
- Mony, T.J.; Elahi, F.; Choi, J.W.; Park, S.J. Neuropharmacological Effects of Terpenoids on Preclinical Animal Models of Psychiatric Disorders: A Review. Antioxidants 2022, 11, 1834. [Google Scholar] [CrossRef]
- Isabel, U.-V.; de la Riera, M.; Belén, A.; Dolores, R.S.; Elena, G.-B. A New Frontier in Neuropharmacology: Recent Progress in Natural Products Research for Blood–Brain Barrier Crossing. Curr. Res. Biotechnol. 2024, 8, 100235. [Google Scholar] [CrossRef]
- Alharbi, N.F.M.; Ahad, A.; Bin Jardan, Y.A.; Al-Jenoobi, F.I. Effect of Eugenol on Cytochrome P450 1A2, 2C9, 2D6, and 3A4 Activity in Human Liver Microsomes. Saudi Pharm. J. 2024, 32, 102118. [Google Scholar] [CrossRef]
- Bergau, N.; Herfurth, U.M.; Sachse, B.; Abraham, K.; Monien, B.H. Bioactivation of Estragole and Anethole Leads to Common Adducts in DNA and Hemoglobin. Food Chem. Toxicol. 2021, 153, 112253. [Google Scholar] [CrossRef] [PubMed]
- Food and Drug Administration. CPG Sec 525.750 Spices—Definitions FDA. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/cpg-sec-525750-spices-definitions (accessed on 10 February 2025).
- Obistioiu, D.; Cristina, R.T.; Schmerold, I.; Chizzola, R.; Stolze, K.; Nichita, I.; Chiurciu, V. Chemical Characterization by GC-MS and in Vitro Activity against Candida Albicans of Volatile Fractions Prepared from Artemisia dracunculus, Artemisia Abrotanum, Artemisia Absinthium and Artemisia Vulgaris. Chem. Cent. J. 2014, 8, 6. [Google Scholar] [CrossRef] [PubMed]
- Mohsen, S.; Dickinson, J.A.; Somayaji, R. Update on the Adverse Effects of Antimicrobial Therapies in Community Practice. Can. Fam. Physician 2020, 66, 651–659. [Google Scholar] [PubMed]
- Guimarães, A.C.; Meireles, L.M.; Lemos, M.F.; Guimarães, M.C.C.; Endringer, D.C.; Fronza, M.; Scherer, R. Antibacterial Activity of Terpenes and Terpenoids Present in Essential Oils. Molecules 2019, 24, 2471. [Google Scholar] [CrossRef] [PubMed]
- Melkina, O.E.; Plyuta, V.A.; Khmel, I.A.; Zavilgelsky, G.B. The Mode of Action of Cyclic Monoterpenes (−)-Limonene and (+)-α-Pinene on Bacterial Cells. Biomolecules 2021, 11, 806. [Google Scholar] [CrossRef]
- Safinejad, K.; Mohebifar, A.; Tolouei, H.; Monfared, P.; Razmjou, A. Comparative Study on the Toxicity of Mentha piperita L. and Artemisia dracunculus L. Hydroalcoholic Extracts on Human Breast Cancer Cell Lines. Int. J. Biol. Biotechnol. 2021, 18, 253–261. [Google Scholar]
- Motafeghi, F.; Habibi, E.; Firozjaei, M.; Eghbali, M.; Mortazavi, P.; Salmanmahiny, A.; Shokrzadeh, M. The Cytotoxic Effect of the Tarragon (Artemisia dracunculus L.) Hydroalcoholic Extract on the HT-29, MKN45, and MCF-7 Cell Lines. Pharm. Biomed. Res. 2023, 9, 27–36. [Google Scholar] [CrossRef]
- Lashkari, A.; Najafi, F.; Kavoosi, G.; Niazi, S. Evaluating the In Vitro Anti-Cancer Potential of Estragole from the Essential Oil of Agastache Foeniculum [Pursh.] Kuntze. Biocatal. Agric. Biotechnol. 2020, 27, 101727. [Google Scholar] [CrossRef]
- Hou, J.; Zhang, Y.; Zhu, Y.; Zhou, B.; Ren, C.; Liang, S.; Guo, Y. α-Pinene Induces Apoptotic Cell Death via Caspase Activation in Human Ovarian Cancer Cells. Med. Sci. Monit. 2019, 25, 6631–6638. [Google Scholar] [CrossRef]
- Yu, X.; Lin, H.; Wang, Y.; Lv, W.; Zhang, S.; Qian, Y.; Deng, X.; Feng, N.; Yu, H.; Qian, B. D-Limonene Exhibits Antitumor Activity by Inducing Autophagy and Apoptosis in Lung Cancer. Onco Targets Ther. 2018, 11, 1833–1847. [Google Scholar] [CrossRef]
- Motie, F.M.; Soltani Howyzeh, M.; Ghanbariasad, A. Synergic Effects of DL-Limonene, R-Limonene, and Cisplatin on AKT, PI3K, and MTOR Gene Expression in MDA-MB-231 and 5637 Cell Lines. Int. J. Biol. Macromol. 2024, 280, 136216. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, J.B.; Wilkinson, J.C.; Roman, D.L. Regulator of G-Protein Signaling (RGS) Proteins as Drug Targets: Progress and Future Potentials. J. Biol. Chem. 2019, 294, 18571–18585. [Google Scholar] [CrossRef] [PubMed]
- Hayes, M.P.; Roman, D.L. Regulator of G Protein Signaling 17 as a Negative Modulator of GPCR Signaling in Multiple Human Cancers. AAPS J. 2016, 18, 550–559. [Google Scholar] [CrossRef]
- Bugnon, M.; Röhrig, U.F.; Goullieux, M.; Perez, M.A.S.; Daina, A.; Michielin, O.; Zoete, V. SwissDock 2024: Major Enhancements for Small-Molecule Docking with Attracting Cavities and AutoDock Vina. Nucleic Acids Res. 2024, 52, W324–W332. [Google Scholar] [CrossRef] [PubMed]
- Grosdidier, A.; Zoete, V.; Michielin, O. SwissDock, a Protein-Small Molecule Docking Web Service Based on EADock DSS. Nucleic Acids Res. 2011, 39, W270–W277. [Google Scholar] [CrossRef] [PubMed]
- Eberhardt, J.; Santos-Martins, D.; Tillack, A.F.; Forli, S. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. J. Chem. Inf. Model. 2021, 61, 3891–3898. [Google Scholar] [CrossRef] [PubMed]
Compound | Type | LRIc/ LRIr [25] | eot-c % | eot-mw % | eot-hd1 % | eot-hd2 % |
---|---|---|---|---|---|---|
α-Pinene | MH | 923/925 | 1.002 | 0.417 | 0.371 | - |
Camphene | MH | 938/940 | 0.079 | - | - | - |
Sabinene | MH | 960/963 | 0.088 | 0.142 | 0.132 | 0.232 |
β-Pinene | MH | 975/980 | 0.133 | 0.182 | 0.170 | |
β-Myrcene | MH | 990/992 | 0.161 | |||
p-Cymol | MH | 1010/1015 | - | 0.156 | 0.135 | |
Limonene | MH | 1020/1023 | 3.135 | 2.376 | 2.137 | 0.183 |
cis-β-Ocimene | MH | 1035/1038 | 8.422 | 1.740 | 1.567 | 0.325 |
trans-β-Ocimene | MH | 1042/1045 | 6.690 | 2.299 | 2.089 | 0.481 |
β-Linalool | MO | 1090/1095 | - | - | - | 0.641 |
allo Ocimene | MH | 1125/1126 | 0.219 | - | - | - |
Estragole | MO | 1180/1178 | 79.425 | 80.096 | 82.095 | 63.148 |
Carvone | MO | 1235/1240 | - | 0.213 | 0.214 | 0.693 |
α-Citral | MO | 1245/1250 | - | - | - | - |
Bornyl acetate | MO | 1265/1268 | 0.092 | 0.314 | 0.312 | 0.205 |
Anethole | MO | 1280/1285 | - | 0.177 | 0.151 | - |
Eugenol | MO | 1350/1352 | - | 1.977 | 1.327 | - |
Methyl cinnamate | MO | 1360/1362 | - | 0.174 | 0.150 | - |
Methyl eugenol ether | MO | 1401/1402 | 0.378 | 4.028 | 4.017 | 33.971 |
Caryophyllene | SH | 1410/1408 | 0.068 | 0.593 | 0.640 | - |
γ-decalactone | O | 1448/1450 | - | 0.261 | 0.204 | - |
α-trans-Bergamotene | 1460/1458 | 0.070 | 0.117 | 0.113 | - | |
Eugenol acetate | MO | 1520/1523 | - | 2.048 | 1.896 | - |
β-Sesquiphellandrene | SH | 1528/1530 | - | 0.216 | 0.176 | - |
Caryophyllene oxide | SO | 1575/1580 | - | 2.473 | 2.106 | - |
MH | 19.829 | 7.312 | 6.601 | 1.221 | ||
MO | 79.825 | 89.027 | 90.162 | 98.658 | ||
SH | 0.068 | 0.809 | 0.814 | |||
SO | 2.473 | 2.106 | ||||
O | 0.261 | 0.204 |
Compound/Toxicity | NT | hERG 10–30 µM | RT | NphT | SSens | Ames | RepT | HemT |
---|---|---|---|---|---|---|---|---|
Estragole | −2.295 | 0.256 | 0.143 | 0.893 | 0.839 | 0.240 | 0.223 | 0.166 |
α-Pinene | −2.633 | 0.465 | 0.477 | 0.704 | 0.923 | 0.074 | 0.172 | 0.361 |
cis-β-Ocimene | −2.537 | 0.569 | 0.269 | 0.629 | 0.971 | 0.098 | 0.063 | 0.407 |
trans-β-Ocimene | −2.536 | 0.556 | 0.272 | 0.626 | 0.971 | 0.098 | 0.062 | 0.408 |
Limonene | −2.618 | 0.565 | 0.275 | 0.592 | 0.916 | 0.069 | 0.095 | 0.424 |
Eugenol methyl ether | −2.203 | 0.379 | 0.121 | 0.846 | 0.684 | 0.308 | 0.195 | 0.101 |
Eugenol acetate | −2.542 | 0.470 | 0.079 | 0.711 | 0.476 | 0.452 | 0.235 | 0.054 |
Eugenol | −2.175 | 0.132 | 0.189 | 0.496 | 0.809 | 0.123 | 0.213 | 0.125 |
Caryophyllene oxide | −2.608 | 0.836 | 0.500 | 0.690 | 0.913 | 0.137 | 0.167 | 0.342 |
Compound /Toxicity | hERG 10 µM | H-HT | Ames | SSens | Carcinogenicity | RT | NT | NphT | HemT |
---|---|---|---|---|---|---|---|---|---|
Estragole | 0.695 | 0.315 | 0.502 | 0.881 | 0.644 | 0.814 | 0.180 | 0.673 | 0.174 |
α-Pinene | 0.796 | 0.331 | 0.016 | 0.938 | 0.629 | 0.844 | 0.008 | 0.655 | 0.124 |
cis-β-Ocimene | 0.632 | 0.437 | 0.337 | 0.963 | 0.567 | 0.796 | 0.142 | 0.674 | 0.275 |
trans-β-Ocimene | 0.470 | 0.624 | 0.510 | 0.928 | 0.499 | 0.827 | 0.307 | 0.544 | 0.372 |
Limonene | 0.344 | 0.401 | 0.192 | 0.920 | 0.691 | 0.637 | 0.436 | 0.136 | 0.384 |
Eugenol methyl ether | 0.625 | 0.345 | 0.468 | 0.880 | 0.649 | 0.815 | 0.172 | 0.702 | 0.214 |
Eugenol acetate | 0.479 | 0.314 | 0.461 | 0.940 | 0.470 | 0.690 | 0.083 | 0.600 | 0.272 |
Eugenol | 0.658 | 0.310 | 0.468 | 0.930 | 0.582 | 0.822 | 0.138 | 0.563 | 0.136 |
Caryophyllene oxide | 0.540 | 0.476 | 0.556 | 0.815 | 0.715 | 0.621 | 0.208 | 0.618 | 0.416 |
Compound | Antibacterial Property |
---|---|
cis-β-Ocimene and trans-β-Ocimene | Staphylococcus simulans (0.713), Streptococcus mutans (0.509) |
α-Pinene | Resistant Staphylococcus simulans (0.714), Staphylococcus sciuri (0.593), Staphylococcus simulans (0.539) |
Caryophyllene oxide | Prevotella melaninogenica (0.556), Prevotella intermedia (0.509) |
Compound | Cytotoxicity | Molecular Target and the Type of Effect the Chemical May Have on the Target |
---|---|---|
Estragole | cisplatin-resistant ovarian carcinoma (0.786), diffuse large B-cell lymphoma activated B-cell type (0.616), skin melanoma (0.568), bronchioalveolar carcinoma (0.551), papillary adenocarcinoma (0.500) | regulator of G-protein signaling 17 inhibitor (0.523) |
cis-β-Ocimene and trans-β-Ocimene | cisplatin-resistant ovarian carcinoma (0.883), diffuse large B-cell lymphoma activated B-cell type (0.610), amelanotic melanoma (0.563), skin melanoma (0.534) | N-arachidonoyl glycine receptor agonist (0.943), regulator of G-protein signaling 17 inhibitor (0.848), DNA polymerase kappa inhibitor (0.747), serine/threonine-protein phosphatase 2A 56 kDa regulatory subunit alpha isoform inhibitor (0.737), emopamil-binding protein-like inhibitor (0.703), bile salt export pump inhibitor (0.662), nuclear receptor subfamily 1 group I member 2 antagonist (0.655), sarcoplasmic/endoplasmic reticulum calcium ATPase 3 inhibitor (0.637), ATP-dependent DNA helicase Q1 inhibitor (0.625), RecQ-like DNA helicase BLM inhibitor (0.624) |
Limonene | cisplatin-resistant ovarian carcinoma (0.808), skin melanoma (0.566) | N-arachidonoyl glycine receptor agonist (0.874), regulator of G-protein signaling 17 inhibitor (0.780), DNA polymerase kappa inhibitor (0.649), thyrotropin receptor agonist (0.627), bile salt export pump inhibitor (0.577), cytochrome 2A13 inhibitor (0.512) |
α-Pinene | cisplatin-resistant ovarian carcinoma (0.841) | C-X-C chemokine receptor type 3 antagonist (0.970), regulator of G-protein signaling 17 inhibitor (0.511) |
Eugenol methyl ether | cisplatin-resistant ovarian carcinoma (0.760), skin melanoma (0.616), diffuse large B-cell lymphoma activated B-cell type (0.579), bronchioalveolar carcinoma (0.544) | polyunsaturated fatty acid lipoxygenase ALOX12 inhibitor (0.517), regulator of G-protein signaling 17 inhibitor (0.502) |
Eugenol acetate | cisplatin-resistant ovarian carcinoma (0.825), bronchioalveolar carcinoma (0.548) | DNA polymerase kappa inhibitor (0.573), mitogen-activated protein kinase 1 inhibitor (0.549), polyunsaturated fatty acid lipoxygenase ALOX12 inhibitor (0.548), cytochrome 2C19 inhibitor (0.518), RecQ-like DNA helicase BLM inhibitor (0.505), polyunsaturated fatty acid lipoxygenase ALOX15 inhibitor (0.500) |
Eugenol | cisplatin-resistant ovarian carcinoma (0.788), skin melanoma (0.576), bronchioalveolar carcinoma (0.514), clear cell renal cell carcinoma (0.503) | polyunsaturated fatty acid lipoxygenase ALOX12 inhibitor (0.719), polyunsaturated fatty acid lipoxygenase ALOX15 inhibitor (0.690), regulator of G-protein signaling 17 inhibitor (0.589), RecQ-like DNA helicase BLM inhibitor (0.536), cytochrome 2C19 inhibitor (0.514) |
Caryophyllene oxide | promyeloblast leukemia (0.819), cisplatin-resistant ovarian carcinoma (0.762), breast adenocarcinoma (0.720), brain glioma (0.707), breast carcinoma (0.692), skin melanoma (0.685), renal carcinoma (0.669), non-small cell lung carcinoma (0.631), gastric carcinoma (0.617), ovarian adenocarcinoma (0.612), pancreatic carcinoma (0.606), non-small cell lung carcinoma (0.605), lung carcinoma (0.602), breast carcinoma (0.592), renal cell carcinoma (0.587), colon adenocarcinoma (0.579), amelanotic melanoma (0.578), breast ductal carcinoma (0.575), adult immunoblastic lymphoma (0.553), astrocytoma (0.522), multiple myeloma (0.513) | regulator of G-protein signaling 17 inhibitor (0.276) |
Compound | Without Ca2+ | In Presence of Ca2+ | ||
---|---|---|---|---|
ΔG (kcal/mol) | Amino Acids Involved in the Interaction | ΔG (kcal/mol) | Amino Acids Involved in the Interaction | |
Estragole | −4.916 | hydrophobic interactions with TRP114, GLN175, LEU176, π stacking with TYR179 | −5.029 | hydrophobic interactions with TRP114, GLN175, LEU176, TYR179, π stacking with TYR179 |
α-Pinene | −4.810 | hydrophobic interactions with TRP114, GLN175, LEU176, TYR179 | −4.821 | hydrophobic interactions with ALA116, ASP119, LYS132, MET135, ALA136 |
cis-β-Ocimene | −4.866 | hydrophobic interactions with MET89, LYS90, TRP114, GLN175, LEU176, TYR179 | −4.944 | hydrophobic interactions with TRP114, GLN175, LEU176, TYR179 |
trans-β-Ocimene | −4.959 | hydrophobic interactions with ASP86, MET89, LYS90, TRP114, GLN175, LEU176, TYR179 | −5.339 | hydrophobic interactions with MET89, LYS90, TRP114, GLN175, LEU176, TYR179 |
Limonene | −5.278 | hydrophobic interactions with ASP86, MET89, TRP114, GLN175, LEU176, TYR179 | −4.937 | hydrophobic interactions with TRP114, GLN175, LEU176, TYR179 |
Eugenol methyl ether | −5.074 | hydrophobic interactions with TRP114, GLN175, LEU176, π stacking with TYR179 | −4.995 | hydrophobic interactions with TRP114, GLN175, LEU176, TYR179, π stacking with TYR179 |
Eugenol acetate | −5.539 | hydrophobic interactions with ASP86, MET89, LYS90, TRP114, GLN175, LEU176, π stacking with TYR179 | −5.423 | hydrophobic interactions with MET89, LYS90, TRP114, GLN175, LEU176, TYR179, π stacking with TYR179 |
Eugenol | −5.232 | hydrophobic interactions with GLN175, LEU176, TYR179, π stacking with TYR179 | −4.949 | hydrophobic interactions with TRP114, GLN175, LEU176, TYR179, π stacking with TYR179 |
Caryophyllene oxide | −3.681 | hydrophobic interactions with LEU115, ALA116, ASP119, MET135, ILE136, TYR140 | −3.971 | hydrophobic interactions with ALA116, LYS132, MET135, ILE136, TYR140 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pujicic, A.; Popescu, I.; Dascalu, D.; Petreuș, D.E.; Isvoran, A. Predictions of the Biological Effects of the Main Components of Tarragon Essential Oil. Int. J. Mol. Sci. 2025, 26, 1860. https://doi.org/10.3390/ijms26051860
Pujicic A, Popescu I, Dascalu D, Petreuș DE, Isvoran A. Predictions of the Biological Effects of the Main Components of Tarragon Essential Oil. International Journal of Molecular Sciences. 2025; 26(5):1860. https://doi.org/10.3390/ijms26051860
Chicago/Turabian StylePujicic, Andrijana, Iuliana Popescu, Daniela Dascalu, David Emanuel Petreuș, and Adriana Isvoran. 2025. "Predictions of the Biological Effects of the Main Components of Tarragon Essential Oil" International Journal of Molecular Sciences 26, no. 5: 1860. https://doi.org/10.3390/ijms26051860
APA StylePujicic, A., Popescu, I., Dascalu, D., Petreuș, D. E., & Isvoran, A. (2025). Predictions of the Biological Effects of the Main Components of Tarragon Essential Oil. International Journal of Molecular Sciences, 26(5), 1860. https://doi.org/10.3390/ijms26051860