The Cardioprotective Properties of Pulses and the Molecular Mechanisms of Their Action
Abstract
1. Introduction
2. Research Methods
3. Nutritive and Non-Nutritive Compounds of Legumes and Their Seeds
3.1. Meta-Analyses and Randomized Controlled Trials
3.2. Control of Blood Pressure—In Vitro
3.3. Inhibition of Oxidative Stress—In Vitro
3.4. Modulation of Hemostasis—In Vitro
3.5. Control of Body Weight—In Vitro, Animal, and Human Models
3.6. Anti-Inflammatory Activity—In Vitro and Animal Models
4. Conclusions
Funding
Conflicts of Interest
Abbreviations
References
- Tiwari, P.; Chintagunta, A.D.; Dirisala, V.R.; Samath Kumar, N.S. Legume derived bioactive peptides. In Sustainable Agriculture Reviews 45: Legume Agriculture and Biotechnology; Guleria, P., Kumar, V., Lichtfouseed, E., Eds.; Springer: Cham, Switzerland, 2020; Volume 1, pp. 29–52. [Google Scholar]
- Feng, Z.; Morton, J.D.; Maes, E.; Kumar, L.; Serventi, L. Exploring faba beans (Vicia faba L.): Bioactive compounds, cardiovascular health, and processing insights. Crit. Rev. Food Sci. Nutr. 2024, 1, 1–14. [Google Scholar] [CrossRef] [PubMed]
- McCrory, M.A.; Hamaker, B.R.; Lovejoy, J.C.; Eichelsdorfer, P.E. Pulse consumption, satiety, and weight management. Adv. Nutr. 2010, 1, 17–30. [Google Scholar] [CrossRef] [PubMed]
- Maphosa, Y.; Jideani, V.A. The Role of Legumes in Human Nutrition, in Functional Food—Improve Health through Adequate Food; IntechOpen Limited: London, UK, 2017; pp. 103–121. [Google Scholar]
- Cakir, O.; Ucarli, C.; Tarhan, C.; Pekmez, M.; Turgut-Kara, N. Nutritional and health benefits of legumes and their distinctive genomic properties. Food Sci. Technol. 2019, 39, 1–12. [Google Scholar] [CrossRef]
- Grden, P.; Jakubczyk, A. Health benefits of legume seeds. J. Sci. Food Agric. 2023, 103, 5213–5220. [Google Scholar] [CrossRef]
- Looi, E.P.; MohdMaidin, N. The bioactivities of legumes: A review. Food Res. 2023, 7, 339–360. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). Pulses: Nutritional benefits and consumption patterns. In The Global Economy of Pulses; Rev Oct 9th; FAO: Rome, Italy, 2020. [Google Scholar]
- Kouris-Blazos, A.; Belski, R. Health benefits of legumes and pulses with a focus on Australain sweet lupins. Asia Pac. J. Clin. Nutr. 2016, 25, 1–17. [Google Scholar]
- Padhi, E.M.T.; Dan Ramdath, D. A review of the relationship pulse consumption and reduction of cardiovascular disease risk factors. J. Funct. Foods 2017, 38, 635–643. [Google Scholar] [CrossRef]
- Gilham, B.; Hall, R.; Woods, J.L. Vegetables and legumes in new Australasian food launches: How are they being used and are they a healthy choice? Nutr. J. 2018, 17, 104–111. [Google Scholar] [CrossRef]
- Perera, T.; Russo, C.; Takata, Y.; Bobe, G. Legume consumption pattern in US adults: National health and nutrition examination survay (NHANES) 2011-2014 and beans, lentils, peas (BLP) 2017 survey. Nutrients 2020, 12, 1237. [Google Scholar] [CrossRef]
- Faris, M.A.I.E.; Takruri, H.R.; Issa, A.Y. Role of lentils (Lens culinaris L.) in human health and nutrition: A review. Mediterr. J. Nutr. Metab. 2013, 6, 3–16. [Google Scholar] [CrossRef]
- Sepngang, B.K.; Muel, F.; Smajda, T.; Stauss, W.; Stute, I.; Simmen, M.; Mergenthaler, M. Report on Legume Markets in the EU; Deliverable D3.1 of the EU_Project LegValue; Fachhochschule Südwestfalen: Soest, Germany, 2020. [Google Scholar]
- Slawinska, N.; Olas, B. The current state of knowledge about thermal processing of edible seeds; a special emphasis on their bioactive constituents and antioxidant activity. Food Chem. 2024, 458, 140526. [Google Scholar] [CrossRef] [PubMed]
- Slawinska, N.; Zuchowski, J.; Stochmal, A.; Olas, B. Comparative phytochemical, antioxidant, and hemostatic studies of fractions from raw and roasted sea buckthorn seeds in vitro. Sci. Rep. 2024, 14, 21175. [Google Scholar] [CrossRef] [PubMed]
- Moller, N.P.; Scholz-Ahrens, K.E.; Roos, N.; Schrezenmeir, J. Bioactive peptides and proteins from foods: Indication for health effects. Eur. J. Nutr. 2008, 47, 171–182. [Google Scholar] [CrossRef] [PubMed]
- Gebrelibanos, M.; Tesfaye, D.; Raghavendra, Y.; Sintayeyu, B. Nutritional and health implications of legumes. Int. J. Pharm. Sci. Res. 2013, 4, 1269–1279. [Google Scholar]
- Singh, B.; Singh, J.P.; Shevkani, K.; Singh, N.; Kaur, A. Bioactive constituents in pulses and their health benefits. J. Food Sci. Technol. 2017, 54, 858–870. [Google Scholar] [CrossRef]
- Singh, B.; Singh, N.; Thakur, S.; Kaur, A. Ultrasound assisted extraction of polyphenols and their distribution in whole mung bean, hull and cotyledon. J. Food Sci. Technol. 2017, 54, 921–932. [Google Scholar] [CrossRef]
- Jakubczyk, A.; Karas, M.; Zlotek, U.; Szymanowska, U.; Baraniak, B.; Bochnak, J. Peptides obtained from fermented faba ben seed (Vicia faba) as potential inhibitors of an enzyme involved in the pathogenesis of metabolic syndrome. LWT-Food Sci. Technol. 2019, 105, 306–313. [Google Scholar] [CrossRef]
- Shea, Z.; do Granja, M.O.; Fletcher, E.B.; Zheng, Y.; Bewick, P.; Wang, Z.; Singer, W.M.; Zhang, B. A review of bioactive compound effects from primary legume protein sources in human and animal health. Curr. Issues Mol. Biol. 2024, 46, 4203–4233. [Google Scholar] [CrossRef]
- Papanikolaou, Y.; Fulgoni, V.L. Bean consumption is associated with greater nutrient intake, reduced systolic blood pressure, lower body weight, and a smaller waist circumference in adults: Results from the National Health and nutrition examination survey 1999–2002. J. Am. Coll. Nutr. 2008, 27, 569–576. [Google Scholar] [CrossRef]
- Jenkins, D.J.A.; Wong, G.S.; Patten, R.; Bird, J.; Hall, M.; Buckley, G.C.; McGuire, V.; Reichert, R.; Little, J.A. Leguminous seeds in the dietary management of hyperlipidemia. Am. J. Clin. Nutr. 1983, 38, 567–573. [Google Scholar] [CrossRef]
- Zambrowicz, A.; Timmer, M.; Polanowska, A.; Lubec, G.; Trziszka, T. Manufacturing of peptides exhibiting biological activity. Amino Acids 2013, 44, 315–320. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, Z.; Fu, L.; Chen, Y.; Fang, J. Legume consumption and colorectal adenoma risk: A meta-analysis of observational studies. PLoS ONE 2013, 8, 6–12. [Google Scholar] [CrossRef]
- Li, J.; Mao, Q.Q. Legume intake and risk of prostate cancer: A meta-analysis of prospective cohort studies. Oncotarget 2017, 8, 44776–44784. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.; De, S.R.J.; Coo, V.L.; Ha, V.; Cozma, A.L.; Chaivaroli, L. Effects of dietary pulse consumption on body weight: A systematic review and meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2016, 103, 1213–1223. [Google Scholar] [CrossRef] [PubMed]
- Kazemi, M.; McBreairty, L.E.; Chizen, D.R.; Pierson, R.A.; Chilibeck, P.D.; Zello, G.A. A comparison of a pulse-based diet and the therapeutic lifestyle changes diet in combination with exercise and health counselling on the cardio-metabolic risk profile in women with polycystic ovary syndrome: A randomized controlled trial. Nutrients 2018, 10, 1387. [Google Scholar] [CrossRef]
- Zhang, L.; Huang, S.; Cao, L.; Ge, M.; Li, Y.; Shao, J. Vegetable-fruit-soybean dietary pattern and breast cancer: A meta-analysis of observational studies. J. Nutr. Sci. Vitaminol. 2019, 65, 375–382. [Google Scholar] [CrossRef]
- Celleno, L.; Tolaini, M.V.; D’Amore, A.; Perricone, N.V.; Preuss, H.G. A dietary supplement containing standardized Phaseolus vilgaris extract influences body composition of overweigh men and women. Int. J. Med. Sci. 2007, 4, 45–52. [Google Scholar] [CrossRef]
- Finley, J.W.; Burrell, J.B.; Reeves, P.G. Pinto bean consumption changes SCFA profiles in fecal fermentations, bacterial populations of the lower bowel and lipid profiles in blood of humans. J. Nutr. 2007, 137, 2391–2398. [Google Scholar] [CrossRef]
- Winham, D.M.; Hutchins, A.M.; Johnston, C.S. Pinto bean consumption reduces biomarkers for heart disease risk. J. Am. Coll. Nutr. 2007, 26, 243–249. [Google Scholar] [CrossRef]
- Winham, D.M.; Hutchin, A.M. Baked bean consumption reduces serum cholesterol in hypercholesterolemic adults. Nutr. Res. 2007, 27, 380–386. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Lanza, E.; Kris-Etherton, P.M.; Colburn, N.H.; Bagshaw, D.; Rovine, M.J.; Ulbrecht, J.S.; Bobe, G.; Chapkin, R.S.; Hartman, T.J. A high legume low glycemic index diet improves serum lipid profile in men. Lipids 2010, 45, 765–775. [Google Scholar] [CrossRef] [PubMed]
- Tonstad, S.; Malik, N.; Haddad, E. A high-fibre bean-rich diet versus a low-carbohydrate diet for obesity. J. Hum. Nutr. Diet. 2014, 27, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Tovar, J.; Nilsson, A.; Johansson, M.; Bjorck, I. Combining functional features of whole-grain barley and legumes for dietary reduction of cardiometric risk: A randomized cross- over intervention in mature women. Br. J. Nutr. 2014, 111, 706–714. [Google Scholar] [CrossRef] [PubMed]
- Naghshi, S.; Sadeghi, O.; Willett, W.C.; Esmaillzadeh, A. Dietary intake of total, animal, and plant proteins and risk of all cause, cardiovascular, and cancer mortality: A systematic review and dose-response meta-analysis of prospective cohort studies. BMJ 2020, 370, m2412. [Google Scholar] [CrossRef]
- Ferreira, H.; Vasconcelos, M.; Gil, A.M.; Pinto, E. Benefits of pulse consumption on metabolism and health: A systematic review of randomized controlled trials. Crit. Rev. Food Sci. Nutr. 2021, 61, 85–96. [Google Scholar] [CrossRef]
- Zhao, N.; Jiao, K.; Chiu, Y.H.; Wallace, T.C. Pulse consumption and health outcomes: A scoping review. Nutrients 2024, 16, 1435. [Google Scholar] [CrossRef]
- Liu, T.; Zhen, X.; Lei, H.; Li, J.; Wang, Y.; Gou, D.; Zhao, J. Investigating the physicochemical characteristics and importance of insoluble dietary fiber extracted from legumes: An in-depth study on its biological functions. Food Chem. X 2024, 22, 101424. [Google Scholar] [CrossRef]
- Kamboj, R.; Nanda, V. Proximate composition, nutritional profile and health benefits of legumes—A review. Legume Res. Int. J. 2018, 41, 325–332. [Google Scholar] [CrossRef]
- El Tinay, A.H.; Mahgoub, S.O.; Mohamed, B.E.; Hamad, M.A. Proximate composition and mineral and phytate contents of legumes grown in Sudan. J. Food Comp. Anal. 1989, 2, 69–78. [Google Scholar] [CrossRef]
- Ryan, E.; Galvin, K.; O’Connor, T.P.; Maguire, A.R.; O’Brien, N.M. Phytosterol, squalene, tocopherol content and fatty acid profile of selected seeds, grains, and legumes. Plant Foods Hum. Nutr. 2007, 62, 85–91. [Google Scholar] [CrossRef]
- Marventano, S.; Kolacz, P.; Castellano, S.; Galvano, F.; Buscemi, S.; MIstretta, A.; Grosso, G. A review of recent evidence in human studies of n-3 and n-6 PUFA intake on cardiovascular disease, cancer, and depressive disorders: Does the ration really matter? Int. J. Food Sci. Nutr. 2015, 66, 611–622. [Google Scholar] [CrossRef] [PubMed]
- Kalogeropoulos, N.; Chiou, A.; Ioannou, M.; Karathanos, V.T.; Hasapidou, M.; Andrikopoulos, N.K. Nutritional evaluation and bioactive microconstituents (phytosterols, tocopherols, polyphenols, triterpenic acids) in cooked dry legumes usually consumed in the Mediterranean countries. Food Chem. 2010, 121, 682–690. [Google Scholar] [CrossRef]
- Tosh, S.M.; Yada, S. Dietary fibers in pulse seeds and fractions: Characterization, functional attributed, and applications. Food Res. Int. 2010, 43, 450–460. [Google Scholar] [CrossRef]
- Jenkins, D.J.A.; Kendall, C.W.C.; Augustin, L.S.A.; Mitchell, S.; Sahye-Pudaruth, S.; Blanco Meji, S. Effect of legumes as part of a low glycemic index diet on glycemic control and cardiovascular risk factors in type 2 diabetes mellitus: A randomized controlled trial. Arch. Int. Med. 2012, 172, 1653–1660. [Google Scholar] [CrossRef]
- Zhao, Y.; Du, S.K.; Wang, H.; Cai, M. In vitro antioxidant activity of extracts from common legumes. Food Chem. 2014, 152, 462–466. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Arunasalam, K.; Yeung, D.; Kakuda, Y.; Mittal, G.; Jiang, Y.M. Saponins from edible legumes: Chemistry, processing, and health benefits. J. Med. Food 2004, 7, 67–78. [Google Scholar] [CrossRef]
- Omar, A.; Kalra, R.S.; Putri, J.; Elwakeel, A.; Kaul, S.C.; Wadhwa, R. Soyasapogenol-A targets CARF and results in suppression of tumor growth and metastasis in p53 compromised cancer cells. Sci. Rep. 2020, 10, 6323. [Google Scholar] [CrossRef]
- Olas, B.; Urbanska, K.; Brys, M. Saponins as modulators of the blood coagulation system and perspectives regarding their use in the prevention of venous thromboembolic incidents. Molecules 2020, 25, 5171. [Google Scholar] [CrossRef]
- Labba, I.C.; Frokier, M.H.; Sandberg, A.S. Nutritional and antinutritional composition of fava bean (Vicia faba L., var. minor) cultivars. Food Res. Int. 2021, 140, 110038. [Google Scholar] [CrossRef]
- Goyoaga, C.; Burbano, C.; Cuadrado, C.; Varela, A.; Guillmon, E.; Pedrosa, M.M.; Muzquiz, M. Content and distribution of vicine, convicine and L-DOPA during germination and seeding growth of two Vicia faba L. varieties. Eur. Res. Technol. 2008, 227, 1537–1542. [Google Scholar] [CrossRef]
- Żuchowski, J.; Pecio, Ł.; Stochmal, A. Novel flavonol glycosides from the aerial parts of lentil (Lens culinaris). Molecules 2014, 19, 18152–18178. [Google Scholar] [CrossRef]
- Sanchez-Chino, X.; Jimenez-Martinez, C.; Davila-Ortiz, G.; Alvarez-Gonzalez, I.; Madrigal-Bujaidar, E. Nutrient and non-nutrient components of legumes, and its chemopreventive activity: A review. Nutr. Cancer 2015, 67, 401–410. [Google Scholar] [CrossRef] [PubMed]
- Bouchenak, M.; Lamri-Senhadji, M. Nutritional quality of legumes, and their role in cardiometabolic risk prevention: A review. J. Med. Food 2013, 16, 185–198. [Google Scholar] [CrossRef] [PubMed]
- Krizova, L.; Dadakova, K.; Kasparovska, J.; Kasparovsky, T. Isoflavones. Molecular 2019, 24, 1076. [Google Scholar] [CrossRef] [PubMed]
- Petry, N.; Zeder, C.; Walczyk, T.; Hurrell, R. Polyphenols and phytic acid contribute to the low iron bioavailability from common beans in young women. J. Nutr. 2010, 140, 1977–1982. [Google Scholar] [CrossRef] [PubMed]
- Glahn, R.P.; Tako, E.; Cichy, K.; Wiesinger, J. The cotyledon cell wall and intracellular matrix are factors that limit iron bioavailability of the common bean (Phaseolus vulgaris). Food Funct. 2016, 7, 3193–3200. [Google Scholar] [CrossRef]
- Amoah, I.; Ascione, A.; Muthanna, F.M.; Feraco, A.; Camajani, E.; Gorini, S.; Armani, A.; Caprio, M.; Lombardo, M. Sustainable strategies for increasing legume consumption: Culinary and educational approaches. Foods 2023, 12, 2265. [Google Scholar] [CrossRef]
- Pedrosa, M.M.; Cuadradoa, C.; Burbanoa, C.; Muzquiza, M.; Cabellosa, B.; Olmedilla-Alonsob, B.; Asensio-Vegasc, C. Effects of industrial canning on the proximate composition, bioactive compounds contents and nutritional profile of two Spanish common dry beans (Phaseolus vulgaris L.). Food Chem. 2015, 166, 68–75. [Google Scholar] [CrossRef]
- Zhang, B.; Deng, Z.; Tang, Y.; Chen, P.X.; Liu, R.; Ramdath, D.D.; Liu, Q.; Hernandez, M.; Tsao, R. Effect of domestic cooking on carotenoids, tocopherols, fatty acids, phenolics, and antioxidant activities of lentils (Lens culinaris). J. Agric. Food Chem. 2014, 62, 12585–12594. [Google Scholar] [CrossRef]
- Sarmento, A.; Barros, I.; Fernandes, A.; Carvalho, A.M.; Garreira, I.C.F.R. Valorization of traditional foods: Nutritional and bioactive properties of Cicer arietinum L. and Lathyrus satius L. pulses. J. Sci. Food Agric. 2015, 95, 179–185. [Google Scholar] [CrossRef]
- Morales, P.; Berrios, J.; Varela, A.; Burbano, C.; Cuadrado, C.; Muzquiz, M.; Pedrosa, M.M. Novel fiber-rich lentil flours as snack-type functional foods: An extrusion cooking effect on bioactive compounds. Food Funct. 2015, 9, 3135–3143. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Hatcher, D.W.; Tyler, R.T.; Toews, R.; Gawało, E.J. Effect of cooking on the composition of beans (Phaseolus vulgaris L.) and chickpeas (Cicer arietinum L.). Food Res. Int. 2010, 43, 589–594. [Google Scholar] [CrossRef]
- Margier, M.; George, S.; Hafnaoui, N.; Remond, D.; Nowicki, M.; Du Chaffaut, L.; Amiot, M.J.; Reboul, E. Nutritional composition and bioactive content of legumes: Characterization of pulses frequently consumed in France and effect of cooking method. Nutrients 2018, 10, 1668. [Google Scholar] [CrossRef] [PubMed]
- Erba, D.; Angelino, D.; Marti, A.; Manini, F.; Faoro, F.; Morreale, F.; Pellegrini, N.; Casiraghi, M.C. Effect of sprouting on nutritional quality of pulses. Int. J Food Sci. Nutr. 2019, 70, 30–40. [Google Scholar] [CrossRef]
- Siah, S.; Konczak, I.; Wood, J.A.; Agboola, S.; Blanchard, C.L. Effects of roasting on phenolic composition and in vitro antioxidant capacity of Australian grown Faba beans (Vicia faba L.). Plant Foods Hum. Nutr. 2014, 69, 85–91. [Google Scholar] [CrossRef]
- Jankowski, P. Recommendations for cardiovascular disease prevention in 2018. Kardiol Inwazyjna 2017, 5, 42–48. [Google Scholar]
- Afshin, A.; Micha, R.; Khatibzadeh, S.; Mozaffarian, D. Consumption of nuts and legumes and risk of incident ischemic heart disease, stroke, and diabetes: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2014, 100, 278–288. [Google Scholar] [CrossRef]
- Nagura, J.; Iso, H.; Watanabe, Y.; Maruyama, K.; Date, C.; Toyoshima, H.; Grp, J.S. Fruit, vegetable and bean intake and mortality from cardiovascular disease among Japanese men and women: The JACC Study. Br. J. Nutr. 2009, 102, 285–292. [Google Scholar] [CrossRef]
- Gardener, H.; Wright, C.B.; Cabral, D.; Scarmeas, N.; Gu, Y.A.; Cheung, K.; Rundek, T. Mediterranean diet and carotid atherosclerosis in the Northern Manhattan Study. Atherosclerosis 2014, 234, 303–310. [Google Scholar] [CrossRef]
- Nouri, F.; Sarrafzadegan, N.; Mohammadifard, N.; Sadeghi, M.; Mansourian, M. Intake of legumes and risk of cardiovascular disease: Frailty modeling of a prospective cohart study in the Iranian middle-aged and older population. Eur. J. Clin. Nutr. 2016, 70, 217–221. [Google Scholar] [CrossRef]
- Kingman, S.M. The influence of legume seeds on human plasma lipid concentrations. Nutr. Res. Rev. 1991, 4, 97–123. [Google Scholar] [CrossRef] [PubMed]
- Dabai, F.D.; Walker, A.F.; Sambrook, I.E.; Welch, V.A.; Owen, R.W.; Abeyasekera, S. Comparative effects on blood lipids and fecal steroids of five legume species incorporated into a semipurified hypercholesterolaemic rat diet. Br. J. Nutr. 1996, 75, 557–571. [Google Scholar] [CrossRef] [PubMed]
- Duane, W.C. Effects of legume consumption on serum cholesterol, biliary lipids, and sterol metabolism in humans. J. Lipid Res. 1997, 38, 1120–1128. [Google Scholar] [CrossRef] [PubMed]
- Shams, H.; Tahbaz, F.; Entezari, M.; Abadi, A. Effects of cooked lentils on glycaemic control and blood lipids of patients with type 2 diabetes. ARYA Atheroscler. J. 2008, 3, 215–218. [Google Scholar]
- Ha, V.; Sievenpiper, J.L.; de Souza, R.J.; Jayalath, V.H.; Mirrahimi, A.; Agarwal, A.; Jenkins, D.J. Effect of dietary pulse intake on established therapeutic lipid targets for cardiovascular risk reduction: A systematic review and meta-analysis of randomized controlled trials. CMAJ 2014, 186, E252–E262. [Google Scholar] [CrossRef]
- Tokede, O.A.; Onabanjo, T.A.; Yansane, A.; Gazino, J.M.; Djousse, L. Soya products and serum lipids: A meta-analysis of randomized controlled trials. Br. J. Nutr. 2015, 114, 831–843. [Google Scholar] [CrossRef]
- Vinarova, L.; Vinarov, Z.; Atanasov, V.; Pantcheva, I.; Tcholakova, S.; Denkov, N.; Stoyanov, S. Lowering of cholesterol bioaccessibility and serum concentrations by saponins: In vitro and in vivo studies. Food Funct. 2015, 6, 501–512. [Google Scholar] [CrossRef]
- Pittaway, J.K.; Ahuja, K.D.K.; Cehun, M.; Chronopoulos, A.; Robertson, I.K.; Nestel, P.; Ball, M.J. Dietary supplementation with chickpeas for at least 5 weeks results in small but significant reductions in serum total and low-density lipoprotein cholesterols in adult women and men. Am. Nutr. Metab. 2006, 50, 512–518. [Google Scholar] [CrossRef]
- Pittaway, J.K.; Ahuja, K.D.K.; Robertson, L.K.; Ball, M.J. Effects of a controlled diet supplemented with chickpeas on serum lipids, glucose tolerance, satiety and bowel function. J. Am. College Nutr. 2007, 26, 334–340. [Google Scholar] [CrossRef]
- Hermsdorff, H.H.; Zulet, M.A.; Abete, I.; Martinez, J.A. A legume-based hypocaloric diet reduces proinflammatory status and improves metabolic features in overweight obese subjects. Eur. J. Nutr. 2011, 50, 61–69. [Google Scholar] [CrossRef]
- Marinangeli, C.P.F.; Jones, P.J.H. Whole and fractionated yellow pea flours reduce fasting insulin resistance in hypercholesterolemic and overweight human subjects. Br. J. Nutr. 2011, 105, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Schwingshackl, L.; Schwedhelm, C.; Hoffman, G.; Knuppel, S.; Iqbal, K.; Andriolo, V.; Bechthold, A.; Schlesinger, S.; Boeing, H. Food groups and risk of hypertension: A systematic review and dose-response meta-analysis of prospective studies. Adv. Nutr. 2017, 100, 278–288. [Google Scholar] [CrossRef] [PubMed]
- Jayalath, V.H.; de Douza, R.J.; Sievenpiper, J.L.; Ha, V.; Chiavaroli, L.; Mirrahimi, A.; Jenkins, D.J. Effect of dietary pulses on blood pressure: A systematic review and meta-analysis of controlled feeding trials. Am. J. Hypertens. 2014, 27, 56–64. [Google Scholar] [CrossRef]
- Marventano, S.; Izquierdo Pulido, M.; Sanchez-Gonzalez, C.; Godos, J.; Speciani, A.; Galvano, F.; Grosso, G. Legume consumption and CVD risk: A systematic review and meta-analysis. Public Health Nutr. 2017, 20, 245–254. [Google Scholar] [CrossRef]
- Mollard, R.C.; Luhovyy, B.L.; Panahi, S.; Nunez, M.; Hanley, A.; Anderson, G.H. Regular consumption of pulses for 8 weeks reduces metabolic syndrome risk factors in overweight and obese adults. Br. J. Nutr. 2012, 108, S111–S122. [Google Scholar] [CrossRef]
- Venn, B.J.; Perry, T.; Green, T.J.; Skeaff, C.M.; Aitken, W.; Moore, N.J.; Williams, S. The effect of increasing consumption of pulses and wholegrains in obese people. A randomized controlled trial. J. Am. Coll. Nutr. 2010, 29, 65–372. [Google Scholar] [CrossRef]
- Wang, S.; Guo, C.; Xing, Z.; Li, M.; Yang, H.; Zhang, Y.; Ren, F.; Chen, L.; Mi, S. Dietary intervention with α-amylase inhibitor in white kidney beans added to yogurt modulated gut microbiota to adjust blood glucose in mice. Front. Nutr. 2021, 8, 664976. [Google Scholar] [CrossRef]
- Alexander, R.; Khaja, A.; Debiec, N.; Fazioli, A.; Torrance, M.; Razaque, M.S. Health-promoting benefits of lentils: Anti-inflammatory and anti-microbial effects. Curr. Res. Physiol. 2024, 7, 100124. [Google Scholar] [CrossRef]
- Salehi-Abargouei, A.; Saraf-Bank, S.; Bellissimo, N.; Azadbakth, L. Effects of non-soy legume consumption on C-reactive protein: A systematic review and meta-analysis. Nutrition 2015, 31, 631–639. [Google Scholar] [CrossRef]
- North, C.J.; Venter, C.S.; Jerling, J.C. The effects of dietary fibre on C-reactive protein, an inflammation marker predicting cardiovascular disease. Eur. J. Clin. Nutr. 2009, 6, 921–933. [Google Scholar] [CrossRef]
- Haghighatdoost, F.; Bellissimo, N.; Totosy, N.; De Zepentek, J.O.; Rouhani, M.H. Association of vegetarian diet with inflammatory biomarkers: A systematic review and meta-analysis of observational studies. Public Health Nutr. 2017, 20, 2713–2721. [Google Scholar] [CrossRef] [PubMed]
- Hartman, T.J.; Albert, P.S.; Zgang, Z.; Bagshaw, D.; Kris-Etherton, P.M.; Lanza, E. Consumption of a legume-enriched, low-glycemic index diet is associated with biomarkers of insulin resistance and inflammation among men at risk for colorectal cancer. J. Nutr. 2010, 140, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Abeysekara, S.; Chilibeck, P.D.; Vatanparast, H.; Zello, G.A. A pulse-based diet is effective for reducing total and LDL-cholesterol in older adults. Br. J. Nutr. 2012, 108, S103–S110. [Google Scholar] [CrossRef]
- Mendes, V.; Niforou, A.; Kasdagli, M.I.; Ververis, E.; Naska, A. Intake of legumes and cardiovascular disease: A systematic review and dose-response meta-analysis. Nutr. Metab. Cardiovasc. Dis. 2023, 33, 22–37. [Google Scholar] [CrossRef]
- Guasch-Ferre, M.; Satija, A.; Blondin, S.A.; Janiszewski, M.; Emlen, E.; O’Connor, L.E.; Campbell, W.W.; Hu, F.B.; Willett, W.C.; Stampfer, M.J. Meta-analysis of randomized controlled trials of red meat consumption in comparison with various comparison diets on cardiovascular risk factors. Circulation 2019, 139, 1828–1845. [Google Scholar] [CrossRef]
- Schwingshackl, L.; Hoffmann, G.; Iqbal, K.; Schwedhelm, C.; Boeing, H. Food groups and intermediate disease markers: A systematic review and network meta-analysis of randomized trials. Am. J. Clin. Nutr. 2018, 108, 576–586. [Google Scholar] [CrossRef]
- Arnoldi, A.; Boschin, G.; Zanoni, C.; Lammi, C. The health benefits of sweet lupin seed flours and isolated proteins. J. Funct. Foods 2015, 18, 550–563. [Google Scholar] [CrossRef]
- Siah, S.D.; Konczak, I.; Agboola, S.; Wood, J.A.; Blanchard, C.L. In vitro investigations of the potential health benefits of Australian-grown faba beans (Vicia faba L.): Chemopreventative capacity and inhibitory effects on the angiotensin-converting enzyme, α-glucosidase and lipase. Br. J. Nutr. 2012, 108, 123–134. [Google Scholar] [CrossRef]
- Sreerama, Y.N.; Sashikala, V.B.; Pratape, V.M. Phenolic compounds in cowpea and horse farm flours in composition to chickpea flour: Evaluation of their antioxidant and enzyme inhibitory properties associated with hyperglycemia and hypertension. Food Chem. 2012, 133, 156–162. [Google Scholar] [CrossRef]
- Yao, F.; Sun, C.; Chang, S.K. Lentil polyphenol extract prevents angiotensin II-induced hypertension, vascular remodeling and perivascular fibrosis. Food Funct. 2012, 3, 127–133. [Google Scholar] [CrossRef]
- Fidrianny, I.; Elviana, D.; Ruslan, K. In vitro antioxidant activities in various beans extracts of five legumes from west of java-Indonesia using DPPH and ABTS methods. Int. Pharnacogn. Phytochem. Res. 2016, 8, 470–476. [Google Scholar]
- Peng, X.; Zheng, Z.; Cheng, K.W.; Shan, F.; Ren, G.X.; Chen, F.; Wang, M. Inhibitory effect of mung bean extract and its constituents vitexin and isovitexin on the formation of advanced glycation end products. Food Chem. 2008, 106, 475–481. [Google Scholar] [CrossRef]
- Yao, Y.; Cheng, X.Z.; Ren, G.X. Contents of D-chiri-inositol, vitexin, and isovitexin in various varieties of mung bean and its products. Agric. Sci. China 2011, 10, 1710–1715. [Google Scholar] [CrossRef]
- Nithiyananatham, S.; Selvakumar, S.; Siddhuraju, P. Total phenolic content and antioxidant activity of two different solvent extracts from raw and processed legumes, Cicer aruetinum L. and Pisum sativum L. J. Food Compos. Anal. 2012, 27, 52–60. [Google Scholar] [CrossRef]
- Dhannai, T.; Singh, R.; Shah, S.; Kumari, P.; Kumar, S. Comparison of green extraction methods with conventional extraction method for extract yield, L-DOPA concentration and antioxidant activity of Mucuna pruriens seed. Green Chem. Lett. Rev. 2015, 8, 43–48. [Google Scholar] [CrossRef]
- Durovic, S.; Nikolic, B.; Lukovic, N.; Jovanovic, J.; Stefanovic, A.; Sekuljica, N.; Knezevic-Jugovic, Z. The impact of high-power ultrasound and microwave on the phenolic acid profile and antioxidant activity of the extract from yellow soybean seeds. Ind. Crops Prod. 2018, 122, 223–231. [Google Scholar] [CrossRef]
- Vukoja, J.; Pichler, A.; Kopjar, M. Stability of anthocyanins, phenolics and color of tart cherry jams. Foods 2019, 8, 255. [Google Scholar] [CrossRef]
- Hsieh-Lo, M.; Castillo-Herrera, G.; Mojica, L. Black bean anthocyanin-rich extract from supercritical and pressurized extraction increased in vitro antidiabetic potential, while having similar storage stability. Foods 2020, 9, 655. [Google Scholar] [CrossRef]
- Żuchowski, J.; Rolnik, A.; Adach, W.; Stochmal, A.; Olas, B. Modulation of oxidative stress and hemostasis by flavonoids from lentil aerial parts. Molecules 2021, 26, 497. [Google Scholar] [CrossRef]
- Kluska, M.; Juszczak, M.; Wysokinski, D.; Żuchowski, J.; Stochmal, A.; . Wozniak, K. Kaempferol derivatives isolated from Lens culinaris medik reduce DNA damage induced by etoposide in peripheral blood mononuclear cells. Toxicol. Res. 2019, 8, 896–907. [Google Scholar] [CrossRef]
- Amarowicz, R.; Estrella, I.; Hernández, T.; Dueñas, M.; Troszyńska, A.; Kosińska, A.; Pegg, R.; Amarowicz, R.; Estrella, I.; Hernández, T.; et al. Antioxidant activity of a red lentil extract and its fractions. Int. J. Mol. Sci. 2009, 10, 5513. [Google Scholar] [CrossRef] [PubMed]
- Amarowicz, R.; Estrella, I.; Hernández, T.; Robredo, S.; Troszyńska, A.; Kosińska, A.; Pegg, R.B. Free radical-scavenging capacity, antioxidant activity, and phenolic composition of green lentil (Lens culinaris). Food Chem. 2010, 121, 705–711. [Google Scholar] [CrossRef]
- Zou, Y.; Chang, S.K.C.; Gu, Y.; Qian, S.Y. Antioxidant activity and phenolic compositions of lentil (Lens culinaris var. Morton) extract and its fractions. J. Agric. Food Chem. 2011, 59, 2268–2276. [Google Scholar] [CrossRef] [PubMed]
- Alshikh, N.; de Camargo, A.C.; Shahidi, F. Phenolics of selected lentil cultivars: Antioxidant activities and inhibition of low-density lipoprotein and DNA damage. J. Funct. Foods 2015, 18, 1022–1038. [Google Scholar] [CrossRef]
- Choudhary, D.K.; Mishra, A. In vitro and in silico interaction of faba bean (Vicia faba L.) seed extract with xanthine oxidase and evaluation of antioxidant activity as a therapeutic potential. Nat. Prod. Res. 2019, 33, 2689–2693. [Google Scholar] [CrossRef]
- Kowalczyk, M.; Rolnik, A.; Adach, W.; Kluska, M.; Juszczak, M.; Grabarczyk, Ł.; Wozniak, K.; Olas, B.; Stochmal, A. Multifunctional compounds in the extract from mature seeds of Vicia faba var. minor: Phytochemical profiling, antioxidant activity and cellular safety in human selected blood cells in in vitro trials. Biomed. Pharm. 2021, 139, 111718. [Google Scholar] [CrossRef]
- Lee, S.O.; Chan, S.Y.; Lee, E.; Kim, B.; Jang, B.I.; Lee, D.W.; Yoo, E.S. Renal protective effect of belunga lentil pretreatment for ischemia-reperfusion injury. BioMed. Res. Int. 2021, 1, 6890679. [Google Scholar]
- Carcea, M.; Turfani, V.; Narducci, V.; Durazzo, A.; Finamore, A.; Roselli, M.; Rami, R. Bread for the aging population: The effect of a functional wheat-lentil bread on the immune fraction of aged mice. Foods 2019, 8, 510. [Google Scholar] [CrossRef]
- Rolnik, A.; Żuchowski, J.; Stochmal, A.; Olas, B. Quercetin and kaempferol derivatives isolated from aerial parts of Lens culinaris Medik as modulators of blood platelet functions. Ind. Crops Prod. 2020, 152, 112536. [Google Scholar] [CrossRef]
- Martinez- Villaluenga, C.; Rupasinghe, S.G.; Schuler, M.A.; Gonzalez De Mejia, E. Peptides from soybean β-conglyvinin inhibit fatty acid synthase by interaction with the thioesterase catalytic domain. FEBS 2010, 277, 1481–1493. [Google Scholar] [CrossRef]
- Kiersnowska, K.; Jakubczyk, A. Bioactive peptides obtained from legume seeds as new compounds in metabolic syndrome prevention and diet therapy. Foods 2022, 11, 3300. [Google Scholar] [CrossRef] [PubMed]
- Benavides-Carrasco, M.; Jarpa-Parra, M. A scoping review on the relationship between pulse protein consumption and its effect on human gastrointestinal tract and its microbiome. Curr. Res. Nutr. Food Sci. J. 2024, 12, 29–40. [Google Scholar] [CrossRef]
- Han, J.; Zhang, R.; Muheyati, D.; Lv, M.X.; Aikebaier, W.; Peng, B.X. The effect of chickpea dietary fiber on lipid metabolism and gut microbiota in high-fat diet-induced hyperlipidemia in rats. J. Med. Food 2021, 24, 124–134. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Chen, X.; Dong, L.; Nan, X.; Ji, X.; Wang, S.; Sun, W.; Zhou, Q. Modification of pea dietary fiber by ultrafine grinding and hypoglycemic effect in diabetes mellitus mice. J. Food Sci. 2021, 4, 1273–1282. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, S.; Wang, J.; Liu, W.; Gong, H.; Zhang, Z.; Lyu, B.; Yu, H. Insoluble dietary fiber from soybean residue (Okara) exerts anti-obesity effects by promoting hepatic mitochondrial fatty acid oxidation. Foods 2023, 12, 2081. [Google Scholar] [CrossRef]
- Lutsiv, T.; Neil, E.S.; McGinley, J.N.; Didinger, C.; Fitzgerald, V.K.; Weir, T.L.; Hussan, H.; Hartman, T.J.; Thompson, H.J. Impact of a pulse-enriched human cuisine on functional attributes of the gut microbiome using a preclinical model of dietary-induced chronic diseases. Nutrients 2024, 16, 3178. [Google Scholar] [CrossRef]
- Kadyan, S.; Park, G.; Singh, P.; Arjmandi, B.; Nagpal, R. Prebiotic mechanisms of resistant starches from dietary beans and pulses on gut microbiome and metabolic health in a humanized murine model of aging. Front. Nutr. 2023, 1, 1106463. [Google Scholar] [CrossRef]
- Marinageli, C.P.F.; Harding, S.V.; Zafron, M.; Rideout, T.C. A systematic review of the effect of dietary pulses on microbial populations inhabiting the human gut. Benef. Microbes 2020, 11, 457–468. [Google Scholar] [CrossRef]
- John, H.S.; Doucet, E.; Power, K.A. Dietary pulses as a means to improve the gut microbiome, inflammation, and appetite control in obesity. Obes. Rev. 2023, 24, e13598. [Google Scholar] [CrossRef]
- Fernando, W.M.U.; Hill, J.E.; Zello, G.A.; Tyler, R.T.; Dahl, W.J.; Van Kessel, A.G. Diets supplemented with chickpea or its main oligosaccharide component raffinose modify faecal microbial composition in health adults. Benef. Microbes 2010, 1, 197–207. [Google Scholar] [CrossRef]
- Shelifin, A.M.; Borresen, E.E.; Kirkwood, J.S.; Boot, C.M.; Whitney, A.K.; Lu, S.; Brown, R.J.; Broeckling, C.D.; Ryan, E.P.; Weir, T.L. Dietary supplementation with rice bran or navy bean alters gut bacterial metabolism in colorectal cancer survivors. Mol. Nutr. Food Res. 2017, 61, 1500905. [Google Scholar]
- Biscarrat, P.; Bedu-Ferrari, C.; Langella, P.; Cherbuy, C. Pulses: A way to encourage sustainable fiber consumption. Trends Food Sci. Technol. 2024, 143, 104281. [Google Scholar] [CrossRef]
- Sibul, F.; Orcic, D.; Vasic, M.; Anackov, G.; Nadpal, J.; Savic, A.; Mimica-Dukic, N. Phenolic profile, antioxidant and anti-inflammatory potential of herb and root extracts of seven selected legumes. Ind. Crops Prod. 2016, 83, 641–653. [Google Scholar] [CrossRef]
- Contreras, J.; Herrera-Gonzalez, A.; Arrizon, J.; Lugo-Cervantes, E.; Mojica, L. Mexican endemic black bean phenolic extract antioxidant and anti-inflammatory potential. Curr. Dev. Nutr. 2020, 4, 82–389. [Google Scholar] [CrossRef]
- Bazzano, L.A.; Thompson Tees, M.T.; Nguyen, C.H.; Winham, D.M. Non-soy legume consumption lowers cholesterol levels: A meta-analysis of randomized controlled trials. Nutr. Metab. Cardiovasc. Dis. 2009, 21, 94–103. [Google Scholar] [CrossRef]
- Al-Tibi, A.M.H.; Takruri, H.R.; Ahmad, M.N. Effect of dehulling and cooking of letils (Lens culinaris L.) on serum glucose and lipoprotein levels in streptozotocin-induced diabetic rats. Malays. J. Nutr. 2010, 16, 83–92. [Google Scholar]
Pulses | Protein (%) | Lipids (%) | Carbohydrates (%) | Fiber (%) |
---|---|---|---|---|
Chickpea | 15.5–28.2 | 3.1–7.0 | 44.4 | 9.0 |
Broad bean | 26.1–38.0 | 1.1–2.5 | 37–45.6 | 7.5–13.1 |
Kidney bean | 20.9–27.8 | 0.9–2.4 | 41.5 | 10 |
Lentil | 23–32 | 0.8–2.0 | 46.0 | 12.0 |
Pea | 18.3–31.0 | 0.6–5.5 | 45.0 | 12.0 |
Controlled and Randomized Trials | ||||
---|---|---|---|---|
Pulse | Dose (g/Day) | N | Effects on CVD Risk Factors | Reference |
Beans | 50 | 16 (hypercholesterolemic adults) | Hypolipidemic activity | [33] |
Beans | 50 | 23 (hypercholesterolemic adults) | Hypolipidemic activity | [34] |
Beans | 130 | 40 (healthy adults) | Hypolipidemic activity | [32] |
Beans | 130 | 40 (healthy adults) | Hypolipidemic activity | [32] |
Beans | 250 | 28 (healthy subjects) | Hypolipidemic activity | [35] |
Beans | 140 | 82 (overweight men and women) | Reduced body weight and BMI | [31] |
Beans/lentils | 225 | 123 (obese subjects) | Hypolipidemic activity | [36] |
Mixed | 160–235 | 43 (overweight and obese adults) | Hypolipidemic and anti-inflammatory activity | [82] |
Mixed | 196 | 50 (subjects with type 2 diabetes) | Hypolipidemic activity | [48] |
Mixed | 128 | 40 (overweight and obese adults) | Hypolipidemic activity | [89] |
Mixed | 442 | 46 (mature women) | Hypolipidemic activity | [37] |
Mixed | 250 | 64 (men with colorectal cancer) | Anti-inflammatory effect | [96] |
Pea flour | 138 | 23 (hypercholesterolemic adults and overweight subjects) | Hypolipidemic activity | [85] |
Chickpea flour | 140 | 47 (healthy adults) | Hypolipidemic activity | [82] |
Chickpea flour | 140 | 27 (healthy adults) | Hypolipidemic activity | [83] |
Mixed flour | 250 | 87 (healthy adults) | Hypolipidemic activity | [97] |
Cardioprotective Activity | Responsible Component(s) | References |
---|---|---|
Lowering blood pressure | Bioactive peptides, phenolic compounds, saponins, fiber | [21,22,50,92,93,94,95] |
Hypolipidemic activity | Phytosterols, soluble non-starch polysaccharides, saponins | [10,22,41,45,46] |
Anti-inflammatory activity | Phytosterols, phenolic compounds | [112,120,121] |
Antioxidant activity | Phenolic compounds, vitamins A and E, bioactive peptides, saponins | [5,9,12,20,22,23,25,26,27,28,29,30,47,48,96,101,102,103,104] |
Anti-platelet activity | Phenolic compounds | [114] |
Weight reduction and weight control | Bioactive peptides, fiber | [21,115,116,117,118,119] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olas, B. The Cardioprotective Properties of Pulses and the Molecular Mechanisms of Their Action. Int. J. Mol. Sci. 2025, 26, 1820. https://doi.org/10.3390/ijms26051820
Olas B. The Cardioprotective Properties of Pulses and the Molecular Mechanisms of Their Action. International Journal of Molecular Sciences. 2025; 26(5):1820. https://doi.org/10.3390/ijms26051820
Chicago/Turabian StyleOlas, Beata. 2025. "The Cardioprotective Properties of Pulses and the Molecular Mechanisms of Their Action" International Journal of Molecular Sciences 26, no. 5: 1820. https://doi.org/10.3390/ijms26051820
APA StyleOlas, B. (2025). The Cardioprotective Properties of Pulses and the Molecular Mechanisms of Their Action. International Journal of Molecular Sciences, 26(5), 1820. https://doi.org/10.3390/ijms26051820