Drosophila melanogaster: A Model Organism in Muscular Dystrophy Studies
Abstract
1. Introduction
2. The Advantages of Drosophila in MD Research
3. Modeling Muscular Dystrophy in Drosophila
3.1. Duchenne Muscular Dystrophy
3.2. Myotonic Dystrophy
3.3. Facioscapulohumeral Muscular Dystrophy
3.4. Limb-Girdle Muscular Dystrophy
3.5. Congenital Muscular Dystrophy
3.6. Emery–Dreifuss Muscular Dystrophy
3.7. Oculopharyngeal Muscular Dystrophy
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Percival, J.M.; Froehner, S.C. Golgi complex organization in skeletal muscle: A role for Golgi-mediated glycosylation in muscular dystrophies? Traffic 2007, 8, 184–194. [Google Scholar] [CrossRef]
- Nickolls, A.R.; Bonnemann, C.G. The roles of dystroglycan in the nervous system: Insights from animal models of muscular dystrophy. Dis. Models Mech. 2018, 11, dmm035931. [Google Scholar] [CrossRef] [PubMed]
- Witherick, J.; Brady, S. Update on muscle disease. J. Neurol. 2018, 265, 1717–1725. [Google Scholar] [CrossRef] [PubMed]
- Dang, K.; Jiang, S.; Gao, Y.; Qian, A. The role of protein glycosylation in muscle diseases. Mol. Biol. Rep. 2022, 49, 8037–8049. [Google Scholar] [CrossRef]
- Carter, J.C.; Sheehan, D.W.; Prochoroff, A.; Birnkrant, D.J. Muscular Dystrophies. Clin. Chest Med. 2018, 39, 377–389. [Google Scholar] [CrossRef] [PubMed]
- Zambon, A.A.; Muntoni, F. Congenital muscular dystrophies: What is new? Neuromuscul. Disord. 2021, 31, 931–942. [Google Scholar] [CrossRef] [PubMed]
- Brockington, M.; Yuva, Y.; Prandini, P.; Brown, S.C.; Torelli, S.; Benson, M.A.; Herrmann, R.; Anderson, L.V.; Bashir, R.; Burgunder, J.M.; et al. Mutations in the fukutin-related protein gene (FKRP) identify limb girdle muscular dystrophy 2I as a milder allelic variant of congenital muscular dystrophy MDC1C. Hum. Mol. Genet. 2001, 10, 2851–2859. [Google Scholar] [CrossRef] [PubMed]
- Grewal, P.K.; Holzfeind, P.J.; Bittner, R.E.; Hewitt, J.E. Mutant glycosyltransferase and altered glycosylation of alpha-dystroglycan in the myodystrophy mouse. Nat. Genet. 2001, 28, 151–154. [Google Scholar] [CrossRef] [PubMed]
- Godfrey, C.; Foley, A.R.; Clement, E.; Muntoni, F. Dystroglycanopathies: Coming into focus. Curr. Opin. Genet. Dev. 2011, 21, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Chemello, F.; Chai, A.C.; Li, H.; Rodriguez-Caycedo, C.; Sanchez-Ortiz, E.; Atmanli, A.; Mireault, A.A.; Liu, N.; Bassel-Duby, R.; Olson, E.N. Precise correction of Duchenne muscular dystrophy exon deletion mutations by base and prime editing. Sci. Adv. 2021, 7, eabg4910. [Google Scholar] [CrossRef]
- Chemello, F.; Wang, Z.; Li, H.; McAnally, J.R.; Liu, N.; Bassel-Duby, R.; Olson, E.N. Degenerative and regenerative pathways underlying Duchenne muscular dystrophy revealed by single-nucleus RNA sequencing. Proc. Natl. Acad. Sci. USA 2020, 117, 29691–29701. [Google Scholar] [CrossRef]
- Martin, P.T. The dystroglycanopathies: The new disorders of O-linked glycosylation. Semin. Pediatr. Neurol. 2005, 12, 152–158. [Google Scholar] [CrossRef]
- Ragni, E.; Lommel, M.; Moro, M.; Crosti, M.; Lavazza, C.; Parazzi, V.; Saredi, S.; Strahl, S.; Lazzari, L. Protein O-mannosylation is crucial for human mesencyhmal stem cells fate. Cell Mol. Life Sci. 2016, 73, 445–458. [Google Scholar] [CrossRef] [PubMed]
- Kanagawa, M.; Toda, T. Ribitol-phosphate-a newly identified posttranslational glycosylation unit in mammals: Structure, modification enzymes and relationship to human diseases. J. Biochem. 2018, 163, 359–369. [Google Scholar] [CrossRef]
- Endo, T. Mammalian O-mannosyl glycans: Biochemistry and glycopathology. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2019, 95, 39–51. [Google Scholar] [CrossRef] [PubMed]
- Quereda, C.; Pastor, A.; Martin-Nieto, J. Involvement of abnormal dystroglycan expression and matriglycan levels in cancer pathogenesis. Cancer Cell Int. 2022, 22, 395. [Google Scholar] [CrossRef] [PubMed]
- Casas-Tintó, S. Drosophila as a Model for Human Disease: Insights into Rare and Ultra-Rare Diseases. Insects 2024, 15, 870. [Google Scholar] [CrossRef] [PubMed]
- McGurk, L.; Berson, A.; Bonini, N.M. Drosophila as an In Vivo Model for Human Neurodegenerative Disease. Genetics 2015, 201, 377–402. [Google Scholar] [CrossRef]
- Smalheiser, N.R.; Schwartz, N.B. Cranin: A laminin-binding protein of cell membranes. Proc. Natl. Acad. Sci. USA 1987, 84, 6457–6461. [Google Scholar] [CrossRef]
- Barresi, R.; Campbell, K.P. Dystroglycan: From biosynthesis to pathogenesis of human disease. J. Cell Sci. 2006, 119, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Deng, W.M.; Schneider, M.; Frock, R.; Castillejo-Lopez, C.; Gaman, E.A.; Baumgartner, S.; Ruohola-Baker, H. Dystroglycan is required for polarizing the epithelial cells and the oocyte in Drosophila. Development 2003, 130, 173–184. [Google Scholar] [CrossRef]
- Lyalin, D.; Koles, K.; Roosendaal, S.D.; Repnikova, E.; Van Wechel, L.; Panin, V.M. The twisted gene encodes Drosophila protein O-mannosyltransferase 2 and genetically interacts with the rotated abdomen gene encoding Drosophila protein O-mannosyltransferase 1. Genetics 2006, 172, 343–353. [Google Scholar] [CrossRef]
- Nakamura, N.; Stalnaker, S.H.; Lyalin, D.; Lavrova, O.; Wells, L.; Panin, V.M. Drosophila Dystroglycan is a target of O-mannosyltransferase activity of two protein O-mannosyltransferases, Rotated Abdomen and Twisted. Glycobiology 2010, 20, 381–394. [Google Scholar] [CrossRef]
- Praissman, J.L.; Willer, T.; Sheikh, M.O.; Toi, A.; Chitayat, D.; Lin, Y.Y.; Lee, H.; Stalnaker, S.H.; Wang, S.; Prabhakar, P.K.; et al. The functional O-mannose glycan on alpha-dystroglycan contains a phospho-ribitol primed for matriglycan addition. eLife 2016, 5, e14473. [Google Scholar] [CrossRef] [PubMed]
- Butterfield, R.J. Congenital Muscular Dystrophy and Congenital Myopathy. Continuum 2019, 25, 1640–1661. [Google Scholar] [CrossRef] [PubMed]
- Briggs, D.C.; Yoshida-Moriguchi, T.; Zheng, T.; Venzke, D.; Anderson, M.E.; Strazzulli, A.; Moracci, M.; Yu, L.; Hohenester, E.; Campbell, K.P. Structural basis of laminin binding to the LARGE glycans on dystroglycan. Nat. Chem. Biol. 2016, 12, 810–814. [Google Scholar] [CrossRef]
- Takagi, Y.; Nomizu, M.; Gullberg, D.; MacKrell, A.J.; Keene, D.R.; Yamada, Y.; Fessler, J.H. Conserved neuron promoting activity in Drosophila and vertebrate laminin alpha1. J. Biol. Chem. 1996, 271, 18074–18081. [Google Scholar] [CrossRef]
- Beckett, K.; Baylies, M.K. The development of the Drosophila larval body wall muscles. Int. Rev. Neurobiol. 2006, 75, 55–70. [Google Scholar] [CrossRef]
- Taghli-Lamallem, O.; Akasaka, T.; Hogg, G.; Nudel, U.; Yaffe, D.; Chamberlain, J.S.; Ocorr, K.; Bodmer, R. Dystrophin deficiency in Drosophila reduces lifespan and causes a dilated cardiomyopathy phenotype. Aging Cell 2008, 7, 237–249. [Google Scholar] [CrossRef] [PubMed]
- Haines, N.; Seabrooke, S.; Stewart, B.A. Dystroglycan and Protein O-Mannosyltransferases 1 and 2 Are Required to Maintain Integrity of Drosophila Larval Muscles. Mol. Biol. Cell 2007, 18, 4721–4730. [Google Scholar] [CrossRef] [PubMed]
- Kiss, A.A.; Somlyai-Popovics, N.; Kiss, M.; Boldogkői, Z.; Csiszár, K.; Mink, M. Type IV Collagen Is Essential for Proper Function of Integrin-Mediated Adhesion in Drosophila Muscle Fibers. Int. J. Mol. Sci. 2019, 20, 5124. [Google Scholar] [CrossRef] [PubMed]
- Gratz, S.J.; Harrison, M.M.; Wildonger, J.; O’Connor-Giles, K.M. Precise Genome Editing of Drosophila with CRISPR RNA-Guided Cas9. Methods Mol. Biol. 2015, 1311, 335–348. [Google Scholar] [CrossRef] [PubMed]
- Brand, A.H.; Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 1993, 118, 401–415. [Google Scholar] [CrossRef]
- Lai, S.L.; Lee, T. Genetic mosaic with dual binary transcriptional systems in Drosophila. Nat. Neurosci. 2006, 9, 703–709. [Google Scholar] [CrossRef]
- Yenigun, V.B.; Sirito, M.; Amcheslavky, A.; Czernuszewicz, T.; Colonques-Bellmunt, J.; García-Alcover, I.; Wojciechowska, M.; Bolduc, C.; Chen, Z.; López Castel, A.; et al. (CCUG)(n) RNA toxicity in a Drosophila model of myotonic dystrophy type 2 (DM2) activates apoptosis. Dis. Models Mech. 2017, 10, 993–1003. [Google Scholar] [CrossRef] [PubMed]
- García-Alcover, I.; Colonques-Bellmunt, J.; Garijo, R.; Tormo, J.R.; Artero, R.; Álvarez-Abril, M.C.; López Castel, A.; Pérez-Alonso, M. Development of a Drosophila melanogaster spliceosensor system for in vivo high-throughput screening in myotonic dystrophy type 1. Dis. Models Mech. 2014, 7, 1297–1306. [Google Scholar] [CrossRef]
- Garcia-Lopez, A.; Monferrer, L.; Garcia-Alcover, I.; Vicente-Crespo, M.; Alvarez-Abril, M.C.; Artero, R.D. Genetic and chemical modifiers of a CUG toxicity model in Drosophila. PLoS ONE 2008, 3, e1595. [Google Scholar] [CrossRef] [PubMed]
- Phipps, D.N.; Powell, A.M.; Ables, E.T. Utilizing the FLP-Out System for Clonal RNAi Analysis in the Adult Drosophila Ovary. Methods Mol. Biol. 2023, 2626, 69–87. [Google Scholar] [CrossRef]
- van der Plas, M.C.; Pilgram, G.S.; de Jong, A.W.; Bansraj, M.R.; Fradkin, L.G.; Noordermeer, J.N. Drosophila Dystrophin is required for integrity of the musculature. Mech. Dev. 2007, 124, 617–630. [Google Scholar] [CrossRef] [PubMed]
- Shcherbata, H.R.; Yatsenko, A.S.; Patterson, L.; Sood, V.D.; Nudel, U.; Yaffe, D.; Baker, D.; Ruohola-Baker, H. Dissecting muscle and neuronal disorders in a Drosophila model of muscular dystrophy. EMBO J. 2007, 26, 481–493. [Google Scholar] [CrossRef]
- McDonald, C.M.; Henricson, E.K.; Abresch, R.T.; Duong, T.; Joyce, N.C.; Hu, F.; Clemens, P.R.; Hoffman, E.P.; Cnaan, A.; Gordish-Dressman, H. Long-term effects of glucocorticoids on function, quality of life, and survival in patients with Duchenne muscular dystrophy: A prospective cohort study. Lancet 2018, 391, 451–461. [Google Scholar] [CrossRef] [PubMed]
- Flanigan, K.M. Duchenne and Becker muscular dystrophies. Neurol. Clin. 2014, 32, 671–688. [Google Scholar] [CrossRef] [PubMed]
- Potikanond, S.; Nimlamool, W.; Noordermeer, J.; Fradkin, L.G. Muscular Dystrophy Model. Adv. Exp. Med. Biol. 2018, 1076, 147–172. [Google Scholar] [CrossRef] [PubMed]
- Hamel, J.I. Myotonic Dystrophy. Continuum 2022, 28, 1715–1734. [Google Scholar] [CrossRef]
- Picchio, L.; Plantie, E.; Renaud, Y.; Poovthumkadavil, P.; Jagla, K. Novel Drosophila model of myotonic dystrophy type 1: Phenotypic characterization and genome-wide view of altered gene expression. Hum. Mol. Genet. 2013, 22, 2795–2810. [Google Scholar] [CrossRef] [PubMed]
- de Haro, M.; Al-Ramahi, I.; De Gouyon, B.; Ukani, L.; Rosa, A.; Faustino, N.A.; Ashizawa, T.; Cooper, T.A.; Botas, J. MBNL1 and CUGBP1 modify expanded CUG-induced toxicity in a Drosophila model of myotonic dystrophy type 1. Hum. Mol. Genet. 2006, 15, 2138–2145. [Google Scholar] [CrossRef] [PubMed]
- Houseley, J.M.; Wang, Z.; Brock, G.J.; Soloway, J.; Artero, R.; Perez-Alonso, M.; O’Dell, K.M.; Monckton, D.G. Myotonic dystrophy associated expanded CUG repeat muscleblind positive ribonuclear foci are not toxic to Drosophila. Hum. Mol. Genet. 2005, 14, 873–883. [Google Scholar] [CrossRef]
- Picchio, L.; Legagneux, V.; Deschamps, S.; Renaud, Y.; Chauveau, S.; Paillard, L.; Jagla, K. Bruno-3 regulates sarcomere component expression and contributes to muscle phenotypes of myotonic dystrophy type 1. Dis. Models Mech. 2018, 11, dmm031849. [Google Scholar] [CrossRef] [PubMed]
- Groh, W.J.; Groh, M.R.; Saha, C.; Kincaid, J.C.; Simmons, Z.; Ciafaloni, E.; Pourmand, R.; Otten, R.F.; Bhakta, D.; Nair, G.V.; et al. Electrocardiographic abnormalities and sudden death in myotonic dystrophy type 1. N. Engl. J. Med. 2008, 358, 2688–2697. [Google Scholar] [CrossRef]
- Souidi, A.; Zmojdzian, M.; Jagla, K. Dissecting Pathogenetic Mechanisms and Therapeutic Strategies in Drosophila Models of Myotonic Dystrophy Type 1. Int. J. Mol. Sci. 2018, 19, 4104. [Google Scholar] [CrossRef]
- Wang, L.H.; Tawil, R. Current Therapeutic Approaches in FSHD. J. Neuromuscul. Dis. 2021, 8, 441–451. [Google Scholar] [CrossRef]
- Pastorello, E.; Cao, M.; Trevisan, C.P. Atypical onset in a series of 122 cases with FacioScapuloHumeral Muscular Dystrophy. Clin. Neurol. Neurosurg. 2012, 114, 230–234. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Chadwick, B.P. CRISPR mediated targeting of DUX4 distal regulatory element represses DUX4 target genes dysregulated in Facioscapulohumeral muscular dystrophy. Sci. Rep. 2021, 11, 12598. [Google Scholar] [CrossRef]
- Jones, T.I.; Parilla, M.; Jones, P.L. Transgenic Drosophila for Investigating DUX4 and FRG1, Two Genes Associated with Facioscapulohumeral Muscular Dystrophy (FSHD). PLoS ONE 2016, 11, e0150938. [Google Scholar] [CrossRef]
- Neguembor, M.V.; Xynos, A.; Onorati, M.C.; Caccia, R.; Bortolanza, S.; Godio, C.; Pistoni, M.; Corona, D.F.; Schotta, G.; Gabellini, D. FSHD muscular dystrophy region gene 1 binds Suv4-20h1 histone methyltransferase and impairs myogenesis. J. Mol. Cell Biol. 2013, 5, 294–307. [Google Scholar] [CrossRef]
- Jiang, G.; Yang, F.; van Overveld, P.G.; Vedanarayanan, V.; van der Maarel, S.; Ehrlich, M. Testing the position-effect variegation hypothesis for facioscapulohumeral muscular dystrophy by analysis of histone modification and gene expression in subtelomeric 4q. Hum. Mol. Genet. 2003, 12, 2909–2921. [Google Scholar] [CrossRef] [PubMed]
- Bakker, E.; Wijmenga, C.; Vossen, R.H.; Padberg, G.W.; Hewitt, J.; van der Wielen, M.; Rasmussen, K.; Frants, R.R. The FSHD-linked locus D4F104S1 (p13E-11) on 4q35 has a homologue on 10qter. Muscle Nerve Suppl. 1995, 18, S39–S44. [Google Scholar] [CrossRef]
- Georganopoulou, D.G.; Moisiadis, V.G.; Malik, F.A.; Mohajer, A.; Dashevsky, T.M.; Wuu, S.T.; Hu, C.K. A Journey with LGMD: From Protein Abnormalities to Patient Impact. Protein J. 2021, 40, 466–488. [Google Scholar] [CrossRef] [PubMed]
- Allikian, M.J.; Bhabha, G.; Dospoy, P.; Heydemann, A.; Ryder, P.; Earley, J.U.; Wolf, M.J.; Rockman, H.A.; McNally, E.M. Reduced life span with heart and muscle dysfunction in Drosophila sarcoglycan mutants. Hum. Mol. Genet. 2007, 16, 2933–2943. [Google Scholar] [CrossRef]
- LaBeau-DiMenna, E.M.; Clark, K.A.; Bauman, K.D.; Parker, D.S.; Cripps, R.M.; Geisbrecht, E.R. Thin, a Trim32 ortholog, is essential for myofibril stability and is required for the integrity of the costamere in Drosophila. Proc. Natl. Acad. Sci. USA 2012, 109, 17983–17988. [Google Scholar] [CrossRef] [PubMed]
- Bawa, S.; Gameros, S.; Baumann, K.; Brooks, D.S.; Kollhoff, J.A.; Zolkiewski, M.; Re Cecconi, A.D.; Panini, N.; Russo, M.; Piccirillo, R.; et al. Costameric integrin and sarcoglycan protein levels are altered in a Drosophila model for Limb-girdle muscular dystrophy type 2H. Mol. Biol. Cell 2021, 32, 260–273. [Google Scholar] [CrossRef] [PubMed]
- Domsch, K.; Ezzeddine, N.; Nguyen, H.T. Abba is an essential TRIM/RBCC protein to maintain the integrity of sarcomeric cytoarchitecture. J. Cell Sci. 2013, 126, 3314–3323. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhang, P.; Freibaum, B.D.; Kim, N.C.; Kolaitis, R.M.; Molliex, A.; Kanagaraj, A.P.; Yabe, I.; Tanino, M.; Tanaka, S.; et al. Genetic interaction of hnRNPA2B1 and DNAJB6 in a Drosophila model of multisystem proteinopathy. Hum. Mol. Genet. 2016, 25, 936–950. [Google Scholar] [CrossRef] [PubMed]
- Iruzubieta, P.; Damborenea, A.; Ioghen, M.; Bajew, S.; Fernandez-Torrón, R.; Töpf, A.; Herrero-Reiriz, Á.; Epure, D.; Vill, K.; Hernández-Laín, A.; et al. Biallelic variants in SNUPN cause a limb girdle muscular dystrophy with myofibrillar-like features. Brain 2024, 147, 2867–2883. [Google Scholar] [CrossRef] [PubMed]
- Servián-Morilla, E.; Cabrera-Serrano, M.; Johnson, K.; Pandey, A.; Ito, A.; Rivas, E.; Chamova, T.; Muelas, N.; Mongini, T.; Nafissi, S.; et al. POGLUT1 biallelic mutations cause myopathy with reduced satellite cells, α-dystroglycan hypoglycosylation and a distinctive radiological pattern. Acta Neuropathol. 2020, 139, 565–582. [Google Scholar] [CrossRef]
- Saha, M.; Reddy, H.M.; Salih, M.A.; Estrella, E.; Jones, M.D.; Mitsuhashi, S.; Cho, K.A.; Suzuki-Hatano, S.; Rizzo, S.A.; Hamad, M.H.; et al. Impact of PYROXD1 deficiency on cellular respiration and correlations with genetic analyses of limb-girdle muscular dystrophy in Saudi Arabia and Sudan. Physiol. Genom. 2018, 50, 929–939. [Google Scholar] [CrossRef]
- Yogev, Y.; Shorer, Z.; Koifman, A.; Wormser, O.; Drabkin, M.; Halperin, D.; Dolgin, V.; Proskorovski-Ohayon, R.; Hadar, N.; Davidov, G.; et al. Limb girdle muscular disease caused by HMGCR mutation and statin myopathy treatable with mevalonolactone. Proc. Natl. Acad. Sci. USA 2023, 120, e2217831120. [Google Scholar] [CrossRef] [PubMed]
- Morales-Rosado, J.A.; Schwab, T.L.; Macklin-Mantia, S.K.; Foley, A.R.; Pinto, E.V.F.; Pehlivan, D.; Donkervoort, S.; Rosenfeld, J.A.; Boyum, G.E.; Hu, Y.; et al. Bi-allelic variants in HMGCR cause an autosomal-recessive progressive limb-girdle muscular dystrophy. Am. J. Hum. Genet. 2023, 110, 989–997. [Google Scholar] [CrossRef]
- Gunasekaran, M.; Littel, H.R.; Wells, N.M.; Turner, J.; Campos, G.; Venigalla, S.; Estrella, E.A.; Ghosh, P.S.; Daugherty, A.L.; Stafki, S.A.; et al. Effects of HMGCR deficiency on skeletal muscle development. bioRxiv 2024. [Google Scholar] [CrossRef]
- Jaeken, J.; Matthijs, G. Congenital disorders of glycosylation. Annu. Rev. Genom. Hum. Genet. 2001, 2, 129–151. [Google Scholar] [CrossRef]
- Balci, B.; Uyanik, G.; Dincer, P.; Gross, C.; Willer, T.; Talim, B.; Haliloglu, G.; Kale, G.; Hehr, U.; Winkler, J.; et al. An autosomal recessive limb girdle muscular dystrophy (LGMD2) with mild mental retardation is allelic to Walker-Warburg syndrome (WWS) caused by a mutation in the POMT1 gene. Neuromuscul. Disord. 2005, 15, 271–275. [Google Scholar] [CrossRef]
- Ichimiya, T.; Manya, H.; Ohmae, Y.; Yoshida, H.; Takahashi, K.; Ueda, R.; Endo, T.; Nishihara, S. The twisted abdomen phenotype of Drosophila POMT1 and POMT2 mutants coincides with their heterophilic protein O-mannosyltransferase activity. J. Biol. Chem. 2004, 279, 42638–42647. [Google Scholar] [CrossRef]
- Ueyama, M.; Akimoto, Y.; Ichimiya, T.; Ueda, R.; Kawakami, H.; Aigaki, T.; Nishihara, S. Increased apoptosis of myoblasts in Drosophila model for the Walker-Warburg syndrome. PLoS ONE 2010, 5, e11557. [Google Scholar] [CrossRef] [PubMed]
- Helbling-Leclerc, A.; Bonne, G.; Schwartz, K. Emery-Dreifuss muscular dystrophy. Eur. J. Hum. Genet. 2002, 10, 157–161. [Google Scholar] [CrossRef] [PubMed]
- Heller, S.A.; Shih, R.; Kalra, R.; Kang, P.B. Emery-Dreifuss muscular dystrophy. Muscle Nerve 2020, 61, 436–448. [Google Scholar] [CrossRef] [PubMed]
- Dialynas, G.; Speese, S.; Budnik, V.; Geyer, P.K.; Wallrath, L.L. The role of Drosophila Lamin C in muscle function and gene expression. Development 2010, 137, 3067–3077. [Google Scholar] [CrossRef]
- Uchino, R.; Nonaka, Y.K.; Horigome, T.; Sugiyama, S.; Furukawa, K. Loss of Drosophila A-type lamin C initially causes tendon abnormality including disintegration of cytoskeleton and nuclear lamina in muscular defects. Dev. Biol. 2013, 373, 216–227. [Google Scholar] [CrossRef]
- Morel, V.; Lepicard, S.; Rey, A.N.; Parmentier, M.L.; Schaeffer, L. Drosophila Nesprin-1 controls glutamate receptor density at neuromuscular junctions. Cell Mol. Life Sci. 2014, 71, 3363–3379. [Google Scholar] [CrossRef] [PubMed]
- Collins, M.A.; Mandigo, T.R.; Camuglia, J.M.; Vazquez, G.A.; Anderson, A.J.; Hudson, C.H.; Hanron, J.L.; Folker, E.S. Emery-Dreifuss muscular dystrophy-linked genes and centronuclear myopathy-linked genes regulate myonuclear movement by distinct mechanisms. Mol. Biol. Cell 2017, 28, 2303–2317. [Google Scholar] [CrossRef]
- Mandigo, T.R.; Turcich, B.D.; Anderson, A.J.; Hussey, M.R.; Folker, E.S. Drosophila emerins control LINC complex localization and transcription to regulate myonuclear position. J. Cell Sci. 2019, 132, jcs235580. [Google Scholar] [CrossRef]
- Naït-Saïdi, R.; Chartier, A.; Abgueguen, E.; Guédat, P.; Simonelig, M. The small compound Icerguastat reduces muscle defects in oculopharyngeal muscular dystrophy through the PERK pathway of the unfolded protein response. Open Biol. 2023, 13, 230008. [Google Scholar] [CrossRef]
- Chartier, A.; Benoit, B.; Simonelig, M. A Drosophila model of oculopharyngeal muscular dystrophy reveals intrinsic toxicity of PABPN1. EMBO J. 2006, 25, 2253–2262. [Google Scholar] [CrossRef]
- Kühn, U.; Nemeth, A.; Meyer, S.; Wahle, E. The RNA binding domains of the nuclear poly(A)-binding protein. J. Biol. Chem. 2003, 278, 16916–16925. [Google Scholar] [CrossRef] [PubMed]
- Ribot, C.; Soler, C.; Chartier, A.; Al Hayek, S.; Naït-Saïdi, R.; Barbezier, N.; Coux, O.; Simonelig, M. Activation of the ubiquitin-proteasome system contributes to oculopharyngeal muscular dystrophy through muscle atrophy. PLoS Genet. 2022, 18, e1010015. [Google Scholar] [CrossRef] [PubMed]
- Coni, S.; Falconio, F.A.; Marzullo, M.; Munafò, M.; Zuliani, B.; Mosti, F.; Fatica, A.; Ianniello, Z.; Bordone, R.; Macone, A.; et al. Translational control of polyamine metabolism by CNBP is required for Drosophila locomotor function. eLife 2021, 10, e69269. [Google Scholar] [CrossRef] [PubMed]
- Blázquez-Bernal, Á.; Fernandez-Costa, J.M.; Bargiela, A.; Artero, R. Inhibition of autophagy rescues muscle atrophy in a LGMDD2 Drosophila model. FASEB J. 2021, 35, e21914. [Google Scholar] [CrossRef]
Disease Type | Modeling in Drosophila | Pathology in Human | Key Genes |
---|---|---|---|
Duchenne and Becker muscular dystrophy (DMD/BMD) | Muscle rupture, detachment from tendon cells, progressive climbing defects, reduced lifespan, and cardiac abnormalities | Muscle degeneration, progressive mobility loss, and dilated cardiomyopathy | DMD (encodes the dystrophin protein, all isoforms or Dp117) [39,40] |
Myotonic dystrophy (DM) | RNA toxicity, RNA foci formation, sarcomeric protein dysregulation, and muscle degeneration | RNA foci in cells, muscle weakness, conduction defects, and arrhythmias | MBNL [44,45,46], CUGBP1 [46], and CNBP (related to DM2) [85] |
Facioscapulohumeral muscular dystrophy (FSHD) | Winged scapula-like phenotype and muscle degeneration | Facial and proximal arm weakness and asymmetric muscle involvement | DUX4 [54] and FRG1 [54] |
Limb-girdle muscular dystrophy (LGMD) | Shortened sarcomeres, disorganized M lines, impaired flight ability, and Z-disk disorganization | Pelvic and shoulder girdle muscle weakness and progressive atrophy | abba [62] and TNPO3 [86] |
Congenital muscular dystrophy (CMD) | Thin or deficient abdominal muscles, attachment defects, sarcomeric disarray, and increased apoptosis of myoblasts | Severe muscle weakness at birth and brain abnormalities (e.g., Walker–Warburg Syndrome and Fukuyama CMD) | POMT1 [30], POMT2 [30], COL4A1 [31], and Lamin C [76] |
Emery–Dreifuss muscular dystrophy (EDMD) | Muscle and tendon defects, nuclear envelope fragmentation, and impaired nuclear positioning | Early contractures, cardiac conduction defects, and progressive muscle weakness | Emerin [79] and Nesprin [79] |
Oculopharyngeal muscular dystrophy (OPMD) | Muscle degeneration, nuclear inclusions, disorganized myofibrils, and ER stress activation | Progressive muscle weakness in eyelids, throat, and proximal limbs | PABPN1 [81] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Wang, Y.; Tulehalede, A.; Meng, Z.; Xu, L.; Bai, H.; Sha, J.; Xie, W.; Geng, J. Drosophila melanogaster: A Model Organism in Muscular Dystrophy Studies. Int. J. Mol. Sci. 2025, 26, 1459. https://doi.org/10.3390/ijms26041459
Zhao Y, Wang Y, Tulehalede A, Meng Z, Xu L, Bai H, Sha J, Xie W, Geng J. Drosophila melanogaster: A Model Organism in Muscular Dystrophy Studies. International Journal of Molecular Sciences. 2025; 26(4):1459. https://doi.org/10.3390/ijms26041459
Chicago/Turabian StyleZhao, Yu, Yujie Wang, Ayibota Tulehalede, Zhu Meng, Lizhong Xu, Huashuai Bai, Junhui Sha, Wei Xie, and Junhua Geng. 2025. "Drosophila melanogaster: A Model Organism in Muscular Dystrophy Studies" International Journal of Molecular Sciences 26, no. 4: 1459. https://doi.org/10.3390/ijms26041459
APA StyleZhao, Y., Wang, Y., Tulehalede, A., Meng, Z., Xu, L., Bai, H., Sha, J., Xie, W., & Geng, J. (2025). Drosophila melanogaster: A Model Organism in Muscular Dystrophy Studies. International Journal of Molecular Sciences, 26(4), 1459. https://doi.org/10.3390/ijms26041459