Activation of Metabisulfite by Dissolved Fe(III) at Environmentally Relevant Concentrations for Organic Contaminants Degradation
Abstract
1. Introduction
2. Results and Discussion
2.1. Removal of Organic Contaminants in the Iron-Activated Metabisulfite Process
2.2. Effect of Reaction Parameters
2.3. Possible Activation Mechanism
2.4. Effect of Water Matrix
2.5. Possible Degradation Pathway of AO7
3. Materials and Methods
3.1. Materials
3.2. Experimental Procedure
3.3. Analytical Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anipsitakis, G.P.; Dionysiou, D.D. Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt. Environ. Sci. Technol. 2003, 37, 4790–4797. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Pang, S.; Jiang, J.; Ma, J.; Huang, Z.; Zhang, J.; Liu, Y.; Xu, C.; Liu, Q.; Yuan, Y. The combination of ferrate(VI) and sulfite as a novel advanced oxidation process for enhanced degradation of organic contaminants. Chem. Eng. J. 2018, 333, 11–19. [Google Scholar] [CrossRef]
- Zhou, X.; Li, X.; Xiang, Y.; Zhang, H.; He, C.; Xiong, Z.; Li, W.; Zhou, P.; Zhou, H.; Liu, Y.; et al. The application of low-valent sulfur oxy-acid salts in advanced oxidation and reduction processes: A review. Chin. Chem. Lett. 2024; in press. [Google Scholar] [CrossRef]
- Ren, Y.; Chu, Y.; Li, N.; Lai, B.; Zhang, W.; Liu, C.; Li, J. A critical review of environmental remediation via iron-mediated sulfite advanced oxidation processes. Chem. Eng. J. 2023, 455, 140859. [Google Scholar] [CrossRef]
- Gao, Y.; Fan, W.; Zhang, Z.; Zhou, Y.; Zeng, Z.; Yan, K.; Ma, J.; Hanna, K. Transformation mechanisms of iopamidol by iron/sulfite systems: Involvement of multiple reactive species and efficiency in real water. J. Hazard. Mater. 2022, 426, 128114. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.; Chen, L.; Li, J.; Wu, F. Transition metal catalyzed sulfite auto-oxidation systems for oxidative decontamination in waters: A state-of-the-art minireview. Chem. Eng. J. 2018, 346, 726–738. [Google Scholar] [CrossRef]
- Farinelli, G.; Gil, A.G.; Marugan, J.; Minella, M.; Fabbri, D.; Laurenti, E.; Tiraferri, A.; Vione, D. The dominant role of the peroxymonosulfate radical for removing contaminants in a Fenton process with metabisulfite. Environ. Chem. Lett. 2024, 22, 43–48. [Google Scholar] [CrossRef]
- Hayon, E.; Treinin, A.; Wilf, J. Electronic spectra, photochemistry, and autoxidation mechanism of the sulfite-bisulfite-pyrosulfite systems. SO2−, SO3−, SO4−, and SO5− radicals. J. Am. Chem. Soc. 1972, 94, 47–57. [Google Scholar] [CrossRef]
- Ahmadi, F.; Lee, Y.H.; Lee, W.H.; Oh, Y.K.; Park, K.K.; Kwak, W.S. Preservation of fruit and vegetable discards with sodium metabisulfite. J. Environ. Manag. 2018, 224, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Gromboni, C.F.; Donati, G.L.; Matos, W.O.; Neves, E.F.A.; Nogueira, A.R.A.; Nóbrega, J.A. Evaluation of metabisulfite and a commercial steel wool for removing chromium(VI) from wastewater. Environ. Chem. Lett. 2010, 8, 73–77. [Google Scholar] [CrossRef]
- Ma, J.; Liu, C.; Chen, K. Removal of Cr(VI) species from water with a newly-designed adsorptive treatment train. Sep. Purif. Technol. 2020, 234, 116041. [Google Scholar] [CrossRef]
- Liu, T.; Liu, Y.; Zhang, H.; Zhou, P.; Li, W.; Xiong, Z.; He, C.; Du, Y.; Yao, G.; Lai, B. New insights on the efficiency and mechanism of dissolved oxygen regulating the redox removal of organic pollutants by S(IV) system. Sep. Purif. Technol. 2025, 354, 128880. [Google Scholar] [CrossRef]
- Liu, T.; Liu, Y.; Zhou, P.; Xiong, Z.; Zhang, H.; He, C.; Du, Y.; Yao, G.; Lai, B. New insight of zero-valent iron activation S(IV) in absence of external hydrogenation ions for decomposing micropollutants: Two radical generation pathways depending on O2. J. Hazard. Mater. 2022, 440, 129809. [Google Scholar] [CrossRef]
- Savia, F.; Adesina, A.O.; Carena, L.; Vione, D. Assessment of Fenton systems based on metabisulphite as a low-cost alternative to hydrogen peroxide. J. Environ. Chem. Eng. 2023, 11, 110707. [Google Scholar] [CrossRef]
- Wilfert, P.; Kumar, P.S.; Korving, L.; Witkamp, G.-J.; van Loosdrecht, M.C.M. The Relevance of Phosphorus and Iron Chemistry to the Recovery of Phosphorus from Wastewater: A Review. Environ. Sci. Technol. 2015, 49, 9400–9414. [Google Scholar] [CrossRef]
- Zhang, Y.; Peng, G.; Yan, Y.; Meng, X.; Gong, W. Highly Efficient Removal of Organic Pollutants with HCO3−-Enhanced Ru(III)/NaClO Process. Int. J. Mol. Sci. 2025, 26, 677. [Google Scholar] [CrossRef]
- Qi, C.; Wen, Y.; Zhao, Y.; Dai, Y.; Li, Y.; Xu, C.; Yang, S.; He, H. Enhanced degradation of organic contaminants by Fe(III)/peroxymonosulfate process with l-cysteine. Chin. Chem. Lett. 2022, 33, 2125–2128. [Google Scholar] [CrossRef]
- Yuan, Y.; Yang, S.; Zhou, D.; Wu, F. A simple Cr(VI)–S(IV)–O2 system for rapid and simultaneous reduction of Cr(VI) and oxidative degradation of organic pollutants. J. Hazard. Mater. 2016, 307, 294–301. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Xie, Z.; Zhou, P.; Xiong, Z.; Zhang, H.; Pan, Z.; Liu, Y.; Lai, B. Enhanced degradation of carbamazepine by iron/S(IV) system using a novel S(IV) source. Chem. Eng. J. 2022, 431, 133464. [Google Scholar] [CrossRef]
- Wang, Z.; Bai, F.; Cao, L.; Yue, S.; Wang, J.; Wang, S.; Ma, J.; Xie, P. Activation of sulfite by ferric ion for the degradation of 2,4,6-tribromophenol with the addition of sulfite in batches. Chin. Chem. Lett. 2022, 33, 4766–4770. [Google Scholar] [CrossRef]
- Dong, H.; Wei, G.; Yin, D.; Guan, X. Mechanistic insight into the generation of reactive oxygen species in sulfite activation with Fe(III) for contaminants degradation. J. Hazard. Mater. 2020, 384, 121497. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.; Yuan, Y.; Yang, S.; Gao, H.; Chen, L. Roles of oxysulfur radicals in the oxidation of acid orange 7 in the Fe(III)–sulfite system. J. Sulfur Chem. 2015, 36, 373–384. [Google Scholar] [CrossRef]
- Yuan, Y.; Luo, T.; Xu, J.; Li, J.; Wu, F.; Brigante, M.; Mailhot, G. Enhanced oxidation of aniline using Fe(III)-S(IV) system: Role of different oxysulfur radicals. Chem. Eng. J. 2019, 362, 183–189. [Google Scholar] [CrossRef]
- Yu, Y.; Li, S.; Peng, X.; Yang, S.; Zhu, Y.; Chen, L.; Wu, F.; Mailhot, G. Efficient oxidation of bisphenol A with oxysulfur radicals generated by iron-catalyzed autoxidation of sulfite at circumneutral pH under UV irradiation. Environ. Chem. Lett. 2016, 14, 527–532. [Google Scholar] [CrossRef]
- Wang, S.; Wang, G.; Fu, Y.; Wang, H.; Liu, Y. A simple Fe3+/bisulfite system for rapid degradation of sulfamethoxazole. RSC Adv. 2020, 10, 30162–30168. [Google Scholar] [CrossRef]
- Xie, P.; Zhang, L.; Wang, J.; Zou, Y.; Wang, S.; Yue, S.; Wang, Z.; Ma, J. Transformation of tetrabromobisphenol a in the iron ions-catalyzed auto-oxidation of HSO32−/SO32− process. Separ. Purif. Technol. 2020, 235, 116197. [Google Scholar] [CrossRef]
- Wang, C.; Huo, Y.; Lu, W.; Shen, X.; Xu, L. A comparative study of sulfite activation using different transition metal ions for the degradation of bisphenol A. J. Environ. Chem. Eng. 2024, 12, 112432. [Google Scholar] [CrossRef]
- Zeng, H.; Cheng, Y.; Repo, E.; Yu, X.; Xing, X.; Zhang, T.; Zhao, X. Trace Iron as single-electron shuttle for interdependent activation of peroxydisulfate and HSO3−/O2 enables accelerated generation of radicals. Water Res. 2022, 223, 118935. [Google Scholar] [CrossRef] [PubMed]
- Kuo, D.T.F.; Kirk, D.W.; Jia, C.Q. The chemistry of aqueous S(IV)-Fe-O2 system: State of the art. J. Sulfur Chem. 2006, 27, 461–530. [Google Scholar] [CrossRef]
- Qi, C.; Liu, X.; Li, Y.; Lin, C.; Ma, J.; Li, X.; Zhang, H. Enhanced degradation of organic contaminants in water by peroxydisulfate coupled with bisulfite. J. Hazard. Mater. 2017, 328, 98–107. [Google Scholar] [CrossRef]
- Chen, L.; Peng, X.; Liu, J.; Li, J.; Wu, F. Decolorization of Orange II in Aqueous Solution by an Fe(II)/sulfite System: Replacement of Persulfate. Ind. Eng. Chem. Res. 2012, 51, 13632–13638. [Google Scholar] [CrossRef]
- Ding, W.; Huang, X.; Zhang, W.; Wu, F.; Li, J. Sulfite activation by a low-leaching silica-supported copper catalyst for oxidation of As(III) in water at circumneutral pH. Chem. Eng. J. 2019, 359, 1518–1526. [Google Scholar] [CrossRef]
- Wang, H.; Wang, S.; Liu, Y.; Fu, Y.; Wu, P.; Zhou, G. Degradation of diclofenac by Fe(II)-activated bisulfite: Kinetics, mechanism and transformation products. Chemosphere 2019, 237, 124518. [Google Scholar] [CrossRef]
- Fang, L.; Chen, H.; Liao, P.; Ma, Y.; Lv, Y. Enhanced degradation of tetracycline hydrochloride by microwave-activated sulfites: Influencing factors and mechanisms. J. Water Process Eng. 2024, 60, 105153. [Google Scholar] [CrossRef]
- Gong, W.; He, D.; Wang, X.; Yan, Y.; Dionysiou, D.D.; Blaney, L.; Peng, G. The role of Fe(IV) in the zero-valent iron biochar activated persulfate system for treatment of contaminants of emerging concern. Chem. Eng. J. 2024, 487, 150553. [Google Scholar] [CrossRef]
- Xue, Y.; Wang, Z.; Naidu, R.; Bush, R.; Yang, F.; Liu, J.; Huang, M. Role of halide ions on organic pollutants degradation by peroxygens-based advanced oxidation processes: A critical review. Chem. Eng. J. 2022, 433, 134546. [Google Scholar] [CrossRef]
- Yang, X.; Rosario-Ortiz, F.L.; Lei, Y.; Pan, Y.; Lei, X.; Westerhoff, P. Multiple Roles of Dissolved Organic Matter in Advanced Oxidation Processes. Environ. Sci. Technol. 2022, 56, 11111–11131. [Google Scholar] [CrossRef]
- Ali, J.; Shahzad, A.; Wang, J.; Ifthikar, J.; Lei, W.; Aregay, G.G.; Chen, Z.; Chen, Z. Modulating the redox cycles of homogenous Fe(III)/PMS system through constructing electron rich thiomolybdate centres in confined layered double hydroxides. Chem. Eng. J. 2021, 408, 127242. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S. Effect of inorganic anions on the performance of advanced oxidation processes for degradation of organic contaminants. Chem. Eng. J. 2021, 411, 128392. [Google Scholar] [CrossRef]
- Qi, C.; Yu, G.; Huang, J.; Wang, B.; Wang, Y.; Deng, S. Activation of persulfate by modified drinking water treatment residuals for sulfamethoxazole degradation. Chem. Eng. J. 2018, 353, 490–498. [Google Scholar] [CrossRef]
- Chen, Y.; Tong, Y.; Liu, Z.; Huang, L.-Z.; Yuan, J.; Xue, Y.; Fang, Z. Enhanced degradation of Orange II using a novel UV/persulfate/sulfite system. Environ. Chem. Lett. 2019, 17, 1435–1439. [Google Scholar] [CrossRef]
- Zhou, D.; Chen, L.; Zhang, C.; Yu, Y.; Zhang, L.; Wu, F. A novel photochemical system of ferrous sulfite complex: Kinetics and mechanisms of rapid decolorization of Acid Orange 7 in aqueous solutions. Water Res. 2014, 57, 87–95. [Google Scholar] [CrossRef]
- Huo, Y.; Zheng, H.; Jiang, Y.; Chen, H.; Cao, W.; Mameda, N.; Nghiem, L.D.; Zhang, X.; Liu, Q. Comparison and Characterization of Nitrogen/Sulfur-Doped Activated Carbon for Activating Peroxydisulfate to Degrade Acid Orange 7: An Experimental and Theoretical Study. Ind. Eng. Chem. Res. 2023, 62, 11894–11904. [Google Scholar] [CrossRef]
- Liu, Y.-C.; Liu, X.; Wang, X.; Li, Z.-H.; Chen, C.-L.; Xiang, Z. Hybrid persulfate/sonocatalysis for degradation of acid orange 7 in the presence of Ag2O/CuWO4 composite: Operating parameters and sonocatalytic mechanism. J. Clean. Prod. 2023, 394, 136287. [Google Scholar] [CrossRef]
- Cai, C.; Zhang, H.; Zhong, X.; Hou, L. Electrochemical enhanced heterogeneous activation of peroxydisulfate by Fe-Co/SBA-15 catalyst for the degradation of Orange II in water. Water Res. 2014, 66, 473–485. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Chen, L.; Wu, L.; Yan, C.; Sun, N.; Peng, G.; Yang, S.; He, H.; Qi, C. Activation of Metabisulfite by Dissolved Fe(III) at Environmentally Relevant Concentrations for Organic Contaminants Degradation. Int. J. Mol. Sci. 2025, 26, 953. https://doi.org/10.3390/ijms26030953
Chen J, Chen L, Wu L, Yan C, Sun N, Peng G, Yang S, He H, Qi C. Activation of Metabisulfite by Dissolved Fe(III) at Environmentally Relevant Concentrations for Organic Contaminants Degradation. International Journal of Molecular Sciences. 2025; 26(3):953. https://doi.org/10.3390/ijms26030953
Chicago/Turabian StyleChen, Jianan, Longjiong Chen, Leliang Wu, Chengyu Yan, Ningxin Sun, Guilong Peng, Shaogui Yang, Huan He, and Chengdu Qi. 2025. "Activation of Metabisulfite by Dissolved Fe(III) at Environmentally Relevant Concentrations for Organic Contaminants Degradation" International Journal of Molecular Sciences 26, no. 3: 953. https://doi.org/10.3390/ijms26030953
APA StyleChen, J., Chen, L., Wu, L., Yan, C., Sun, N., Peng, G., Yang, S., He, H., & Qi, C. (2025). Activation of Metabisulfite by Dissolved Fe(III) at Environmentally Relevant Concentrations for Organic Contaminants Degradation. International Journal of Molecular Sciences, 26(3), 953. https://doi.org/10.3390/ijms26030953