Constructing Photoactive Au NP/MXene–BiOCl Moiré Superlattice Nanosheets for Photoelectrochemical Detection of Protein Kinase Activity
Abstract
:1. Introduction
2. Results and Discussion
2.1. Design of the PEC Biosensor
2.2. Characterization of the Synthesized Au NP/MXene–BiOCl Nanocomposites
2.3. Electrochemical and PEC Responses of the Biosensor
2.4. Optimization and Establishment of the PEC Biosensor for the Detection of PKA
2.5. Application in Real Sample Analysis
3. Materials and Methods
3.1. Reagents and Materials
3.2. Synthesis of Moiré Superlattice BiOCl Spiral Nanosheets and Ti3C2 MXene Nanosheets
3.3. Synthesis of Au NP/MXene–BiOCl Nanocomposite
3.4. Apparatus and Characterization
3.5. Biosensor Fabrication
3.6. Cell Culture and Preparation of Protein Lysate
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Whitmarsh, A.J.; Davis, R.J. Signal Transduction by MAP Kinases: Regulation by Phosphorylation-Dependent Switches. Sci. STKE 1999, 1999, pe1. [Google Scholar] [CrossRef] [PubMed]
- Scott, J.D. Cyclic nucleotide-dependent protein kinases. Pharmacol. Ther. 1991, 50, 123–145. [Google Scholar] [CrossRef] [PubMed]
- Hu, R.; Yan, H.; Fei, X.; Liu, H.; Wu, J. Modulation of glucose metabolism by a natural compound from Chloranthus japonicus via activation of AMP-activated protein kinase. Sci. Rep. 2017, 7, 778. [Google Scholar] [CrossRef] [PubMed]
- Anderson, M.E.; Higgins, L.S.; Schulman, H. Disease mechanisms and emerging therapies: Protein kinases and their inhibitors in myocardial disease. Nat. Clin. Pract. Cardiovasc. Med. 2006, 3, 437–445. [Google Scholar] [CrossRef]
- Force, T.; Kuida, K.; Namchuk, M.; Parang, K.; Kyriakis, J.M. Inhibitors of Protein Kinase Signaling Pathways. Circulation 2004, 109, 1196–1205. [Google Scholar] [CrossRef]
- Frederich, M.; O’Rourke, M.R.; Furey, N.B.; Jost, J.A. AMP-activated protein kinase (AMPK) in the rock crab, Cancer irroratus: An early indicator of temperature stress. J. Exp. Biol. 2009, 212, 722–730. [Google Scholar] [CrossRef]
- Bamberger, A.-M.; Bamberger, C.M.; Wald, M.; Kratzmeier, M.; Schulte, H.M. Protein kinase C (PKC) isoenzyme expression pattern as an indicator of proliferative activity in uterine tumor cells. Mol. Cell. Endocrinol. 1996, 123, 81–88. [Google Scholar] [CrossRef]
- Zhou, J.; Xu, X.; Liu, X.; Li, H.; Nie, Z.; Qing, M.; Huang, Y.; Yao, S. A gold nanoparticles colorimetric assay for label-free detection of protein kinase activity based on phosphorylation protection against exopeptidase cleavage. Biosens. Bioelectron. 2014, 53, 295–300. [Google Scholar] [CrossRef]
- Liu, Z.; Bai, J.; Liang, C.; Wang, Y.; Nie, H.; Liu, X.; Yan, H. Sensitive fluorescent biosensor based on a europium-based metal-organic framework for protein kinase activity analysis. Biosens. Bioelectron. 2022, 203, 114055. [Google Scholar] [CrossRef]
- Franciosa, G.; Locard-Paulet, M.; Jensen, L.J.; Olsen, J.V. Recent advances in kinase signaling network profiling by mass spectrometry. Curr. Opin. Chem. Biol. 2023, 73, 102260. [Google Scholar] [CrossRef]
- Miao, X.; Li, Z.; Zhu, A.; Feng, Z.; Tian, J.; Peng, X. Ultrasensitive electrochemical detection of protein tyrosine kinase-7 by gold nanoparticles and methylene blue assisted signal amplification. Biosens. Bioelectron. 2016, 83, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, X.; Waterhouse, G.I.N.; Zhou, Y.; Yin, H.; Ai, S. Photoelectrochemical biosensor for protein kinase A detection based on carbon microspheres, peptide functionalized Au-ZIF-8 and TiO2/g-C3N4. Talanta 2019, 196, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Devadoss, A.; Sudhagar, P.; Terashima, C.; Nakata, K.; Fujishima, A. Photoelectrochemical biosensors: New insights into promising photoelectrodes and signal amplification strategies. J. Photochem. Photobiol. C Photochem. Rev. 2015, 24, 43–63. [Google Scholar] [CrossRef]
- Zhao, W.-W.; Xu, J.-J.; Chen, H.-Y. Photoelectrochemical DNA Biosensors. Chem. Rev. 2014, 114, 7421–7441. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Cao, J.-T.; Liu, Y.-M. Recent progress of heterostructure-based photoelectrodes in photoelectrochemical biosensing: A mini review. Analyst 2020, 145, 1121–1128. [Google Scholar] [CrossRef]
- Cui, A.; Dong, L.; Hou, Y.; Mu, X.; Sun, Y.; Wang, H.; Zhong, X.; Shan, G. NIR-driven multifunctional PEC biosensor based on aptamer-modified PDA/MnO2 photoelectrode for bacterial detection and inactivation. Biosens. Bioelectron. 2024, 257, 116320. [Google Scholar] [CrossRef]
- Tu, W.; Wang, Z.; Dai, Z. Selective photoelectrochemical architectures for biosensing: Design, mechanism and responsibility. TrAC Trends Anal. Chem. 2018, 105, 470–483. [Google Scholar] [CrossRef]
- Gao, L.; Zhou, Y.; Cao, L.; Cui, X.; Zheng, Y.; Yin, H.; Ai, S. Photoelectrochemical Biosensor for Histone Deacetylase Sirt1 Detection Based on Polyaspartic Acid-Engaged and Triggered Redox Cycling Amplification and Enhanced Photoactivity of BiVO4 by Gold Nanoparticles and SnS2. Anal. Chem. 2022, 94, 16936–16944. [Google Scholar] [CrossRef]
- Li, X.; Zhu, L.; Zhou, Y.; Yin, H.; Ai, S. Enhanced Photoelectrochemical Method for Sensitive Detection of Protein Kinase A Activity Using TiO2/g-C3N4, PAMAM Dendrimer, and Alkaline Phosphatase. Anal. Chem. 2017, 89, 2369–2376. [Google Scholar] [CrossRef]
- Yan, Z.; Wang, Z.; Miao, Z.; Liu, Y. Dye-Sensitized and Localized Surface Plasmon Resonance Enhanced Visible-Light Photoelectrochemical Biosensors for Highly Sensitive Analysis of Protein Kinase Activity. Anal. Chem. 2016, 88, 922–929. [Google Scholar] [CrossRef]
- Cheng, W.; Zheng, Z.; Yang, J.; Chen, M.; Yao, Q.; Chen, Y.; Gao, W. The visible light-driven and self-powered photoelectrochemical biosensor for organophosphate pesticides detection based on nitrogen doped carbon quantum dots for the signal amplification. Electrochim. Acta 2019, 296, 627–636. [Google Scholar] [CrossRef]
- Jiao, S.; Liu, L.; Wang, J.; Ma, K.; Lv, J. A Novel Biosensor Based on Molybdenum Disulfide (MoS2) Modified Porous Anodic Aluminum Oxide Nanochannels for Ultrasensitive microRNA-155 Detection. Small 2020, 16, 2001223. [Google Scholar] [CrossRef] [PubMed]
- Zong, C.; Kong, L.; Li, C.; Xv, H.; Lv, M.; Chen, X.; Li, C. Light-harvesting iridium (III) complex-sensitized NiO photocathode for photoelectrochemical bioanalysis. Microchim. Acta 2024, 191, 223. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Wu, Y.; Wang, J.; Wu, Y.; Weng, Z.; Huang, W.; Yang, K.; Zhang, J.; Li, Q.; Lu, K.; et al. Rationally designed dual cocatalysts on ZnIn2S4 nanoflowers for photoredox coupling of benzyl alcohol oxidation with H2 evolution. J. Mater. Chem. A 2024, 12, 18986–18992. [Google Scholar] [CrossRef]
- Lu, K.; Hao, J.; Weng, Y.; Weng, B.; Ge, S.; Yang, K.; Lu, S.; Yang, M.; Liao, Y. Photocatalytic Conversion of Diluted CO2 into Tunable Syngas via Modulating Transition Metal Hydroxides. Inorg. Chem. 2024, 63, 795–802. [Google Scholar] [CrossRef]
- Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M.W. Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253. [Google Scholar] [CrossRef]
- Naguib, M.; Mochalin, V.N.; Barsoum, M.W.; Gogotsi, Y. 25th Anniversary Article: MXenes: A New Family of Two-Dimensional Materials. Adv. Mater. 2014, 26, 992–1005. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, H.; Han, Z.; Bo, Z.; Yan, J.; Cen, K.; Ostrikov, K.K. MXene-Based Electrodes for Supercapacitor Energy Storage. Energy Fuels 2022, 36, 2390–2406. [Google Scholar] [CrossRef]
- Wang, X.; Shen, X.; Gao, Y.; Wang, Z.; Yu, R.; Chen, L. Atomic-Scale Recognition of Surface Structure and Intercalation Mechanism of Ti3C2X. J. Am. Chem. Soc. 2015, 137, 2715–2721. [Google Scholar] [CrossRef]
- Wei, Z.; Zhang, H.; Zhang, F.; Xia, J.; Meng, Q.; Huang, H.; Wang, Z. Construction of self-enhanced luminescence probes based on Ti3C2 reducibility for ultrasensitive PNK analysis. Biosens. Bioelectron. 2024, 256, 116236. [Google Scholar] [CrossRef]
- Zhang, H.; Zhuang, T.; Wang, L.; Du, L.; Xia, J.; Wang, Z. Efficient Au nanocluster@Ti3C2 heterostructure luminophore combined with Cas12a for electrochemiluminescence detection of miRNA. Sens. Actuators B Chem. 2022, 370, 132428. [Google Scholar] [CrossRef]
- Alwarappan, S.; Nesakumar, N.; Sun, D.; Hu, T.Y.; Li, C.-Z. 2D metal carbides and nitrides (MXenes) for sensors and biosensors. Biosens. Bioelectron. 2022, 205, 113943. [Google Scholar] [CrossRef] [PubMed]
- Soomro, R.A.; Jawaid, S.; Kalawar, N.H.; Tunesi, M.; Karakuş, S.; Kilislioğlu, A.; Willander, M. In-situ engineered MXene-TiO2/BiVO4 hybrid as an efficient photoelectrochemical platform for sensitive detection of soluble CD44 proteins. Biosens. Bioelectron. 2020, 166, 112439. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Chen, M.; Huang, D.; Zeng, G.; Xu, P.; Zhou, C.; Lai, C.; Wang, H.; Cheng, M.; Wang, W. Multiply structural optimized strategies for bismuth oxyhalide photocatalysis and their environmental application. Chem. Eng. J. 2019, 374, 1025–1045. [Google Scholar] [CrossRef]
- Liu, L.; Sun, Y.; Cui, X.; Qi, K.; He, X.; Bao, Q.; Ma, W.; Lu, J.; Fang, H.; Zhang, P.; et al. Bottom-up growth of homogeneous Moiré superlattices in bismuth oxychloride spiral nanosheets. Nat. Commun. 2019, 10, 4472. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, Y.; Zhang, H.; Liu, M.; Liu, Y. Integrating Highly Efficient Recognition and Signal Transition of g-C3N4 Embellished Ti3C2 MXene Hybrid Nanosheets for Electrogenerated Chemiluminescence Analysis of Protein Kinase Activity. Anal. Chem. 2020, 92, 10668–10676. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Z.; Wang, F.; Zhang, Y.; Wang, H.; Liu, Y. In Situ Formation of Gold Nanoparticles Decorated Ti3C2 MXenes Nanoprobe for Highly Sensitive Electrogenerated Chemiluminescence Detection of Exosomes and Their Surface Proteins. Anal. Chem. 2020, 92, 5546–5553. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, N.; He, Y.; Liu, Y.; Li, J. DNA Assembled Gold Nanoparticles Polymeric Network Blocks Modular Highly Sensitive Electrochemical Biosensors for Protein Kinase Activity Analysis and Inhibition. Anal. Chem. 2014, 86, 6153–6159. [Google Scholar] [CrossRef]
- Shen, C.; Li, X.; Rasooly, A.; Guo, L.; Zhang, K.; Yang, M. A single electrochemical biosensor for detecting the activity and inhibition of both protein kinase and alkaline phosphatase based on phosphate ions induced deposition of redox precipitates. Biosens. Bioelectron. 2016, 85, 220–225. [Google Scholar] [CrossRef]
- Wang, Z.; Yan, Z.; Wang, F.; Cai, J.; Guo, L.; Su, J.; Liu, Y. Highly sensitive photoelectrochemical biosensor for kinase activity detection and inhibition based on the surface defect recognition and multiple signal amplification of metal-organic frameworks. Biosens. Bioelectron. 2017, 97, 107–114. [Google Scholar] [CrossRef]
- Yan, Z.; Li, Y.; Wei, X.; Li, P.; Jiang, J.; Chen, Y.; Duan, P.; Wang, X.; Deng, P.; Liu, X. Sensitive photoelectrochemical biosensors based on AuNPs/MXenes electrode coupled with light-harvesting UiO-66-NH2 probes for protein kinase detection. Biosens. Bioelectron. X 2022, 11, 100204. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Chen, J.; Yang, C.; Fan, W.; Chen, Q.; Yang, N.; Deng, P.; Zhai, W.; Yan, Z.; Wang, F. Constructing Photoactive Au NP/MXene–BiOCl Moiré Superlattice Nanosheets for Photoelectrochemical Detection of Protein Kinase Activity. Int. J. Mol. Sci. 2025, 26, 1348. https://doi.org/10.3390/ijms26031348
Li Y, Chen J, Yang C, Fan W, Chen Q, Yang N, Deng P, Zhai W, Yan Z, Wang F. Constructing Photoactive Au NP/MXene–BiOCl Moiré Superlattice Nanosheets for Photoelectrochemical Detection of Protein Kinase Activity. International Journal of Molecular Sciences. 2025; 26(3):1348. https://doi.org/10.3390/ijms26031348
Chicago/Turabian StyleLi, Yansen, Jingyao Chen, Chaojie Yang, Wenhao Fan, Qirong Chen, Nan Yang, Pingye Deng, Wenlei Zhai, Zhiyong Yan, and Feng Wang. 2025. "Constructing Photoactive Au NP/MXene–BiOCl Moiré Superlattice Nanosheets for Photoelectrochemical Detection of Protein Kinase Activity" International Journal of Molecular Sciences 26, no. 3: 1348. https://doi.org/10.3390/ijms26031348
APA StyleLi, Y., Chen, J., Yang, C., Fan, W., Chen, Q., Yang, N., Deng, P., Zhai, W., Yan, Z., & Wang, F. (2025). Constructing Photoactive Au NP/MXene–BiOCl Moiré Superlattice Nanosheets for Photoelectrochemical Detection of Protein Kinase Activity. International Journal of Molecular Sciences, 26(3), 1348. https://doi.org/10.3390/ijms26031348