Glucocorticoid Signaling-Associated Gene Expression in the Hippocampus and Frontal Cortex of Chronically Isolated Normotensive and Hypertensive Rats and the Responsiveness to Acute Restraint Stress
Abstract
1. Introduction
2. Results
2.1. Changes in Body Weight and Arterial Pressure in Rats
2.2. Effect of Social Isolation on the Blood CORT Level in Rats
2.3. Differential Effect of Social Isolation on the Changes in Glucose and CORT Concentrations During Acute Restraint Stress
2.4. Social Isolation and Acute Restraint Did Not Affect the Levels of mRNA of Glucocorticoid Signaling-Associated Genes in the Hippocampus and Frontal Cortex of Wistar and SHR Rats
2.5. Prolonged Social Isolation Modifies the Relationships Between mRNA Expression in Hippocampus and Frontal Cortex of Wistar Rats and SHRs
3. Discussion
3.1. Genotype-Related Differences as a Basis for Manifestation of the Effects of Social Isolation
3.2. Social Isolation Has Limited Effects on Basal Physiological Indicators and mRNA Expression in the Studied Brain Structures
3.3. Social Isolation Modulates the Body’s Response to Acute Stress
3.4. Social Isolation Differently Modifies the Patterns of Correlations Between the Studied Indices in the Brains of Wistar Rats and SHRs
4. Materials and Methods
4.1. Animals
4.2. Social Isolation
4.3. Measurement of Arterial Pressure and Heart Rate
4.4. Acute Restraint Stress
4.5. Collection of Biological Samples
4.6. CORT and Glucose Measurement
4.7. RNA Extraction and Quantitative Polymerase Chain Reaction
4.8. Data Analysis
5. Conclusions
6. Limitations of the Study
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| CORT | Corticosterone |
| HPA system | Hypothalamic–pituitary–adrenocortical system |
| SAS | Sympatho-adrenomedullary system |
| SHR | Spontaneously hypertensive rat |
| SHR-I | SHR rats housed in isolated conditions |
| SHR-S | SHR rats housed in group conditions |
| Wistar-I | Wistar rats housed in isolated conditions |
| Wistar-S | Wistar rats housed in group conditions |
References
- Sapolsky, R.M.; Romero, L.M.; Munck, A.U. How Do Glucocorticoids Influence Stress Responses? Integrating Permissive, Suppressive, Stimulatory, and Preparative Actions. Endocr. Rev. 2000, 21, 55–89. [Google Scholar] [CrossRef] [PubMed]
- McEwen, B.S. Physiology and Neurobiology of Stress and Adaptation: Central Role of the Brain. Physiol. Rev. 2007, 87, 873–904. [Google Scholar] [CrossRef] [PubMed]
- Herman, J.P.; McKlveen, J.M.; Ghosal, S.; Kopp, B.; Wulsin, A.; Makinson, R.; Scheimann, J.; Myers, B. Regulation of the Hypothalamic-Pituitary-Adrenocortical Stress Response. Compr. Physiol. 2016, 6, 603–621. [Google Scholar] [CrossRef]
- Suri, D.; Vaidya, V.A. The Adaptive and Maladaptive Continuum of Stress Responses—A Hippocampal Perspective. Rev. Neurosci. 2015, 26, 415–442. [Google Scholar] [CrossRef]
- Macht, V.A.; Reagan, L.P. Chronic Stress from Adolescence to Aging in the Prefrontal Cortex: A Neuroimmune Perspective. Front. Neuroendocrinol. 2018, 49, 31–42. [Google Scholar] [CrossRef]
- Herman, J.P.; Nawreen, N.; Smail, M.A.; Cotella, E.M. Brain Mechanisms of HPA Axis Regulation: Neurocircuitry and Feedback in Context Richard Kvetnansky Lecture. Stress 2020, 23, 617–632. [Google Scholar] [CrossRef]
- Holt-Lunstad, J.; Smith, T.B.; Baker, M.; Harris, T.; Stephenson, D. Loneliness and Social Isolation as Risk Factors for Mortality: A Meta-Analytic Review. Perspect. Psychol. Sci. 2015, 10, 227–237. [Google Scholar] [CrossRef]
- Nakou, A.; Dragioti, E.; Bastas, N.-S.; Zagorianakou, N.; Kakaidi, V.; Tsartsalis, D.; Mantzoukas, S.; Tatsis, F.; Veronese, N.; Solmi, M.; et al. Loneliness, Social Isolation, and Living Alone: A Comprehensive Systematic Review, Meta-Analysis, and Meta-Regression of Mortality Risks in Older Adults. Aging Clin. Exp. Res. 2025, 37, 29. [Google Scholar] [CrossRef]
- Campagne, D.M. Stress and Perceived Social Isolation (Loneliness). Arch. Gerontol. Geriatr. 2019, 82, 192–199. [Google Scholar] [CrossRef]
- Matsui, T.; Ehrenreich, I.M. Gene-Environment Interactions in Stress Response Contribute Additively to a Genotype-Environment Interaction. PLOS Genet. 2016, 12, e1006158. [Google Scholar] [CrossRef] [PubMed]
- Koehn, R.K.; Bayne, B.L. Towards a Physiological and Genetical Understanding of the Energetics of the Stress Response. Biol. J. Linn. Soc. 1989, 37, 157–171. [Google Scholar] [CrossRef]
- Ising, M.; Holsboer, F. Genetics of Stress Response and Stress-Related Disorders. Dialogues Clin. Neurosci. 2006, 8, 433–444. [Google Scholar] [CrossRef]
- Meerson, F.Z. Adaptation, Stress and Prophylaxis; Nauka: Moscow, Russia, 1981. [Google Scholar]
- Katsuki, M.; Shinohara, K.; Kinugawa, S.; Hirooka, Y. The Effects of Renal Denervation on Blood Pressure, Cardiac Hypertrophy, and Sympathetic Activity during the Established Phase of Hypertension in Spontaneously Hypertensive Rats. Hypertens. Res. 2024, 47, 1073–1077. [Google Scholar] [CrossRef]
- Behuliak, M.; Bencze, M.; Boroš, A.; Vavřínová, A.; Vodička, M.; Ergang, P.; Vaněčková, I.; Zicha, J. Chronic Inhibition of Angiotensin Converting Enzyme Lowers Blood Pressure in Spontaneously Hypertensive Rats by Attenuation of Sympathetic Tone: The Role of Enhanced Baroreflex Sensitivity. Biomed. Pharmacother. 2024, 176, 116796. [Google Scholar] [CrossRef] [PubMed]
- Vavřínová, A.; Behuliak, M.; Vodička, M.; Bencze, M.; Ergang, P.; Vaněčková, I.; Zicha, J. More Efficient Adaptation of Cardiovascular Response to Repeated Restraint in Spontaneously Hypertensive Rats: The Role of Autonomic Nervous System. Hypertens. Res. 2024, 47, 2377–2392. [Google Scholar] [CrossRef] [PubMed]
- Jopling, E.; Rnic, K.; Tracy, A.; LeMoult, J. Impact of Loneliness on Diurnal Cortisol in Youth. Psychoneuroendocrinology 2021, 132, 105345. [Google Scholar] [CrossRef]
- Doane, L.D.; Adam, E.K. Loneliness and Cortisol: Momentary, Day-to-Day, and Trait Associations. Psychoneuroendocrinology 2010, 35, 430–441. [Google Scholar] [CrossRef]
- Hackett, R.A.; Hamer, M.; Endrighi, R.; Brydon, L.; Steptoe, A. Loneliness and Stress-Related Inflammatory and Neuroendocrine Responses in Older Men and Women. Psychoneuroendocrinology 2012, 37, 1801–1809. [Google Scholar] [CrossRef]
- Gamallo, A.; Villanua, A.; Trancho, G.; Fraile, A. Stress Adaptation and Adrenal Activity in Isolated and Crowded Rats. Physiol. Behav. 1986, 36, 217–221. [Google Scholar] [CrossRef]
- Hatch, A.M.; Wiberg, G.S.; Zawidzka, Z.; Cann, M.; Airth, J.M.; Grice, H.C. Isolation Syndrome in the Rat. Toxicol. Appl. Pharmacol. 1965, 7, 737–745. [Google Scholar] [CrossRef] [PubMed]
- Gambardella, P.; Greco, A.M.; Sticchi, R.; Bellotti, R.; Di Renzo, G. Individual Housing Modulates Daily Rhythms of Hypothalamic Catecholaminergic System and Circulating Hormones in Adult Male Rats. Chronobiol. Int. 1994, 11, 213–221. [Google Scholar] [CrossRef]
- Dong, H.; Keegan, J.M.; Hong, E.; Gallardo, C.; Montalvo-Ortiz, J.; Wang, B.; Rice, K.C.; Csernansky, J. Corticotrophin Releasing Factor Receptor 1 Antagonists Prevent Chronic Stress-Induced Behavioral Changes and Synapse Loss in Aged Rats. Psychoneuroendocrinology 2018, 90, 92–101. [Google Scholar] [CrossRef]
- Sánchez, M.M.; Aguado, F.; Sánchez-Toscano, F.; Saphier, D. Neuroendocrine and Immunocytochemical Demonstrations of Decreased Hypothalamo-Pituitary-Adrenal Axis Responsiveness to Restraint Stress after Long-Term Social Isolation. Endocrinology 1998, 139, 579–587. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Holson, R.R.; Scallet, A.C.; Ali, S.F.; Turner, B.B. “Isolation Stress” Revisited: Isolation-Rearing Effects Depend on Animal Care Methods. Physiol. Behav. 1991, 49, 1107–1118. [Google Scholar] [CrossRef] [PubMed]
- Morinan, A.; Leonard, B.E. Some Anatomical and Physiological Correlates of Social Isolation in the Young Rat. Physiol. Behav. 1980, 24, 637–640. [Google Scholar] [CrossRef]
- Moore, K.E. Studies with Chronically Isolated Rats: Tissue Levels and Urinary Excretion of Catecholamines and Plasma Levels of Corticosterone. Can. J. Physiol. Pharmacol. 1968, 46, 553–558. [Google Scholar] [CrossRef]
- Gavrilov, V.; Onufriev, M.V.; Moiseeva, Y.V.; Aleksandrov, Y.I.; Gulyaeva, N.V. Chronic Social Isolation and Crowding Stresses in Rats Differently Affect Instrumental Learning and the State of the Hypothalamo-Pituitary-Adrenocortical System. Zhurnal Vyss. Nervn. Deyatelnosti Im. I.P. Pavlov. 2021, 71, 710–719. [Google Scholar] [CrossRef]
- Gądek-Michalska, A.; Tadeusz, J.; Bugajski, A.; Bugajski, J. Chronic Isolation Stress Affects Subsequent Crowding Stress-Induced Brain Nitric Oxide Synthase (NOS) Isoforms and Hypothalamic-Pituitary-Adrenal (HPA) Axis Responses. Neurotox. Res. 2019, 36, 523–539. [Google Scholar] [CrossRef]
- Gądek-Michalska, A.; Bugajski, A.; Tadeusz, J.; Rachwalska, P.; Bugajski, J. Chronic Social Isolation in Adaptation of HPA Axis to Heterotypic Stress. Pharmacol. Rep. 2017, 69, 1213–1223. [Google Scholar] [CrossRef] [PubMed]
- Weiss, I.C.; Pryce, C.R.; Jongen-Rêlo, A.L.; Nanz-Bahr, N.I.; Feldon, J. Effect of Social Isolation on Stress-Related Behavioural and Neuroendocrine State in the Rat. Behav. Brain Res. 2004, 152, 279–295. [Google Scholar] [CrossRef]
- Serra, M.; Pisu, M.G.; Littera, M.; Papi, G.; Sanna, E.; Tuveri, F.; Usala, L.; Purdy, R.H.; Biggio, G. Social Isolation-Induced Decreases in Both the Abundance of Neuroactive Steroids and GABA(A) Receptor Function in Rat Brain. J. Neurochem. 2000, 75, 732–740. [Google Scholar] [CrossRef]
- Gadek-Michalska, A.; Borycz, J.; Bugajski, J. Effect of Social Isolation on Corticosterone Secretion Elicited by Histaminergic Stimulation. Agents Actions 1994, 41, C77–C79. [Google Scholar] [CrossRef]
- Mamedova, D.I.; Nedogreeva, O.A.; Manolova, A.O.; Ovchinnikova, V.O.; Kostryukov, P.A.; Lazareva, N.A.; Moiseeva, Y.V.; Tret’yakova, L.V.; Kvichansky, A.A.; Onufriev, M.V.; et al. The Impact of Long-Term Isolation on Anxiety, Depressive-like and Social Behavior in Aging Wistar-Kyoto (WKY) and Spontaneously Hypertensive (SHR) Male Rats. Sci. Rep. 2024, 14, 28135. [Google Scholar] [CrossRef]
- Zlatković, J.; Filipović, D. Chronic Social Isolation Induces NF-κB Activation and Upregulation of iNOS Protein Expression in Rat Prefrontal Cortex. Neurochem. Int. 2013, 63, 172–179. [Google Scholar] [CrossRef]
- Hawkley, L.C.; Thisted, R.A.; Masi, C.M.; Cacioppo, J.T. Loneliness Predicts Increased Blood Pressure: 5-Year Cross-Lagged Analyses in Middle-Aged and Older Adults. Psychol. Aging 2010, 25, 132–141. [Google Scholar] [CrossRef]
- Steptoe, A.; Owen, N.; Kunz-Ebrecht, S.R.; Brydon, L. Loneliness and Neuroendocrine, Cardiovascular, and Inflammatory Stress Responses in Middle-Aged Men and Women. Psychoneuroendocrinology 2004, 29, 593–611. [Google Scholar] [CrossRef]
- Challa, S.R.; Fornal, C.A.; Wang, B.C.; Boyineni, J.; DeVera, R.E.; Unnam, P.; Song, Y.; Soares, M.B.; Malchenko, S.; Gyarmati, P.; et al. The Impact of Social Isolation and Environmental Deprivation on Blood Pressure and Depression-Like Behavior in Young Male and Female Mice. Chronic Stress 2023, 7, 24705470231207010. [Google Scholar] [CrossRef] [PubMed]
- Hallbäck, M. Consequence of Social Isolation on Blood Pressure, Cardiovascular Reactivity and Design in Spontaneously Hypertensive Rats. Acta Physiol. Scand. 1975, 93, 455–465. [Google Scholar] [CrossRef] [PubMed]
- Gardiner, S.; Bennett, T. The Effects of Short-Term Isolation on Systolic Blood Pressure and Heart Rate in Rats. Med. Biol. 1977, 55, 325–329. [Google Scholar] [PubMed]
- Xia, N.; Li, H. Loneliness, Social Isolation, and Cardiovascular Health. Antioxid. Redox Signal. 2018, 28, 837–851. [Google Scholar] [CrossRef]
- Andrews, E.; Jenkins, C.; Seachrist, D.; Dunphy, G.; Ely, D. Social Stress Increases Blood Pressure and Cardiovascular Pathology in a Normotensive Rat Model. Clin. Exp. Hypertens. 2003, 25, 85–101. [Google Scholar] [CrossRef] [PubMed]
- Yamori, Y.; Ikeda, K.; Kulakowski, E.C.; McCarty, R.; Lovenberg, W. Enhanced Sympathetic-Adrenal Medullary Response to Cold Exposure in Spontaneously Hypertensive Rats. J. Hypertens. 1985, 3, 63–66. [Google Scholar] [CrossRef] [PubMed]
- Sakaguchi, A.; LeDoux, J.E.; Reis, D.J. Sympathetic Nerves and Adrenal Medulla: Contributions to Cardiovascular-Conditioned Emotional Responses in Spontaneously Hypertensive Rats. Hypertension 1983, 5, 728–738. [Google Scholar] [CrossRef] [PubMed]
- Grassi, G.; Ram, V.S. Evidence for a Critical Role of the Sympathetic Nervous System in Hypertension. J. Am. Soc. Hypertens. 2016, 10, 457–466. [Google Scholar] [CrossRef]
- Morimoto, S.; Ichihara, A. Lowering of Blood Pressure by Chemical Ablation of the Unilateral Adrenal Gland in Spontaneously Hypertensive Rats. Hypertens. Res. 2024, 47, 551–552. [Google Scholar] [CrossRef]
- Kvetnansky, R.; Mikulaj, L. Adrenal and Urinary Catecholamines in Rats during Adaptation to Repeated Immobilization Stress. Endocrinology 1970, 87, 738–743. [Google Scholar] [CrossRef]
- Pietranera, L.; Brocca, M.E.; Cymeryng, C.; Gomez-Sanchez, E.; Gomez-Sanchez, C.E.; Roig, P.; Lima, A.; De Nicola, A.F. Increased Expression of the Mineralocorticoid Receptor in the Brain of Spontaneously Hypertensive Rats. J. Neuroendocrinol. 2012, 24, 1249–1258. [Google Scholar] [CrossRef]
- Brocca, M.E.; Pietranera, L.; Meyer, M.; Lima, A.; Roig, P.; de Kloet, E.R.; De Nicola, A.F. Mineralocorticoid Receptor Associates with Pro-Inflammatory Bias in the Hippocampus of Spontaneously Hypertensive Rats. J. Neuroendocrinol. 2017, 29, e12489. [Google Scholar] [CrossRef]
- Wallace, D.L.; Han, M.-H.; Graham, D.L.; Green, T.A.; Vialou, V.; Iñiguez, S.D.; Cao, J.-L.; Kirk, A.; Chakravarty, S.; Kumar, A.; et al. CREB Regulation of Nucleus Accumbens Excitability Mediates Social Isolation-Induced Behavioral Deficits. Nat. Neurosci. 2009, 12, 200–209. [Google Scholar] [CrossRef]
- Hawkley, L.C.; Cacioppo, J.T. Loneliness Matters: A Theoretical and Empirical Review of Consequences and Mechanisms. Ann. Behav. Med. 2010, 40, 218–227. [Google Scholar] [CrossRef]
- Ieraci, A.; Mallei, A.; Popoli, M. Social Isolation Stress Induces Anxious-Depressive-Like Behavior and Alterations of Neuroplasticity-Related Genes in Adult Male Mice. Neural Plast. 2016, 2016, 6212983. [Google Scholar] [CrossRef]
- McGowan, P.O.; Sasaki, A.; D’Alessio, A.C.; Dymov, S.; Labonté, B.; Szyf, M.; Turecki, G.; Meaney, M.J. Epigenetic Regulation of the Glucocorticoid Receptor in Human Brain Associates with Childhood Abuse. Nat. Neurosci. 2009, 12, 342–348. [Google Scholar] [CrossRef]
- Weaver, I.C.G.; Cervoni, N.; Champagne, F.A.; D’Alessio, A.C.; Sharma, S.; Seckl, J.R.; Dymov, S.; Szyf, M.; Meaney, M.J. Epigenetic Programming by Maternal Behavior. Nat. Neurosci. 2004, 7, 847–854. [Google Scholar] [CrossRef]
- Siuda, D.; Wu, Z.; Chen, Y.; Guo, L.; Linke, M.; Zechner, U.; Xia, N.; Reifenberg, G.; Kleinert, H.; Forstermann, U.; et al. Social Isolation-Induced Epigenetic Changes in Midbrain of Adult Mice. J. Physiol. Pharmacol. 2014, 65, 247–255. [Google Scholar]
- McEwen, B.S. Stress, Adaptation, and Disease. Allostasis and Allostatic Load. Ann. N. Y. Acad. Sci. 1998, 840, 33–44. [Google Scholar] [CrossRef]
- Daniels-Severs, A.; Goodwin, A.; Keiland, L.C.; Vernikos-Danellis, J. Effect of Chronic Crowding and Cold on the Pituitary-Adrenal System: Responsiveness to an Acute Stimulus during Chronic Stress. Pharmacology 1973, 9, 348–356. [Google Scholar] [CrossRef]
- Uschold-Schmidt, N.; Nyuyki, K.D.; Füchsl, A.M.; Neumann, I.D.; Reber, S.O. Chronic Psychosocial Stress Results in Sensitization of the HPA Axis to Acute Heterotypic Stressors despite a Reduction of Adrenal in Vitro ACTH Responsiveness. Psychoneuroendocrinology 2012, 37, 1676–1687. [Google Scholar] [CrossRef]
- Brown, E.G.; Gallagher, S.; Creaven, A. Loneliness and Acute Stress Reactivity: A Systematic Review of Psychophysiological Studies. Psychophysiology 2018, 55, e13031. [Google Scholar] [CrossRef]
- Egorova, L.K.; Stepanichev, M.Y.; Gulyaeva, N.V. Neurochemical Characteristics of Rats with Different Individual Behaviour in Emotional Resonance Test. Cyclic Adenosine Monophosphate in Brain Structures of Old Rats. Zhurnal Vyss. Nervn. Deyatelnosti Im. I.P. Pavlov. 1995, 45, 999–1005. [Google Scholar]
- Egorova, L.K.; Stepanichev, M.Y.; Mikhalev, S.L.; Kutepova, O.A.; Gulyaeva, N.V. Analysis of Cyclic Adenosine-3’,5’-Monophosphate Levels in Structures of the “Informational” and “Motivational” Systems of the Rat Brain during Acquisition of a Conditioned Active Avoidance Reaction. Neurosci. Behav. Physiol. 2003, 33, 329–333. [Google Scholar] [CrossRef]
- Herman, J.P.; Ostrander, M.M.; Mueller, N.K.; Figueiredo, H. Limbic System Mechanisms of Stress Regulation: Hypothalamo-Pituitary-Adrenocortical Axis. Prog. Neuropsychopharmacol. Biol. Psychiatry 2005, 29, 1201–1213. [Google Scholar] [CrossRef] [PubMed]
- Radley, J.J.; Rocher, A.B.; Miller, M.; Janssen, W.G.M.; Liston, C.; Hof, P.R.; McEwen, B.S.; Morrison, J.H. Repeated Stress Induces Dendritic Spine Loss in the Rat Medial Prefrontal Cortex. Cereb. Cortex 2006, 16, 313–320. [Google Scholar] [CrossRef]
- Holmes, A.; Wellman, C.L. Stress-Induced Prefrontal Reorganization and Executive Dysfunction in Rodents. Neurosci. Biobehav. Rev. 2009, 33, 773–783. [Google Scholar] [CrossRef]
- Nedogreeva, O.A.; Manolova, A.O.; Mamedova, D.I.; Gulyaeva, N.V.; Stepanichev, M.Y. Non-Associative Learning (Habituation) in Normotensive and Hypertensive Rats and the Effects of Social Isolation. Neurosci. Behav. Physiol. 2025, 55, 1309–1319. [Google Scholar] [CrossRef]
- Uhlhaas, P.J.; Singer, W. Neural Synchrony in Brain Disorders: Relevance for Cognitive Dysfunctions and Pathophysiology. Neuron 2006, 52, 155–168. [Google Scholar] [CrossRef] [PubMed]







| Gene | Forward Primer | Reverse Primer | E |
|---|---|---|---|
| Hprt NM_012583.2 | CGT CGT GAT TAG TGA TGA TGA AC | CAA GTC TTT CAG TCC TGT CCA TA | 2 |
| Ywhaz NM_013011.4 | TTG AGC AGA AGA CGG AAG GT | GAA GCA TTG GGG ATC AAG AA | 2 |
| Nr3c1 NM_001408897.1 | TCC CCC TGG TAG AGA CGA AGT | CTC CCC TGG CCA AGC AAA CTG | 1.93 |
| Nr3c2 NM_013131.2 | GAC CTT GGA GCG TTC TTC AC | AAT CTC CAT GTA GTT GTT CTC AGT G | 2 |
| Hsd11b1 NM_017080.2 | GCC TGG GAG GTT GTA GAA AGA G | AAT AGT AGT AAC CCA GGC AGA GCA C | 1.93 |
| Fkbp5 NM_134455.2 | GCC GGC AAG AAA CAC GAG AGT | GAG GAG GGC CGA GTT CATT AGGA | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kvichansky, A.; Tretyakova, L.; Moiseeva, Y.; Ovchinnikova, V.; Mamedova, D.; Nedogreeva, O.; Lazareva, N.; Gulyaeva, N.; Stepanichev, M. Glucocorticoid Signaling-Associated Gene Expression in the Hippocampus and Frontal Cortex of Chronically Isolated Normotensive and Hypertensive Rats and the Responsiveness to Acute Restraint Stress. Int. J. Mol. Sci. 2025, 26, 12050. https://doi.org/10.3390/ijms262412050
Kvichansky A, Tretyakova L, Moiseeva Y, Ovchinnikova V, Mamedova D, Nedogreeva O, Lazareva N, Gulyaeva N, Stepanichev M. Glucocorticoid Signaling-Associated Gene Expression in the Hippocampus and Frontal Cortex of Chronically Isolated Normotensive and Hypertensive Rats and the Responsiveness to Acute Restraint Stress. International Journal of Molecular Sciences. 2025; 26(24):12050. https://doi.org/10.3390/ijms262412050
Chicago/Turabian StyleKvichansky, Alexey, Liya Tretyakova, Yulia Moiseeva, Viktoriia Ovchinnikova, Diana Mamedova, Olga Nedogreeva, Natalia Lazareva, Natalia Gulyaeva, and Mikhail Stepanichev. 2025. "Glucocorticoid Signaling-Associated Gene Expression in the Hippocampus and Frontal Cortex of Chronically Isolated Normotensive and Hypertensive Rats and the Responsiveness to Acute Restraint Stress" International Journal of Molecular Sciences 26, no. 24: 12050. https://doi.org/10.3390/ijms262412050
APA StyleKvichansky, A., Tretyakova, L., Moiseeva, Y., Ovchinnikova, V., Mamedova, D., Nedogreeva, O., Lazareva, N., Gulyaeva, N., & Stepanichev, M. (2025). Glucocorticoid Signaling-Associated Gene Expression in the Hippocampus and Frontal Cortex of Chronically Isolated Normotensive and Hypertensive Rats and the Responsiveness to Acute Restraint Stress. International Journal of Molecular Sciences, 26(24), 12050. https://doi.org/10.3390/ijms262412050

