Mitochondrial tRNA-Derived Diseases
Abstract
1. Introduction
2. Search Strategy
3. Mitochondrial Genome
4. Human Diseases Associated with mt-tRNA Mutations
4.1. Typical Mitochondrial Syndromes
4.1.1. MELAS
4.1.2. MERRF
4.1.3. Chronic Progressive External Ophthalmoplegia (CPEO) and Kearns–Sayre Syndrome (KSS)
4.1.4. Leigh Syndrome
4.1.5. Mitochondrial Neurogastrointestinal Encephalopathy (MNGIE)
4.2. Cardiovascular Diseases
4.2.1. Cardiomyopathy
4.2.2. Essential Hypertension
4.2.3. Coronary Artery Disease and Cerebrovascular Disorders
4.3. Neuromuscular and Neurodegenerative Disorders
4.3.1. Mitochondrial Myopathies
4.3.2. Mitochondrial Encephalopathies
4.3.3. Parkinson’s Disease and Other Neurodegenerative Disorders
4.3.4. Psychiatric Disorders
4.4. Sensory Disorders
4.4.1. Non-Syndromic Sensorineural Hearing Loss (NSHL)
4.4.2. Leber’s Hereditary Optic Neuropathy
4.4.3. Cataract
4.5. Renal Disorders
4.5.1. Glomerular Disease
4.5.2. Mitochondrial Tubulointerstitial Kidney Disease (MITKD)
4.6. Metabolic and Endocrine Disorders
4.6.1. Diabetes Mellitus
4.6.2. Polycystic Ovary Syndrome (PCOS)
4.6.3. Autoimmune Endocrinopathies
4.7. Other Disorders
4.7.1. Myelodysplastic Syndrome (MDS)
4.7.2. Systemic Lupus Erythematosus (SLE)
4.7.3. Tic Disorders (TD)
4.7.4. Autism Spectrum Disorders (ASD)
4.7.5. Cancer
4.7.6. Additional Rare Phenotypes
5. Post-Transcriptional Modifications of Mitochondrial tRNAs and Disease Pathogenesis
5.1. The Landscape of Mitochondrial tRNA Modifications
5.2. Pathogenic Mutations in Modification Enzymes
5.3. Modification Defects in Typical Mitochondrial Syndromes
5.4. Enzyme-Specific Disease Phenotypes
6. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ATP | Adenosine triphosphate |
| AD | Alzheimer’s disease |
| Ago2 | Argonaute 2 |
| AC | Arrhythmogenic cardiomyopathy |
| ASD | Autism Spectrum Disorders |
| APS2 | Autoimmune polyendocrinopathy type II |
| CKD | Chronic kidney disease |
| CLPX-CLPP | Caseinolytic protease |
| CPEO | Chronic progressive external ophthalmoplegia |
| CTD | Chronic tic disorder |
| CoQ10 | Coenzyme Q10 |
| CAD | Coronary artery disease |
| Cyt b | Cytochrome b |
| COX1 | Cytochrome c oxidase 1 |
| COX2 | Cytochrome c oxidase 2 |
| COX3 | Cytochrome c oxidase 3 |
| DdCBE | DddA-derived cytosine base editors |
| DCM | Dilated cardiomyopathy |
| EH | Essential hypertension |
| FSGS | Focal segmental glomerulosclerosis |
| HCM | Hypertrophic cardiomyopathy |
| KSS | Kearns–Sayre syndrome |
| LHON | Leber’s hereditary optic neuropathy |
| LARS2 | Leucyl-tRNA synthetase 2 |
| LVNC | Left ventricular noncompaction cardiomyopathy |
| MDD | Major depressive disorder |
| MIDD | Maternally inherited diabetes and deafness |
| mtDNA | Mitochondrial DNA |
| MDs | Mitochondrial diseases |
| MELAS | Mitochondrial Encephalomyopathy, Lactic Acidosis, and Stroke-like episodes |
| MMP | Mitochondrial membrane potential |
| MM | Mitochondrial myopathies |
| MNGIE | Mitochondrial Neurogastrointestinal Encephalopathy |
| mtSNPs | Mitochondrial single nucleotide polymorphisms |
| mitoTALENS | Mitochondrial transcription activator-like effector nucleases |
| MITKD | Mitochondrial Tubulointerstitial Kidney Disease |
| mt-tRNAs | Mitochondrial tRNAs |
| MT-TA | Mitochondrial tRNAAla gene |
| MT-TR | Mitochondrial tRNAArg gene |
| MT-TN | Mitochondrial tRNAAsn gene |
| MT-TD | Mitochondrial tRNAAsp gene |
| MT-TC | Mitochondrial tRNACys gene |
| MT-TQ | Mitochondrial tRNAGln gene |
| MT-TE | Mitochondrial tRNAGlu gene |
| MT-TG | Mitochondrial tRNAGly gene |
| MT-TH | Mitochondrial tRNAHis gene |
| MT-TI | Mitochondrial tRNAIle gene |
| MT-TL2 | Mitochondrial tRNALeu(CUN) gene |
| MT-TL1 | Mitochondrial tRNALeu gene |
| MT-TK | Mitochondrial tRNALys gene |
| MT-TM | Mitochondrial tRNAMet gene |
| MT-TF | Mitochondrial tRNAPhe gene |
| MT-TP | Mitochondrial tRNAPro gene |
| MT-TS2 | Mitochondrial tRNASer(AGY) gene |
| MT-TS1 | Mitochondrial tRNASer(UCN) gene |
| MT-TT | Mitochondrial tRNAThr gene |
| MT-TW | Mitochondrial tRNATrp gene |
| MT-TY | Mitochondrial tRNATyr gene |
| MT-TV | Mitochondrial tRNAVal gene |
| MDS | Myelodysplastic Syndrome |
| MERRF | Myoclonic Epilepsy with Ragged Red Fibers |
| ND1 | NADH dehydrogenase 1 |
| ND2 | NADH dehydrogenase 2 |
| ND3 | NADH dehydrogenase 3 |
| ND4 | NADH dehydrogenase 4 |
| ND4L | NADH dehydrogenase 4L |
| ND5 | NADH dehydrogenase 5 |
| ND6 | NADH dehydrogenase 6 |
| NSHL | Non-Syndromic Sensorineural Hearing Loss |
| OXPHOS | Oxidative phosphorylation |
| PD | Parkinson’s disease |
| PCOS | Polycystic Ovary Syndrome |
| PTD | Provisional tic disorder |
| ROS | Reactive oxygen species |
| RILF | Reversible infantile liver failure |
| rRNAs | Ribosomal RNAs |
| RISC | RNA-induced silencing complex |
| SLE | Systemic Lupus Erythematosus |
| TALEDs | TALE-linked deaminases |
| DSM-V | The Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition |
| TD | Tic Disorders |
| tRNAs | Transfer RNAs |
| T2DM | Type 2 Diabetes Mellitus |
References
- Kobayashi, Y.; Momoi, M.Y.; Tominaga, K.; Momoi, T.; Nihei, K.; Yanagisawa, M.; Kagawa, Y.; Ohta, S. A Point Mutation in the Mitochondrial tRNALeu(UUR) Gene in Melas (Mitochondrial Myopathy, Encephalopathy, Lactic Acidosis and Stroke-like Episodes). Biochem. Biophys. Res. Commun. 1990, 173, 816–822. [Google Scholar] [CrossRef]
- Shoffner, J.M.; Lott, M.T.; Lezza, A.M.S.; Seibel, P.; Ballinger, S.W.; Wallace, D.C. Myoclonic Epilepsy and Ragged-Red Fiber Disease (MERRF) Is Associated with a Mitochondrial DNA tRNALys Mutation. Cell 1990, 61, 931–937. [Google Scholar] [CrossRef] [PubMed]
- Phizicky, E.M.; Hopper, A.K. tRNA Biology Charges to the Front. Genes Dev. 2010, 24, 1832–1860. [Google Scholar] [CrossRef] [PubMed]
- Hurto, R.L. Unexpected Functions of tRNA and tRNA Processing Enzymes. In RNA Infrastructure and Networks; Springer: Berlin/Heidelberg, Germany, 2011; pp. 137–155. [Google Scholar]
- Tuller, T. The Effect of Dysregulation of tRNA Genes and Translation Efficiency Mutations in Cancer and Neurodegeneration. Front. Genet. 2012, 3, 201. [Google Scholar] [CrossRef] [PubMed]
- Anderson, S.; Bankier, A.T.; Barrell, B.G.; de Bruijn, M.H.L.; Coulson, A.R.; Drouin, J.; Eperon, I.C.; Nierlich, D.P.; Roe, B.A.; Sanger, F.; et al. Sequence and Organization of the Human Mitochondrial Genome. Nature 1981, 290, 457–465. [Google Scholar] [CrossRef] [PubMed]
- Houshmand, M.; Shafa Shariat Panahi, M.; Nafisi, S.; Soltanzadeh, A.; Alkandari, F.M. Identification and Sizing of GAA Trinucleotide Repeat Expansion, Investigation for D-Loop Variations and Mitochondrial Deletions in Iranian Patients with Friedreich’s Ataxia. Mitochondrion 2006, 6, 87–93. [Google Scholar] [CrossRef]
- Abbott, J.A.; Francklyn, C.S.; Robey-Bond, S.M. Transfer RNA and Human Disease. Front. Genet. 2014, 5, 158. [Google Scholar] [CrossRef]
- Tang, S.; Wang, J.; Zhang, V.W.; Li, F.-Y.; Landsverk, M.; Cui, H.; Truong, C.K.; Wang, G.; Chen, L.C.; Graham, B.; et al. Transition to Next Generation Analysis of the Whole Mitochondrial Genome: A Summary of Molecular Defects. Hum. Mutat. 2013, 34, 882–893. [Google Scholar] [CrossRef]
- Dabravolski, S.A.; Khotina, V.A.; Sukhorukov, V.N.; Kalmykov, V.A.; Mikhaleva, L.M.; Orekhov, A.N. The Role of Mitochondrial DNA Mutations in Cardiovascular Diseases. Int. J. Mol. Sci. 2022, 23, 952. [Google Scholar] [CrossRef]
- Shen, X.; Du, A. The Non-Syndromic Clinical Spectrums of mtDNA 3243A>G Mutation. Neurosciences 2021, 26, 128–133. [Google Scholar] [CrossRef]
- Ding, Y.; Gao, B.; Huang, J. Mitochondrial Cardiomyopathy: The Roles of Mt-tRNA Mutations. J. Clin. Med. 2022, 11, 6431. [Google Scholar] [CrossRef] [PubMed]
- Chujo, T.; Tomizawa, K. Mitochondrial tRNA Modifications: Functions, Diseases Caused by Their Loss, and Treatment Strategies. RNA 2025, 31, 382–394. [Google Scholar] [CrossRef] [PubMed]
- Rahmadanthi, F.R.; Maksum, I.P. Transfer RNA Mutation Associated with Type 2 Diabetes Mellitus. Biology 2023, 12, 871. [Google Scholar] [CrossRef] [PubMed]
- Scaglia, F.; Wong, L.-J.C. Human Mitochondrial Transfer RNAs: Role of Pathogenic Mutation in Disease. Muscle Nerve 2008, 37, 150–171. [Google Scholar] [CrossRef]
- Taanman, J.-W. The Mitochondrial Genome: Structure, Transcription, Translation and Replication. Biochim. Et Biophys. Acta (BBA)-Bioenerg. 1999, 1410, 103–123. [Google Scholar] [CrossRef]
- Vyshkina, T.; Sylvester, A.; Sadiq, S.; Bonilla, E.; Canter, J.A.; Perl, A.; Kalman, B. Association of common mitochondrial DNA variants with multiple sclerosis and systemic lupus erythematosus. Clin. Immunol. 2008, 129, 31–35. [Google Scholar] [CrossRef]
- Doherty, E.; Oaks, Z.; Perl, A. Increased mitochondrial electron transport chain activity at complex I is regulated by N-acetylcysteine in lymphocytes of patients with systemic lupus erythematosus. Antioxid. Redox Signal. 2014, 21, 56–65. [Google Scholar] [CrossRef]
- Oaks, Z.; Winans, T.; Caza, T.; Fernandez, D.; Liu, Y.; Landas, S.K.; Banki, K.; Perl, A. Mitochondrial Dysfunction in the Liver and Antiphospholipid Antibody Production Precede Disease Onset and Respond to Rapamycin in Lupus-Prone Mice. Arthritis Rheumatol. 2016, 68, 2728–2739. [Google Scholar] [CrossRef]
- Gorman, G.S.; Chinnery, P.F.; DiMauro, S.; Hirano, M.; Koga, Y.; McFarland, R.; Suomalainen, A.; Thorburn, D.R.; Zeviani, M.; Turnbull, D.M. Mitochondrial Diseases. Nat. Rev. Dis. Primers 2016, 2, 16080. [Google Scholar] [CrossRef]
- Shaukat, A.-N.; Kaliatsi, E.G.; Stamatopoulou, V.; Stathopoulos, C. Mitochondrial tRNA-Derived Fragments and Their Contribution to Gene Expression Regulation. Front. Physiol. 2021, 12, 729452. [Google Scholar] [CrossRef] [PubMed]
- Smith, T.J.; Giles, R.N.; Koutmou, K.S. Anticodon Stem-Loop tRNA Modifications Influence Codon Decoding and Frame Maintenance during Translation. Semin. Cell Dev. Biol. 2024, 154, 105–113. [Google Scholar] [CrossRef]
- Tetsuka, S.; Ogawa, T.; Hashimoto, R.; Kato, H. Clinical Features, Pathogenesis, and Management of Stroke-like Episodes Due to MELAS. Metab. Brain Dis. 2021, 36, 2181–2193. [Google Scholar] [CrossRef]
- Elliott, H.R.; Samuels, D.C.; Eden, J.A.; Relton, C.L.; Chinnery, P.F. Pathogenic Mitochondrial DNA Mutations Are Common in the General Population. Am. J. Hum. Genet. 2008, 83, 254–260. [Google Scholar] [CrossRef]
- Ng, Y.S.; Grady, J.P.; Lax, N.Z.; Bourke, J.P.; Alston, C.L.; Hardy, S.A.; Falkous, G.; Schaefer, A.G.; Radunovic, A.; Mohiddin, S.A.; et al. Sudden Adult Death Syndrome in m.3243A>G-Related Mitochondrial Disease: An Unrecognized Clinical Entity in Young, Asymptomatic Adults. Eur. Heart J. 2016, 37, 2552–2559. [Google Scholar] [CrossRef]
- Roy, M.D.; Wittenhagen, L.M.; Kelley, S.O. Structural Probing of a Pathogenic tRNA Dimer. RNA 2005, 11, 254–260. [Google Scholar] [CrossRef] [PubMed]
- Rahman, J.; Rahman, S. Mitochondrial Medicine in the Omics Era. Lancet 2018, 391, 2560–2574. [Google Scholar] [CrossRef] [PubMed]
- DiMauro, S.; Schon, E.A. Mitochondrial Respiratory-Chain Diseases. N. Engl. J. Med. 2003, 348, 2656–2668. [Google Scholar] [CrossRef] [PubMed]
- Goto, Y.; Nonaka, I.; Horai, S. A Mutation in the tRNALeu(UUR) Gene Associated with the MELAS Subgroup of Mitochondrial Encephalomyopathies. Nature 1990, 348, 651–653. [Google Scholar] [CrossRef] [PubMed]
- Nusir, A.; Sinclair, P.; Kabbani, N. Mitochondrial Proteomes in Neural Cells: A Systematic Review. Biomolecules 2023, 13, 1638. [Google Scholar] [CrossRef]
- Na, J.-H.; Lee, Y.-M. Diagnosis and Management of Mitochondrial Encephalopathy, Lactic Acidosis, and Stroke-like Episodes Syndrome. Biomolecules 2024, 14, 1524. [Google Scholar] [CrossRef] [PubMed]
- Moraes, C.T.; DiMauro, S.; Zeviani, M.; Lombes, A.; Shanske, S.; Miranda, A.F.; Nakase, H.; Bonilla, E.; Werneck, L.C.; Servidei, S.; et al. Mitochondrial DNA Deletions in Progressive External Ophthalmoplegia and Kearns-Sayre Syndrome. N. Engl. J. Med. 1989, 320, 1293–1299. [Google Scholar] [CrossRef]
- Ueda, N.K.; Mimaki, M.; Ito, S.; Murakami, A.; Yokoi, S.; Nishino, I.; Katsuno, M.; Goto, Y. A Novel m.14677 T > C Variant in Mitochondrial tRNAGlu Gene Causes Chronic Progressive External Ophthalmoplegia. J. Hum. Genet. 2025, 70, 537–540. [Google Scholar] [CrossRef]
- Shemesh, A.; Margolin, E. Kearns-Sayre Syndrome. In StatPearls [Internet]; StatPearls: Treasure Island, FL, USA, 2025. [Google Scholar]
- Nishigaki, Y.; Tadesse, S.; Bonilla, E.; Shungu, D.; Hersh, S.; Keats, B.J.B.; Berlin, C.I.; Goldberg, M.F.; Vockley, J.; DiMauro, S.; et al. A Novel Mitochondrial tRNALeu(UUR) Mutation in a Patient with Features of MERRF and Kearns–Sayre Syndrome. Neuromuscul. Disord. 2003, 13, 334–340. [Google Scholar] [CrossRef]
- Chang, X.; Wu, Y.; Zhou, J.; Meng, H.; Zhang, W.; Guo, J. A Meta-Analysis and Systematic Review of Leigh Syndrome: Clinical Manifestations, Respiratory Chain Enzyme Complex Deficiency, and Gene Mutations. Medicine 2020, 99, e18634. [Google Scholar] [CrossRef]
- Shtilbans, A.; Shanske, S.; Goodman, S.; Sue, C.M.; Bruno, C.; Johnson, T.L.; Lava, N.S.; Waheed, N.; DiMauro, S. G8363A Mutation in the Mitochondrial DNA Transfer Ribonucleic acidLys Gene: Another Cause of Leigh Syndrome. J. Child Neurol. 2000, 15, 759–761. [Google Scholar] [CrossRef] [PubMed]
- Zifa, E.; Giannouli, S.; Theotokis, P.; Stamatis, C.; Mamuris, Z.; Stathopoulos, C. Mitochondrial tRNA Mutations: Clinical and Functional Perturbations. RNA Biol. 2007, 4, 38–66. [Google Scholar] [CrossRef] [PubMed]
- Seneca, S.; Verhelst, H.; De Meirleir, L.; Meire, F.; Ceuterick-De Groote, C.; Lissens, W.; Van Coster, R. A New Mitochondrial Point Mutation in the Transfer RNALeu Gene in a Patient With a Clinical Phenotype Resembling Kearns-Sayre Syndrome. Arch. Neurol. 2001, 58, 1113–1118. [Google Scholar] [CrossRef] [PubMed]
- Cox, R.; Platt, J.; Chen, L.C.; Tang, S.; Wong, L.-J.; Enns, G.M. Leigh Syndrome Caused by a Novel m.4296G>A Mutation in Mitochondrial tRNA Isoleucine. Mitochondrion 2012, 12, 258–261. [Google Scholar] [CrossRef]
- Lake, N.J.; Bird, M.J.; Isohanni, P.; Paetau, A. Leigh Syndrome. J. Neuropathol. Exp. Neurol. 2015, 74, 482–492. [Google Scholar] [CrossRef]
- Chalmers, R.M.; Lamont, P.J.; Nelson, I.; Ellison, D.W.; Thomas, N.H.; Harding, A.E.; Hammans, S.R. A Mitochondrial DNA tRNA Val Point Mutation Associated with Adult-Onset Leigh Syndrome. Neurology 1997, 49, 589–592. [Google Scholar] [CrossRef]
- Horváth, R.; Bender, A.; Abicht, A.; Holinski-Feder, E.; Czermin, B.; Trips, T.; Schneiderat, P.; Lochmüller, H.; Klopstock, T. Heteroplasmic Mutation in the Anticodon-Stem of Mitochondrial tRNAVal Causing MNGIE-like Gastrointestinal Dysmotility and Cachexia. J. Neurol. 2009, 256, 810–815. [Google Scholar] [CrossRef] [PubMed]
- Glatz, C.; D’Aco, K.; Smith, S.; Sondheimer, N. Mutation in the Mitochondrial tRNAVal Causes Mitochondrial Encephalopathy, Lactic Acidosis and Stroke-like Episodes. Mitochondrion 2011, 11, 615–619. [Google Scholar] [CrossRef] [PubMed]
- Pacitti, D.; Levene, M.; Garone, C.; Nirmalananthan, N.; Bax, B.E. Mitochondrial Neurogastrointestinal Encephalomyopathy: Into the Fourth Decade, What We Have Learned So Far. Front. Genet. 2018, 9, 669. [Google Scholar] [CrossRef] [PubMed]
- Bacman, S.R.; Atencio, D.P.; Moraes, C.T. Decreased Mitochondrial tRNALys Steady-State Levels and Aminoacylation Are Associated with the Pathogenic G8313A Mitochondrial DNA Mutation. Biochem J 2003, 374, 131–136. [Google Scholar] [CrossRef]
- Barth, E.; Stämmler, G.; Speiser, B.; Schaper, J. Ultrastructural Quantitation of Mitochondria and Myofilaments in Cardiac Muscle from 10 Different Animal Species Including Man. J. Mol. Cell. Cardiol. 1992, 24, 669–681. [Google Scholar] [CrossRef]
- Elliott, P.; Andersson, B.; Arbustini, E.; Bilinska, Z.; Cecchi, F.; Charron, P.; Dubourg, O.; Kuhl, U.; Maisch, B.; McKenna, W.J.; et al. Classification of the Cardiomyopathies: A Position Statement from the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur. Heart J. 2007, 29, 270–276. [Google Scholar] [CrossRef]
- Richardson, P.; McKenna, W.; Bristow, M.; Maisch, B.; Mautner, B.; O’Connell, J.; Olsen, E.; Thiene, G.; Goodwin, J.; Gyarfas, I.; et al. Report of the 1995 World Health Organization/International Society and Federation of Cardiology Task Force on the Definition and Classification of Cardiomyopathies. Circulation 1996, 93, 841–842. [Google Scholar] [CrossRef]
- Brisca, G.; Fiorillo, C.; Nesti, C.; Trucco, F.; Derchi, M.; Andaloro, A.; Assereto, S.; Morcaldi, G.; Pedemonte, M.; Minetti, C.; et al. Early Onset Cardiomyopathy Associated with the Mitochondrial tRNALeu(UUR) 3271T>C MELAS Mutation. Biochem. Biophys. Res. Commun. 2015, 458, 601–604. [Google Scholar] [CrossRef]
- Finsterer, J.; Stöllberger, C.; Steger, C.; Cozzarini, W. Complete Heart Block Associated with Noncompaction, Nail-Patella Syndrome, and Mitochondrial Myopathy. J. Electrocardiol. 2007, 40, 352–354. [Google Scholar] [CrossRef] [PubMed]
- Shimada, Y.; Gunasegaram, S.; Yokoyama, H.; Avkiran, M. Inhibition of Angiotensin-Converting Enzyme Reduces Susceptibility of Hypertrophied Rat Myocardium to Ventricular Fibrillation. Circ. J. 2002, 66, 1045–1053. [Google Scholar] [CrossRef]
- Campbell, T.; Slone, J.; Huang, T. Mitochondrial Genome Variants as a Cause of Mitochondrial Cardiomyopathy. Cells 2022, 11, 2835. [Google Scholar] [CrossRef] [PubMed]
- Arbustini, E.; Diegoli, M.; Fasani, R.; Grasso, M.; Morbini, P.; Banchieri, N.; Bellini, O.; Dal Bello, B.; Pilotto, A.; Magrini, G.; et al. Mitochondrial DNA Mutations and Mitochondrial Abnormalities in Dilated Cardiomyopathy. Am. J. Pathol. 1998, 153, 1501–1510. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Yu, X.; Xu, J.; Zhang, S.; Leng, J. Dilated Cardiomyopathy May Be Associated with a Novel Mitochondrial tRNASer(AGY) Mutation. Hum. Mutat. 2025, 2025, 7888334. [Google Scholar] [CrossRef] [PubMed]
- Grasso, M.; Diegoli, M.; Brega, A.; Campana, C.; Tavazzi, L.; Arbustini, E. The Mitochondrial DNA Mutation T12297C Affects a Highly Conserved Nucleotide of tRNALeu(CUN) and Is Associated with Dilated Cardiomyopathy. Eur. J. Hum. Genet. 2001, 9, 311–315. [Google Scholar] [CrossRef] [PubMed]
- Finsterer, J. Manifestations of the Mitochondrial A3243G Mutation. Int. J. Cardiol. 2009, 137, 60–62. [Google Scholar] [CrossRef]
- He, J.; Whelton, P.K. Epidemiology and Prevention of Hypertension. Med. Clin. North Am. 1997, 81, 1077–1097. [Google Scholar] [CrossRef]
- Kannel, W. Risk Stratification in Hypertension: New Insights from the Framingham Study*1. Am. J. Hypertens. 2000, 13, S3–S10. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, Y.; Xu, B.; Cai, Z.; Wang, L.; Tian, J.; Liu, Y.; Li, Y. The Mitochondrial Calcium Uniporter Is Involved in Mitochondrial Calcium Cycle Dysfunction: Underlying Mechanism of Hypertension Associated with Mitochondrial tRNA Ile A4263G Mutation. Int. J. Biochem. Cell Biol. 2016, 78, 307–314. [Google Scholar] [CrossRef]
- Zheng, P.; Li, S.; Liu, C.; Zha, Z.; Wei, X.; Yuan, Y. Mitochondrial tRNA Ala C5601T Mutation May Modulate the Clinical Expression of tRNA Met A4435G Mutation in a Han Chinese Family with Hypertension. Clin. Exp. Hypertens. 2018, 40, 595–600. [Google Scholar] [CrossRef]
- Yu, S.-S.; Du, J.-M.; Tang, Z.-D.; He, Z.-F. Molecular Characterization of Mitochondrial transferRNAGln and transferRNAMet A4401G Mutations in a Chinese Family with Hypertension. Mol. Med. Rep. 2017, 15, 1832–1836. [Google Scholar] [CrossRef]
- Yang, P.; Wu, P.; Liu, X.; Feng, J.; Zheng, S.; Wang, Y.; Fan, Z. Mitochondrial tRNASer(UCN) 7471delC May Be a Novel Mutation Associated with Maternally Transmitted Hypertension. Ir. J. Med. Sci. (1971-) 2020, 189, 489–496. [Google Scholar] [CrossRef]
- Richter, U.; McFarland, R.; Taylor, R.W.; Pickett, S.J. The Molecular Pathology of Pathogenic Mitochondrial tRNA Variants. FEBS Lett. 2021, 595, 1003–1024. [Google Scholar] [CrossRef]
- Luo, Z.; Lin, J.; Ji, J.; Zhang, M. Molecular Characterization of Two Hypertension Pedigrees Carrying Mitochondrial tRNAGln 4386T>C Mutation. Hum. Hered. 2025, 90, 41–50. [Google Scholar] [CrossRef]
- Wang, C.; Deng, X.; Li, L.; Li, M. Maternally Inherited Essential Hypertension May Be Associated with the Mutations in Mitochondrial tRNAGlu Gene. Pharmacogenomics Pers. Med. 2024, 17, 13–26. [Google Scholar] [CrossRef]
- Wilson, F.H.; Hariri, A.; Farhi, A.; Zhao, H.; Petersen, K.F.; Toka, H.R.; Nelson-Williams, C.; Raja, K.M.; Kashgarian, M.; Shulman, G.I.; et al. A Cluster of Metabolic Defects Caused by Mutation in a Mitochondrial tRNA. Science 2004, 306, 1190–1194. [Google Scholar] [CrossRef] [PubMed]
- Jia, Z.; Zhang, Y.; Li, Q.; Ye, Z.; Liu, Y.; Fu, C.; Cang, X.; Wang, M.; Guan, M.-X. A Coronary Artery Disease-Associated tRNAThr Mutation Altered Mitochondrial Function, Apoptosis and Angiogenesis. Nucleic Acids Res. 2019, 47, 2056–2074. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Xue, L.; Jiang, P.; Xu, M.; He, Y.; Shi, S.; Huang, Y.; He, J.; Mo, J.Q.; Guan, M. Mitochondrial tRNA Variants in Chinese Subjects With Coronary Heart Disease. J. Am. Heart Assoc. 2014, 3, e000437. [Google Scholar] [CrossRef]
- Heidari, M.M.; Derakhshani, M.; Sedighi, F.; Foruzan-Nia, S.K. Mutation Analysis of the Mitochondrial tRNA Genes in Iranian Coronary Atherosclerosis Patients. Iran. J. Public Health 2017, 46, 1379–1385. [Google Scholar] [PubMed]
- Jia, Q.; Xu, L.; Shen, J.; Wei, Y.; Xu, H.; Shi, J.; Jia, Z.; Zhao, X.; Liu, C.; Zhong, Q.; et al. Detecting Rare Variants and Heteroplasmy of Mitochondrial DNA from High-Throughput Sequencing in Patients with Coronary Artery Disease. Med. Sci. Monit. 2020, 26, e925401-1. [Google Scholar] [CrossRef] [PubMed]
- Schiattarella, G.G.; Trimarco, B.; Perrino, C.; Esposito, G. tURn the Lights on: Mitochondrial Transport--RNAs and Cardiovascular Disease. J. Am. Heart Assoc. 2014, 3, e000757. [Google Scholar] [CrossRef]
- Pulkes, T.; Sweeney, M.; Hanna, M. Increased Risk of Stroke in Patients with the A12308G Polymorphism in Mitochondria. Lancet 2000, 356, 2068–2069. [Google Scholar] [CrossRef]
- Ghirigato, E.; Terenzi, F.; Baglivo, M.; Zanetti, N.; Baldo, F.; Murru, F.M.; Bobbo, M.; Barbi, E.; Zeviani, M.; Bruno, I.; et al. A New Family with a Case of Severe Early-Onset Muscle Fatigue and a Peculiar Maternally Inherited Painful Swelling in Chewing Muscles Associated with Homoplasmic m.15992A>T Mutation in Mitochondrial tRNAPro. Neuromuscul. Disord. 2023, 33, 972–977. [Google Scholar] [CrossRef]
- Grasbon-Frodl, E.M.; Kösel, S.; Sprinzl, M.; von Eitzen, U.; Mehraein, P.; Graeber, M.B. Two Novel Point Mutations of Mitochondrial tRNA Genes in Histologically Confirmed Parkinson Disease. Neurogenetics 1999, 2, 121–127. [Google Scholar] [CrossRef]
- Cardena, M.M.S.G.; Mansur, A.J.; Pereira, A.D.C.; Fridman, C. A new duplication in the mitochondrially encoded tRNA proline gene in a patient with dilated cardiomyopathy. Mitochondrial DNA 2013, 24, 46–49. [Google Scholar] [CrossRef] [PubMed]
- Götz, A.; Isohanni, P.; Liljeström, B.; Rummukainen, J.; Nikolajev, K.; Herrgård, E.; Marjavaara, S.; Suomalainen, A. Fatal Neonatal Lactic Acidosis Caused by a Novel de Novo Mitochondrial G7453A tRNA-Serine (UCN) Mutation. Pediatr. Res. 2012, 72, 90–94. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Xu, X.; Wang, W.; Liu, F.; Zhao, D.; Li, D.; Ji, K.; Li, W.; Zhao, Y.; Yan, C. A Mitochondrial Myopathy-Associated tRNASer(UCN) 7453G>A Mutation Alters tRNA Metabolism and Mitochondrial Function. Mitochondrion 2021, 57, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Ma, L.; Xiao, C.; Zhang, Z.; Zhu, M.; Hong, D.; Zhan, Y. Weaning Difficulty after Severe Pneumonia in Adult-Onset Mitochondrial Myopathy with A3243G Mutation in the Mitochondrial tRNA Gene: A Case Report. Heliyon 2023, 9, e23300. [Google Scholar] [CrossRef]
- Roos, S.; Hedberg-Oldfors, C.; Visuttijai, K.; Stein, M.; Kollberg, G.; Elíasdóttir, Ó.; Lindberg, C.; Darin, N.; Oldfors, A. Expression Pattern of Mitochondrial Respiratory Chain Enzymes in Skeletal Muscle of Patients with Mitochondrial Myopathy Associated with the Homoplasmic m.14674T>C Variant. Brain Pathol. 2022, 32, e13038. [Google Scholar] [CrossRef] [PubMed]
- Duan, H.; Pan, C.; Wu, T.; Peng, J.; Yang, L. MT-TN Mutations Lead to Progressive Mitochondrial Encephalopathy and Promotes Mitophagy. Biochim. Et Biophys. Acta (BBA)-Mol. Basis Dis. 2024, 1870, 167043. [Google Scholar] [CrossRef]
- Borgione, E.; Lo Giudice, M.; Santa Paola, S.; Giuliano, M.; Di Blasi, F.D.; Di Stefano, V.; Lupica, A.; Brighina, F.; Pettinato, R.; Romano, C.; et al. The Mitochondrial tRNASer(UCN) Gene: A Novel m.7484A>G Mutation Associated with Mitochondrial Encephalomyopathy and Literature Review. Life 2023, 13, 554. [Google Scholar] [CrossRef]
- Venkatesan, D.; Iyer, M.; Raj, N.; Gopalakrishnan, A.V.; Narayanasamy, A.; Kumar, N.S.; Vellingiri, B. Assessment of tRNAThr and tRNAGln Variants and Mitochondrial Functionality in Parkinson’s Disease (PD) Patients of Tamil Nadu Population. J. Mol. Neurosci. 2023, 73, 912–920. [Google Scholar] [CrossRef]
- Yu, X.-J.; Ding, Y. The Roles of Mitochondrial tRNA Mutations in Non-Dystrophic Myotonias. Mitochondrial DNA Part B 2020, 5, 3778–3783. [Google Scholar] [CrossRef]
- García-Lozano, J.R.; Mir, P.; Alberca, R.; Aguilera, I.; Gil Néciga, E.; Fernández-López, O.; Cayuela, A.; Núñez-Roldan, A. Mitochondrial DNA A4336G Mutation in Alzheimer’s and Parkinson’s Diseases. Eur. Neurol. 2002, 48, 34–36. [Google Scholar] [CrossRef]
- Mayr-Wohlfart, U.; Rödel, G.; Henneberg, A. Mitochondrial tRNA(Gln) and tRNA(Thr) gene variants in Parkinson’s disease. Eur. J. Med. Res. 1997, 2, 111–113. [Google Scholar] [PubMed]
- Buneeva, O.; Fedchenko, V.; Kopylov, A.; Medvedev, A. Mitochondrial Dysfunction in Parkinson’s Disease: Focus on Mitochondrial DNA. Biomedicines 2020, 8, 591. [Google Scholar] [CrossRef]
- Yin, X.; Dong, Q.; Fan, S.; Yang, L.; Li, H.; Jin, Y.; Laurentinah, M.R.; Chen, X.; Sysa, A.; Fang, H.; et al. A Novel Pathogenic Mitochondrial DNA Variant m.4344T>C in tRNAGln Causes Developmental Delay. J. Hum. Genet. 2024, 69, 381–389. [Google Scholar] [CrossRef]
- Yuan, M.; Yang, B.; Rothschild, G.; Mann, J.J.; Sanford, L.D.; Tang, X.; Huang, C.; Wang, C.; Zhang, W. Epigenetic Regulation in Major Depression and Other Stress-Related Disorders: Molecular Mechanisms, Clinical Relevance and Therapeutic Potential. Signal Transduct. Target. Ther. 2023, 8, 309. [Google Scholar] [CrossRef]
- Yu, W.; Singh, S.S.; Calhoun, S.; Zhang, H.; Zhao, X.; Yang, F. Generalized Anxiety Disorder in Urban China: Prevalence, Awareness, and Disease Burden. J. Affect. Disord. 2018, 234, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Yarham, J.W.; Al-Dosary, M.; Blakely, E.L.; Alston, C.L.; Taylor, R.W.; Elson, J.L.; McFarland, R. A Comparative Analysis Approach to Determining the Pathogenicity of Mitochondrial tRNA Mutations. Hum. Mutat. 2011, 32, 1319–1325. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Wu, J.; Yuan, Y.; Li, X.; Gao, X.; Kang, D.; Zhang, X.; Huang, S.; Dai, P. Mitochondrial tRNASer(UCN) Mutations Associated Non-Syndromic Sensorineural Hearing Loss in Chinese Families. Heliyon 2024, 10, e27041. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Ji, Y.; Guan, M.-X. Mitochondrial tRNA Mutations Associated with Deafness. Mitochondrion 2012, 12, 406–413. [Google Scholar] [CrossRef]
- Labay, V.; Garrido, G.; Madeo, A.; Nance, W.; Friedman, T.; Friedman, P.; Del Castillo, I.; Griffith, A. Haplogroup Analysis Supports a Pathogenic Role for the 7510T>C Mutation of Mitochondrial tRNA Ser(UCN) in Sensorineural Hearing Loss. Clin. Genet. 2008, 73, 50–54. [Google Scholar] [CrossRef]
- Chen, X.; Meng, F.; Chen, C.; Li, S.; Chou, Z.; Xu, B.; Mo, J.Q.; Guo, Y.; Guan, M.-X. Deafness-Associated tRNAPhe Mutation Impaired Mitochondrial and Cellular Integrity. J. Biol. Chem. 2024, 300, 107235. [Google Scholar] [CrossRef]
- Meng, F.; Jia, Z.; Zheng, J.; Ji, Y.; Wang, J.; Xiao, Y.; Fu, Y.; Wang, M.; Ling, F.; Guan, M.-X. A Deafness-Associated Mitochondrial DNA Mutation Caused Pleiotropic Effects on DNA Replication and tRNA Metabolism. Nucleic Acids Res. 2022, 50, 9453–9469. [Google Scholar] [CrossRef]
- Yu, X.; Li, S.; Ding, Y. Maternally Transmitted Nonsyndromic Hearing Impairment May Be Associated with Mitochondrial tRNAAla 5601C>T and tRNA Leu(CUN) 12311T>C Mutations. J. Clin. Lab. Anal. 2022, 36, e24298. [Google Scholar] [CrossRef]
- Mutai, H.; Watabe, T.; Kosaki, K.; Ogawa, K.; Matsunaga, T. Mitochondrial Mutations in Maternally Inherited Hearing Loss. BMC Med. Genet. 2017, 18, 32. [Google Scholar] [CrossRef]
- Zhou, L.; Chan, J.C.Y.; Chupin, S.; Gueguen, N.; Desquiret-Dumas, V.; Koh, S.K.; Li, J.; Gao, Y.; Deng, L.; Verma, C.; et al. Increased Protein S-Glutathionylation in Leber’s Hereditary Optic Neuropathy (LHON). Int. J. Mol. Sci. 2020, 21, 3027. [Google Scholar] [CrossRef]
- Jin, L.; Gan, D.; He, W.; Wu, N.; Xiang, S.; Wei, Y.; Eriani, G.; Ji, Y.; Guan, M.; Wang, M. Mitochondrial tRNAGlu 14693A > G Mutation, an “Enhancer” to the Phenotypic Expression of Leber’s Hereditary Optic Neuropathy. Adv. Sci. 2024, 11, 2401856. [Google Scholar] [CrossRef] [PubMed]
- Vela-Sebastián, A.; López-Gallardo, E.; Emperador, S.; Hernández-Ainsa, C.; Pacheu-Grau, D.; Blanco, I.; Ros, A.; Pascual-Benito, E.; Rabaneda-Lombarte, N.; Presas-Rodríguez, S.; et al. Toxic and nutritional factors trigger Leber hereditary optic neuropathy due to a mitochondrial tRNA mutation. Clinal Genet. 2022, 102, 339–344. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.P.; Woreta, F.; Chang, D.F. Cataracts: A Review. JAMA 2025, 333, 2093–2103. [Google Scholar] [CrossRef] [PubMed]
- Schrier, S.A.; Wong, L.-J.; Place, E.; Ji, J.Q.; Pierce, E.A.; Golden, J.; Santi, M.; Anninger, W.; Falk, M.J. Mitochondrial tRNA-Serine (AGY) m.C12264T Mutation Causes Severe Multisystem Disease with Cataracts. Discov. Med. 2012, 13, 143–150. [Google Scholar]
- Tuppen, H.A.; Naess, K.; Kennaway, N.G.; Al-Dosary, M.; Lesko, N.; Yarham, J.W.; Bruhn, H.; Wibom, R.; Nennesmo, I.; Weleber, R.G.; et al. Mutations in the Mitochondrial tRNASer(AGY) Gene Are Associated with Deafness, Retinal Degeneration, Myopathy and Epilepsy. Eur. J. Hum. Genet. 2012, 20, 897–904, Erratum in Eur. J. Hum. Genet. 2012, 20, 910. [Google Scholar] [CrossRef]
- Emma, F.; Bertini, E.; Salviati, L.; Montini, G. Renal Involvement in Mitochondrial Cytopathies. Pediatr. Nephrol. 2012, 27, 539–550. [Google Scholar] [CrossRef]
- Lim, K.; Steele, D.; Fenves, A.; Thadhani, R.; Heher, E.; Karaa, A. Focal Segmental Glomerulosclerosis Associated with Mitochondrial Disease. Clin. Nephrol.–Case Stud. 2017, 5, 20–25. [Google Scholar] [CrossRef] [PubMed]
- Emma, F.; Montini, G.; Parikh, S.M.; Salviati, L. Mitochondrial Dysfunction in Inherited Renal Disease and Acute Kidney Injury. Nat. Rev. Nephrol. 2016, 12, 267–280. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Tong, L.; Rao, J.; Ye, Q.; Chen, Y.; Zhang, Y.; Xu, J.; Mao, X.; Meng, F.; Shen, H.; et al. Heteroplasmic and Homoplasmic m.616T>C in Mitochondria tRNAPhe Promote Isolated Chronic Kidney Disease and Hyperuricemia. JCI Insight 2022, 7, e157418. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Fang, T.; Pang, X.; Pan, X.; Tong, A.; Lin, Z.; Zheng, S.; Zheng, N. Mitochondrial DNA Abnormalities and Metabolic Syndrome. Front. Cell Dev. Biol. 2023, 11, 1153174. [Google Scholar] [CrossRef]
- Gerbitz, K.-D.; van den Ouweland, J.M.W.; Maassen, J.A.; Jaksch, M. Mitochondrial Diabetes Mellitus: A Review. Biochim. Et Biophys. Acta (BBA)-Mol. Basis Dis. 1995, 1271, 253–260. [Google Scholar] [CrossRef]
- Zheng, S.; Wang, J.; Sun, M.; Wang, P.; Shi, W.; Zhang, Z.; Wang, Z.; Zhang, H. The Clinical and Genetic Characteristics of Maternally Inherited Diabetes and Deafness (MIDD) with Mitochondrial m3243A > G Mutation: A 10-year Follow-up Observation Study and Literature Review. Clin. Case Rep. 2024, 12, e8458. [Google Scholar] [CrossRef]
- Li, K.; Wu, L.; Liu, J.; Lin, W.; Qi, Q.; Zhao, T. Maternally Inherited Diabetes Mellitus Associated with a Novel m.15897G>A Mutation in Mitochondrial tRNA Thr Gene. J. Diabetes Res. 2020, 2020, 2057187. [Google Scholar] [CrossRef]
- Rao, X.; Xie, L.; Shi, S.; Fang, Y. Mitochondrial tRNA Glu 14687A >G May Be A Novel Mutation for Type 2 Diabetes Mellitus. J. Clin. Lab. Anal. 2025, 39, e70056. [Google Scholar] [CrossRef]
- Chen, Y.; Liao, W.X.; Roy, A.C.; Loganath, A.; Ng, S.C. Mitochondrial Gene Mutations in Gestational Diabetes Mellitus. Diabetes Res. Clin. Pract. 2000, 48, 29–35. [Google Scholar] [CrossRef]
- Ding, Y.; Zhuo, G.; Zhang, C.; Leng, J. Point Mutation in Mitochondrial tRNA Gene Is Associated with Polycystic Ovary Syndrome and Insulin Resistance. Mol. Med. Rep. 2016, 13, 3169–3172. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Wang, L.; Zhang, G.; Li, N.; Zhao, Y.; Liu, J.; Jiang, M.; Du, X.; Zeng, Q.; Xiong, D.; et al. Oxidative Stress and Energy Metabolism Abnormalities in Polycystic Ovary Syndrome: From Mechanisms to Therapeutic Strategies. Reprod. Biol. Endocrinol. 2024, 22, 159. [Google Scholar] [CrossRef] [PubMed]
- Nawaz, T.; Awan, T.; Zahoor, H.; Gul, R.; Bibi, S.; Uddin, A.; Abbas, G.; Ghafoor, S.U.; Belay, S.A.; Rehman, A.; et al. Analysis of Mutations in Mitochondrial Transfer RNA Genes and the Maternal Inheritance of Polycystic Ovary Syndrome. Front. Endocrinol. 2025, 16, 1509791. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, H.; Matsubara, S.; Yoshimoto, C.; Shigetomi, H.; Imanaka, S. A Comprehensive Review of the Contribution of Mitochondrial DNA Mutations and Dysfunction in Polycystic Ovary Syndrome, Supported by Secondary Database Analysis. Int. J. Mol. Sci. 2025, 26, 1172. [Google Scholar] [CrossRef] [PubMed]
- Bortot, B.; Barbi, E.; Biffi, S.; Angelini, C.; Faleschini, E.; Severini, G.M.; Carrozzi, M. Two Novel Cosegregating Mutations in tRNAMet and COX III, in a Patient with Exercise Intolerance and Autoimmune Polyendocrinopathy. Mitochondrion 2009, 9, 123–129. [Google Scholar] [CrossRef]
- Gattermann, N.; Wulfert, M.; Junge, B.; Germing, U.; Haas, R.; Hofhaus, G. Ineffective Hematopoiesis Linked with a Mitochondrial tRNA Mutation (G3242A) in a Patient with Myelodysplastic Syndrome. Blood 2004, 103, 1499–1502. [Google Scholar] [CrossRef]
- Xuan, D.; Qiang, F.; Xu, H.; Wang, L.; Xia, Y. Screening for Mitochondrial tRNA Variants in 200 Patients with Systemic Lupus Erythematosus. Hum. Hered. 2024, 89, 84–97. [Google Scholar] [CrossRef]
- Jiang, P.; Ling, Y.; Zhu, T.; Luo, X.; Tao, Y.; Meng, F.; Cheng, W.; Ji, Y. Mitochondrial tRNA Mutations in Chinese Children with Tic Disorders. Biosci. Rep. 2020, 40, BSR20201856. [Google Scholar] [CrossRef]
- Wen, Y.; Yao, Y. Autism Spectrum Disorders: The Mitochondria Connection. In Autism Spectrum Disorders; Exon Publications: Brisbane, Australia, 2021; pp. 79–94. [Google Scholar]
- Khaliulin, I.; Hamoudi, W.; Amal, H. The Multifaceted Role of Mitochondria in Autism Spectrum Disorder. Mol. Psychiatry 2025, 30, 629–650. [Google Scholar] [CrossRef]
- Virgilio, R.; Ronchi, D.; Bordoni, A.; Fassone, E.; Bonato, S.; Donadoni, C.; Torgano, G.; Moggio, M.; Corti, S.; Bresolin, N.; et al. Mitochondrial DNA G8363A Mutation in the tRNALys Gene: Clinical, Biochemical and Pathological Study. J. Neurol. Sci. 2009, 281, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Rossignol, D.A.; Frye, R.E. Mitochondrial Dysfunction in Autism Spectrum Disorders: A Systematic Review and Meta-Analysis. Mol. Psychiatry 2012, 17, 290–314. [Google Scholar] [CrossRef]
- Adiba, M.; Rahman, M.; Akter, H.; Rahman, M.M.; Uddin, M.; Ebihara, A.; Nabi, A.H.M.N. Mutational Landscape of Mitochondrial Cytochrome b and Its Flanking tRNA Genes Associated with Increased Mitochondrial DNA Copy Number and Disease Risk in Children with Autism. Gene Rep. 2024, 35, 101895. [Google Scholar] [CrossRef]
- Weissman, J.R.; Kelley, R.I.; Bauman, M.L.; Cohen, B.H.; Murray, K.F.; Mitchell, R.L.; Kern, R.L.; Natowicz, M.R. Mitochondrial Disease in Autism Spectrum Disorder Patients: A Cohort Analysis. PLoS ONE 2008, 3, e3815. [Google Scholar] [CrossRef] [PubMed]
- Alhomidi, M.A.; Hasan, Q. High Prevalence of Mitochondrial tRNA A3243G Mutation in Invasive Breast Cancer. Asian Pac. J. Cancer Biol. 2021, 6, 133–139. [Google Scholar] [CrossRef]
- Blakely, E.L.; Yarham, J.W.; Alston, C.L.; Craig, K.; Poulton, J.; Brierley, C.; Park, S.; Dean, A.; Xuereb, J.H.; Anderson, K.N.; et al. Pathogenic Mitochondrial t RNA Point Mutations: Nine Novel Mutations Affirm Their Importance as a Cause of Mitochondrial Disease. Hum. Mutat. 2013, 34, 1260–1268. [Google Scholar] [CrossRef] [PubMed]
- Richter, U.; Evans, M.E.; Clark, W.C.; Marttinen, P.; Shoubridge, E.A.; Suomalainen, A.; Wredenberg, A.; Wedell, A.; Pan, T.; Battersby, B.J. RNA Modification Landscape of the Human Mitochondrial tRNALys Regulates Protein Synthesis. Nat. Commun. 2018, 9, 3966. [Google Scholar] [CrossRef] [PubMed]
- Ding, H.J.; Zhao, Y.P.; Jiang, Z.C.; Zhou, D.T.; Zhu, R. Analysis of Mitochondrial Transfer RNA Mutations in Breast Cancer. Balk. J. Med. Genet. 2023, 25, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Chen, Y.; Li, J.; Li, B. A Rare de Novo Mutation, m.1630A>G, in the Mitochondrial tRNAVal (MT-TV) Gene in a Child with Epilepsy: Case Report and Review of the Literature. Transl. Pediatr. 2025, 14, 367–372. [Google Scholar] [CrossRef]
- Ronchi, D.; Sciacco, M.; Bordoni, A.; Raimondi, M.; Ripolone, M.; Fassone, E.; Di Fonzo, A.; Rizzuti, M.; Ciscato, P.; Cosi, A.; et al. The Novel Mitochondrial tRNAAsn Gene Mutation m.5709T>C Produces Ophthalmoparesis and Respiratory Impairment. Eur. J. Hum. Genet. 2012, 20, 357–360. [Google Scholar] [CrossRef]
- Lin, Y.; Wang, J.; Zhuang, X.; Zhao, Y.; Wang, W.; Wang, D.; Zhao, Y.; Yan, C.; Ji, K. Queuine Ameliorates Impaired Mitochondrial Function Caused by Mt-tRNAAsn Variants. J. Transl. Med. 2024, 22, 780. [Google Scholar] [CrossRef]
- Kusmirek, W.; Strozynska, N.; Cerpa, P.M.-A.; Dziergowska, A.; Leszczynska, G.; Nowak, R.; Adamczyk, M. Direct RNA Oxford Nanopore Sequencing Distinguishes between Modifications in tRNA at the U34 Position. bioRxiv 2024, bioRxiv:2024.12.30.630739. [Google Scholar] [CrossRef] [PubMed]
- Torres, A.G.; Piñeyro, D.; Filonava, L.; Stracker, T.H.; Batlle, E.; Ribas de Pouplana, L. A-to-I Editing on tRNAs: Biochemical, Biological and Evolutionary Implications. FEBS Lett. 2014, 588, 4279–4286. [Google Scholar] [CrossRef] [PubMed]
- Peng, G.-X.; Zhang, Y.; Wang, Q.-Q.; Li, Q.-R.; Xu, H.; Wang, E.-D.; Zhou, X.-L. The Human tRNA Taurine Modification Enzyme GTPBP3 Is an Active GTPase Linked to Mitochondrial Diseases. Nucleic Acids Res. 2021, 49, 2816–2834. [Google Scholar] [CrossRef] [PubMed]
- Tomoda, E.; Nagao, A.; Shirai, Y.; Asano, K.; Suzuki, T.; Battersby, B.J.; Suzuki, T. Restoration of Mitochondrial Function through Activation of Hypomodified tRNAs with Pathogenic Mutations Associated with Mitochondrial Diseases. Nucleic Acids Res. 2023, 51, 7563–7579. [Google Scholar] [CrossRef]
- Magistrati, M.; Gilea, A.I.; Ceccatelli Berti, C.; Baruffini, E.; Dallabona, C. Modopathies Caused by Mutations in Genes Encoding for Mitochondrial RNA Modifying Enzymes: Molecular Mechanisms and Yeast Disease Models. Int. J. Mol. Sci. 2023, 24, 2178. [Google Scholar] [CrossRef]
- Zeharia, A.; Shaag, A.; Pappo, O.; Mager-Heckel, A.-M.; Saada, A.; Beinat, M.; Karicheva, O.; Mandel, H.; Ofek, N.; Segel, R.; et al. Acute Infantile Liver Failure Due to Mutations in the TRMU Gene. Am. J. Hum. Genet. 2009, 85, 401–407, Erratum in Am. J. Hum. Genet. 2010, 86, 295. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, R.N.R.; Zhang, L.-T.; Morita, R.; Tani, H.; Wu, Y.; Chujo, T.; Ogawa, A.; Harada, R.; Shigeta, Y.; Tomizawa, K.; et al. Pathological Mutations Promote Proteolysis of Mitochondrial tRNA-Specific 2-Thiouridylase 1 (MTU1) via Mitochondrial Caseinolytic Peptidase (CLPP). Nucleic Acids Res. 2024, 52, 1341–1358. [Google Scholar] [CrossRef] [PubMed]
- Vogel, G.F.; Mozer-Glassberg, Y.; Landau, Y.E.; Schlieben, L.D.; Prokisch, H.; Feichtinger, R.G.; Mayr, J.A.; Brennenstuhl, H.; Schröter, J.; Pechlaner, A.; et al. Genotypic and Phenotypic Spectrum of Infantile Liver Failure Due to Pathogenic TRMU Variants. Genet. Med. 2023, 25, 100314, Erratum in Genet. Med. 2023, 25, 100828. [Google Scholar] [CrossRef]
- Ueda, S.; Yagi, M.; Tomoda, E.; Matsumoto, S.; Ueyanagi, Y.; Do, Y.; Setoyama, D.; Matsushima, Y.; Nagao, A.; Suzuki, T.; et al. Mitochondrial Haplotype Mutation Alleviates Respiratory Defect of MELAS by Restoring Taurine Modification in tRNA with 3243A > G Mutation. Nucleic Acids Res. 2023, 51, 7480–7495. [Google Scholar] [CrossRef]
- Perli, E.; Giordano, C.; Pisano, A.; Montanari, A.; Campese, A.F.; Reyes, A.; Ghezzi, D.; Nasca, A.; Tuppen, H.A.; Orlandi, M.; et al. The Isolated Carboxy--terminal Domain of Human Mitochondrial leucyl--tRNA Synthetase Rescues the Pathological Phenotype of Mitochondrial tRNA Mutations in Human Cells. EMBO Mol. Med. 2014, 6, 169–182. [Google Scholar] [CrossRef]
- Umeda, N.; Suzuki, T.; Yukawa, M.; Ohya, Y.; Shindo, H.; Watanabe, K.; Suzuki, T. Mitochondria-Specific RNA-Modifying Enzymes Responsible for the Biosynthesis of the Wobble Base in Mitochondrial tRNAs: Implications for the Molecular Pathogenesis of Human Mitochondrial Diseases. J. Biol. Chem. 2005, 280, 1613–1624. [Google Scholar] [CrossRef]
- Sunada, Y. [Taurine for Mitochondrial Diseases]. Brain Nerve 2024, 76, 1127–1135. [Google Scholar] [CrossRef]
- Ohsawa, Y.; Hagiwara, H.; Nishimatsu, S.-I.; Hirakawa, A.; Kamimura, N.; Ohtsubo, H.; Fukai, Y.; Murakami, T.; Koga, Y.; Goto, Y.-I.; et al. Taurine Supplementation for Prevention of Stroke-like Episodes in MELAS: A Multicentre, Open-Label, 52-Week Phase III Trial. J. Neurol. Neurosurg. Psychiatry 2019, 90, 529–536. [Google Scholar] [CrossRef] [PubMed]
- Phan, H.T.L.; Lee, H.; Kim, K. Trends and Prospects in Mitochondrial Genome Editing. Exp. Mol. Med. 2023, 55, 871–878. [Google Scholar] [CrossRef] [PubMed]
- Lim, K. Mitochondrial Genome Editing: Strategies, Challenges, and Applications. BMB Rep. 2024, 57, 19–29. [Google Scholar] [CrossRef]
- Ko, W.; Porter, J.J.; Sipple, M.T.; Edwards, K.M.; Lueck, J.D. Efficient Suppression of Endogenous CFTR Nonsense Mutations Using Anticodon-Engineered Transfer RNAs. Mol. Ther.-Nucleic Acids 2022, 28, 685–701. [Google Scholar] [CrossRef] [PubMed]
- Awawdeh, A.; Radecki, A.A.; Vargas-Rodriguez, O. Suppressor tRNAs at the Interface of Genetic Code Expansion and Medicine. Front. Genet. 2024, 15, 1420331. [Google Scholar] [CrossRef] [PubMed]
- Weiss, J.L.; Decker, J.C.; Bolano, A.; Krahn, N. Tuning tRNAs for Improved Translation. Front. Genet. 2024, 15, 1436860. [Google Scholar] [CrossRef]
- Coller, J.; Ignatova, Z. tRNA Therapeutics for Genetic Diseases. Nat. Rev. Drug Discov. 2024, 23, 108–125. [Google Scholar] [CrossRef]
- Lowe, T.M.; Eddy, S.R. tRNAscan-SE: A Program for Improved Detection of Transfer RNA Genes in Genomic Sequence. Nucleic Acids Res. 1997, 25, 955–964. [Google Scholar] [CrossRef] [PubMed]
- Chan, P.P.; Lin, B.Y.; Mak, A.J.; Lowe, T.M. tRNAscan-SE 2.0: Improved Detection and Functional Classification of Transfer RNA Genes. Nucleic Acids Res. 2021, 49, 9077–9096. [Google Scholar] [CrossRef] [PubMed]
- Jackson, C.B.; Turnbull, D.M.; Minczuk, M.; Gammage, P.A. Therapeutic Manipulation of mtDNA Heteroplasmy: A Shifting Perspective. Trends Mol. Med. 2020, 26, 698–709. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.; Song, Y.; Wang, W.; Shi, J.; Chen, X. Mitochondrial DNA Editing: Key to the Treatment of Neurodegenerative Diseases. Genes Dis. 2025, 12, 101437. [Google Scholar] [CrossRef]










Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petropoulou, A.; Kypraios, N.; Rizopoulou, D.; Kouvela, A.; Maniatis, A.; Anastasopoulou, K.; Anastogianni, A.; Korfiatis, T.; Grafanaki, K.; Stamatopoulou, V.; et al. Mitochondrial tRNA-Derived Diseases. Int. J. Mol. Sci. 2025, 26, 12023. https://doi.org/10.3390/ijms262412023
Petropoulou A, Kypraios N, Rizopoulou D, Kouvela A, Maniatis A, Anastasopoulou K, Anastogianni A, Korfiatis T, Grafanaki K, Stamatopoulou V, et al. Mitochondrial tRNA-Derived Diseases. International Journal of Molecular Sciences. 2025; 26(24):12023. https://doi.org/10.3390/ijms262412023
Chicago/Turabian StylePetropoulou, Antonia, Nikolaos Kypraios, Dimitra Rizopoulou, Adamantia Kouvela, Alexandros Maniatis, Katerina Anastasopoulou, Alexandra Anastogianni, Theodoros Korfiatis, Katerina Grafanaki, Vassiliki Stamatopoulou, and et al. 2025. "Mitochondrial tRNA-Derived Diseases" International Journal of Molecular Sciences 26, no. 24: 12023. https://doi.org/10.3390/ijms262412023
APA StylePetropoulou, A., Kypraios, N., Rizopoulou, D., Kouvela, A., Maniatis, A., Anastasopoulou, K., Anastogianni, A., Korfiatis, T., Grafanaki, K., Stamatopoulou, V., & Stathopoulos, C. (2025). Mitochondrial tRNA-Derived Diseases. International Journal of Molecular Sciences, 26(24), 12023. https://doi.org/10.3390/ijms262412023

