A Fatal Case Involving Chronic Intravenous Use of Homemade Methcathinone Derived from Pseudoephedrine Tablets: Post-Mortem Concentrations, Health Risk, and Medicolegal Aspect
Abstract
1. Introduction
2. Results
2.1. Method
2.2. Toxicological Results
3. Discussion
4. Case Report
5. Materials and Methods
5.1. Chemicals
5.2. Biological Materials and Samples Procedure
5.3. Chromatographic and Spectrometric Conditions
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| 4-MMC | 4-MMC |
| BAC | blood alcohol concentration |
| CNS | central nervous system |
| DL | desolvation line |
| EMA | European Medicines Agency |
| EMCDDA | European Monitoring Centre for Drugs and Drug Addiction |
| EUDA | European Union Drugs Agency |
| HPLC-UV | high-performance liquid chromatography with ultraviolet detector |
| ISTDs | internal standards |
| LLE | liquid–liquid extraction |
| mCPP | meta-chlorophenylpiperazine, 1-(3-chlorophenyl)piperazine |
| MME | manganese-methcathinone encephalopathy |
| MRM | multiple reaction monitoring |
| OTC | over-the-counter |
| PRAC | Pharmacovigilance Risk Assessment Committee |
| PRES | pseudoephedrine-related reversible encephalopathy syndrome |
| RCVS | reversible cerebral vasoconstriction syndrome |
| SWGTOX | the Scientific Working Group for Forensic Toxicology |
| UHPLC-QqQ-MS/MS | ultra-high-performance liquid chromatography coupled with triple quadrupole mass spectrometry |
| ULOQ | upper limit of quantification |
References
- Piątek, A.; Koziarska-Rościszewska, M.; Zawilska, J.B. Recreational use of over-the-counter drugs: The doping of the brain. Alcohol. Drug Addict. 2015, 28, 65–77, (In Polish with English abstract). [Google Scholar]
- European Medicines Agency. EMA Confirms Measures to Minimise the Risk of Serious Side Effects with Medicines Containing Pseudoephedrine; European Medicines Agency: London, UK, 2024; Available online: https://www.ema.europa.eu/en/documents/referral/ema-confirms-measures-minimise-risk-serious-side-effects-medicines-containing-pseudoephedrine_en.pdf (accessed on 28 September 2025).
- Chen, S.; Zhou, W.; Lai, M. Synthetic cathinones: Epidemiology, toxicity, potential for abuse, and current public health perspective. Brain Sci. 2024, 14, 334. [Google Scholar] [CrossRef]
- Groenewegen, K.L.; Grenigt, F.M.J.; Nugteren-van Lonkhuyzen, J.J.; den Haan, C.; Franssen, E.J.; Riezebos, R.K.; Ohana, D.; de Lange, D.W. Cardiotoxicity after synthetic cathinone use; two cases, a case series and scoping review. Cardiovasc. Toxicol. 2024, 24, 209–224. [Google Scholar] [CrossRef]
- Zuba, D. Medicines containing ephedrine and pseudoephedrine as a source of methcathinone. Probl. Forensic Sci. 2007, 71, 323–333. [Google Scholar]
- European Monitoring Centre for Drug and Drug Addiction. Perspectives on Drugs: Injection of Synthetic Cathinones. Available online: https://www.drugsandalcohol.ie/21967/1/injection.pdf (accessed on 28 September 2025).
- Baselt, R.C. Disposition of Toxic Drugs and Chemicals in Man, 12th ed.; Biomedical Publications: Seal Beach, CA, USA, 2020. [Google Scholar]
- Sikk, K.; Taba, P.; Haldre, S.; Bergquist, J.; Nyholm, D.; Zjablov, G.; Asser, T.; Aquilonius, S.M. Irreversible motor impairment in young addicts--ephedrone, manganism or both? Acta Neurol. Scand. 2007, 115, 385–389. [Google Scholar] [CrossRef]
- de Bie, R.M.; Gladstone, R.M.; Strafella, A.P.; Ko, J.H.; Lang, A.E. Manganese-induced Parkinsonism associated with methcathinone (Ephedrone) abuse. Arch. Neurol. 2007, 64, 886–889. [Google Scholar] [CrossRef]
- Sanotsky, Y.; Lesyk, R.; Fedoryshyn, L.; Komnatska, I.; Matviyenko, Y.; Fahn, S. Manganic encephalopathy due to “ephedrone” abuse. Mov. Disord. 2007, 22, 1337–1343. [Google Scholar] [CrossRef]
- Stepens, A.; Logina, I.; Liguts, V.; Aldins, P.; Eksteina, I.; Platkājis, A.; Mārtinsone, I.; Tērauds, E.; Rozentāle, B.; Donaghy, M. A Parkinsonian syndrome in methcathinone users and the role of manganese. N. Engl. J. Med. 2008, 358, 1009–1917. [Google Scholar] [CrossRef]
- Rojek, S.; Kłys, M.; Maciów-Głąb, M.; Kula, K.; Strona, M. Cathinones-derivatives-related deaths as exemplified by two fatal cases involving methcathinone with 4-methylmethcathinone and 4-methylethcathinone. Drug Test. Anal. 2014, 6, 770–777. [Google Scholar] [CrossRef] [PubMed]
- Belhadj-Tahat, H.; Nouredine, S. Methcathinone: A new postindustrial drug. Forensic Sci. Int. 2005, 153, 99–101. [Google Scholar] [CrossRef] [PubMed]
- Adamowicz, P. Blood concentration of synthetic cathinones. Clin. Toxicol. 2021, 59, 648–654. [Google Scholar] [CrossRef]
- Adamowicz, P. Stability of synthetic cathinones in blood and urine. Forensic Sci. Int. 2019, 295, 36–45. [Google Scholar] [CrossRef]
- Glicksberg, L.; Kerrigan, S. Stability of Synthetic Cathinones in Blood. J. Anal. Toxicol. 2017, 41, 711–719. [Google Scholar] [CrossRef]
- Glicksberg, L.; Kerrigan, S. Stability of Synthetic Cathinones in Urine. J. Anal. Toxicol. 2018, 42, 77–87. [Google Scholar] [CrossRef]
- Meral, H.; Kutukcu, Y.; Atmaca, B.; Ozer, F.; Hamamcioglu, K. Parkinsonism caused by chronic usage of intravenous potassium permanganate. Neurologist 2007, 13, 92–94. [Google Scholar] [CrossRef]
- Habrat, B.; Silczuk, A.; Klimkiewicz, A. Manganese encephalopathy caused by homemade methcathinone (ephedrone) prevalence in Poland. Nutrients 2021, 13, 3496. [Google Scholar] [CrossRef] [PubMed]
- Ennok, M.; Sikk, K.; Haldre, S.; Taba, P. Cognitive profile of patients with manganese-methcathinone encephalopathy. Neurotoxicology 2020, 76, 138–143. [Google Scholar] [CrossRef] [PubMed]
- Scientific Working Group for Forensic Toxicology. Scientific Working Group for Forensic Toxicology (SWGTOX) standard practices for method validation in forensic toxicology. J. Anal. Toxicol. 2013, 37, 452–474. [Google Scholar] [CrossRef] [PubMed]
- Zawadzki, M.; Nowak, K.; Szpot, P. Fatal intoxication with N-ethylpentylone: A case report and method for determining N-ethylpentylone in biological material. Forensic Toxicol. 2020, 38, 255–263. [Google Scholar] [CrossRef]
- Szpot, P.; Nowak, K.; Wachełko, O.; Tusiewicz, K.; Chłopaś-Konowałek, A.; Zawadzki, M. Methyl (S)-2-(1-7 (5-fluoropentyl)-1Hindole-3-carboxamido)-3,3-dimethylbutanoate (5F-MDMB-PICA) intoxication in a child with identification of two new metabolites(ultra-high-performance liquid chromatography-tandem mass spectrometry). Forensic Toxicol. 2023, 41, 47–58. [Google Scholar] [CrossRef]
- Nowak, K.; Chłopaś-Konowałek, A.; Szpot, P.; Zawadzki, M. The issue of “Smart drugs” on the example of modafinil: Toxicological analysis of evidences and biological samples. J. Xenobiot. 2025, 15, 15. [Google Scholar] [CrossRef]
- Iqbal, M.; Monaghan, T.; Redmond, J. Manganese toxicity with ephedrone abuse manifesting as parkinsonism: A case report. J. Med. Case Rep. 2012, 6, 52. [Google Scholar] [CrossRef]
- Ordak, M.; Sloniewicz, N.; Nasierowski, T.; Muszynska, E.; Bujalska-Zadrozny, M. Manganese concentration in patients with encephalopathy following ephedrone use: A narrative review and analysis of case reports. Clin. Toxicol. 2022, 60, 10–17. [Google Scholar] [CrossRef]
- Koksal, A.; Baybas, S.; Sozmen, V.; Koksal, N.S.; Altunkaynak, Y.; Dirican, A.; Mutluay, B.; Kucukoglu, H.; Keskinkilic, C. Chronic manganese toxicity due to substance abuse in Turkish patients. Neurol. India 2012, 60, 224–227. [Google Scholar] [CrossRef]
- Sikk, K.; Taba, P. Methcathinone “kitchen chemistry” and permanent neurological damage. Int. Rev. Neurobiol. 2015, 120, 257–271. [Google Scholar] [CrossRef] [PubMed]
- Lavender, T.W.; McCarron, B. Acute infections in intravenous users. Clin. Med. 2013, 13, 511–513. [Google Scholar] [CrossRef] [PubMed]
- Hengge, U.R.; Beiderlinden, M.; Otterbach, F.; Groeben, H.; Nast-Kolb, D.; Mehnert, W.H.; Peters, J.; Schmid, K.W. 31-year-old infection drug user with massive skin necrosis and shock. Dermatology 2003, 206, 169–171. [Google Scholar] [CrossRef] [PubMed]
- Haskin, A.; Kim, N.; Aguh, C. A new drug with a nasty bite: A case of krokodil-inducted skin necrosis in an intravenous drug user. JAAD Case Rep. 2016, 2, 174–176. [Google Scholar] [CrossRef]
- Delaney, F.T.; Stanley, E.; Bolster, F. The needle and the damage done: Musculoskeletal and vascular complications associated with injected drug use. Insights Imaging 2020, 11, 98. [Google Scholar] [CrossRef]
- Olds, K.; Gilbert, J.; Langlois, N.E.I.; Byard, R.W. Systemic dissemination of injected foreign material. J. Forensic Sci. 2019, 64, 1245–1247. [Google Scholar] [CrossRef]
- Nguyen, V.T.; Chan, E.S.; Chou, S.H.S.; Godwin, J.D.; Flinger, C.L.; Schmidt, R.A.; Pipavath, S.N. Pulmonary effects of IV injection of crushed oral tablets: “Excipient lung disease”. AJR Am. J. Roentgenol. 2014, 203, W506–W515. [Google Scholar] [CrossRef]
- Amass, T.; Cumplido, J.; Aswad, B.; Whittenhall, M.; Ventetuolo, C.; Klinger, J. Rapid development of pulmonary hypertension and right ventricular failure due to large vessel intravascular microcrystalline cellulosis in an intravenous drug user. Pulm. Circ. 2020, 10, 2045894020907871. [Google Scholar] [CrossRef]
- Anderson, R.J.; Corbett, B.; Ly, B.T. A case of acute pericarditis following intravenous injection of crushed morphine tablets. J. Psychoact. Drugs 2016, 48, 355–358. [Google Scholar] [CrossRef]
- Gilbert, J.D.; Neubauer, K.; Byard, R.W. Macroscopic identification of visceral titanium pigment in an intravenous drug user. J. Forensic Sci. 2021, 66, 2024–2028. [Google Scholar] [CrossRef]
- Shrestha, B.; McLemore, J.; Miles, M. Sudden death by acute cor pulmonare from intravenous drug abuse during an inpatient admission. Implications for unexplained in-hospital death. Clin. Pulm. Med. 2013, 20, 192–195. [Google Scholar] [CrossRef]
- Meyer, J.P.; Culbert, G.J.; Azbel, L.; Bachireddy, C.; Kurmanalieva, A.; Rhodes, T.; Altice, F.L. A qualitative study of diphenhydramine injection in Kyrgyz prisons and implications for harm reduction. Harm Reduct. J. 2020, 17, 86. [Google Scholar] [CrossRef] [PubMed]
- Ma, M.; Feng, F.; Sheng, Y.; Cui, S.; Liu, H. Development and evaluation of an efficient HPLC/MS/MS method for the simultaneous determination of pseudoephedrine and cetirizine in human plasma: Application to phase-I pharmacokinetic study. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2007, 846, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Glicksberg, L.; Bryand, K.; Kerrigan, S. Identification and quantification of synthetic cathinones in blood and urine using liquid chromatography-quadrupole/time of flight (LC-Q/TOF) mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2016, 1035, 91–103. [Google Scholar] [CrossRef]
- Al-Saffar, Y.; Stephanson, N.N.; Beck, O. Multicomponent LC-MS/MS screening method for detection of new psychoactive drugs, legal highs, in urine-experience from the Swedish population. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2013, 930, 112–120. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, Z.H.; Li, H.; Liu, Y.; Zhao, M.; Jiang, Y.; Zhao, W.S. Simultaneous determination of 12 illicit drugs in whole blood and urine by solid phase extraction and UPLC-MS/MS. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2014, 955–956, 10–19. [Google Scholar] [CrossRef]
- Partridge, E.; Trobbiani, S.; Stockham, P.; Scott, T.; Kostakis, C. A Validated Method for the Screening of 320 Forensically Significant Compounds in Blood by LC/QTOF, with Simultaneous Quantification of Selected Compounds. J. Anal. Toxicol. 2018, 42, 220–231. [Google Scholar] [CrossRef]
- Ammann, D.; McLaren, J.M.; Gerostamoulos, D.; Beyer, J. Detection and quantification of new designer drugs in human blood: Part 2—Designer cathinones. J. Anal. Toxicol. 2012, 36, 381–389. [Google Scholar] [CrossRef]
- Song, S.; Tang, Q.; Huo, H.; Li, H.; Xing, X.; Luo, J. Simultaneous quantification and pharmacokinetics of alkaloids in Herba Ephedrae-Radix Aconiti Lateralis extracts. J. Anal. Toxicol. 2015, 39, 58–68. [Google Scholar] [CrossRef] [PubMed]
- Beyer, J.; Peters, F.T.; Kraemer, T.; Maurer, H.H. Detection and validated quantification of nine herbal phenalkylamines and methcathinone in human blood plasma by LC-MS/MS with electrospray ionization. J. Mass. Spectrom. 2007, 42, 150–160. [Google Scholar] [CrossRef] [PubMed]
- Sørensen, L.K. Determination of cathinones and related ephedrines in forensic whole-blood samples by liquid-chromatography-electrospray tandem mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2011, 879, 727–736. [Google Scholar] [CrossRef]
- Nowak, K.; Zawadzki, M.; Jurek, T. Postmortem determination of HbA1c and glycated albumin concentrations using the UHPLC-QqQ-MS/MS method for the purposes of medicolegal opinions. Microchem. J. 2020, 155, 104733. [Google Scholar] [CrossRef]
- Diao, X.; Huestis, M.A. New Synthetic Cannabinoids Metabolism and Strategies to Best Identify Optimal Marker Metabolites. Front. Chem. 2019, 7, 109. [Google Scholar] [CrossRef]
- Lopes, R.P.; Ferro, R.A.; Milhazes, M.; Figueira, M.; Caldeira, M.J.; Antunes, A.M.M.; Gaspar, H. Metabolic stability and metabolite profiling of emerging synthetic cathinones. Front. Pharmacol. 2023, 24, 1145140. [Google Scholar] [CrossRef]

| Substance | Concentration in Blood [ng/mL] | Concentration in Vitreous Humor [ng/mL] |
|---|---|---|
| Methcathinone | 2400 | 2509 |
| Pseudoephedrine | 2701 | 859 |
| Ephedrine | 300.6 | 98.1 |
| Norpseudoephedrine | qualitative only | qualitative only |
| Norephedrine | qualitative only | qualitative only |
| 7-Aminoclonazepam | 37.1 | 4.0 |
| Trazodone | 906.0 | 279.6 |
| mCPP | 32.1 | 2.8 |
| Ethyl alcohol | 0.21 [‰] | 0.00 [‰] |
| Compounds | Retention Time (min) |
|---|---|
| Norephedrine | 2.27 |
| Norpseudoephedrine | 2.75 |
| Ephedrine-d3 | 4.45 |
| Ephedrine | 4.53 |
| Pseudoephedrine | 5.93 |
| Methcathinone | 6.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nowak, K.; Szpot, P.; Zawadzki, M. A Fatal Case Involving Chronic Intravenous Use of Homemade Methcathinone Derived from Pseudoephedrine Tablets: Post-Mortem Concentrations, Health Risk, and Medicolegal Aspect. Int. J. Mol. Sci. 2025, 26, 11974. https://doi.org/10.3390/ijms262411974
Nowak K, Szpot P, Zawadzki M. A Fatal Case Involving Chronic Intravenous Use of Homemade Methcathinone Derived from Pseudoephedrine Tablets: Post-Mortem Concentrations, Health Risk, and Medicolegal Aspect. International Journal of Molecular Sciences. 2025; 26(24):11974. https://doi.org/10.3390/ijms262411974
Chicago/Turabian StyleNowak, Karolina, Paweł Szpot, and Marcin Zawadzki. 2025. "A Fatal Case Involving Chronic Intravenous Use of Homemade Methcathinone Derived from Pseudoephedrine Tablets: Post-Mortem Concentrations, Health Risk, and Medicolegal Aspect" International Journal of Molecular Sciences 26, no. 24: 11974. https://doi.org/10.3390/ijms262411974
APA StyleNowak, K., Szpot, P., & Zawadzki, M. (2025). A Fatal Case Involving Chronic Intravenous Use of Homemade Methcathinone Derived from Pseudoephedrine Tablets: Post-Mortem Concentrations, Health Risk, and Medicolegal Aspect. International Journal of Molecular Sciences, 26(24), 11974. https://doi.org/10.3390/ijms262411974

