Systemic Lupus Erythematosus: Ophthalmological Safety Considerations of Emerging and Conventional Therapeutic Agents
Abstract
1. Introduction
2. Results
2.1. B-Cell Targeted Therapy: Belimumab
2.2. Type I Interferon Pathway Inhibition: Anifrolumab
2.3. Calcineurin Inhibition: Voclosporin
2.4. Dual BAFF/APRIL Inhibition: Telitacicept and Atacicept
2.5. Conventional Immunotherapies: Hydroxychloroquine and Corticosteroids
2.6. Anti-CD20 Therapy: Rituximab
2.7. Anti-CD40 Therapy: BI 655064
2.8. Janus Kinase (JAK) Inhibitors
2.9. Cell-Based Therapies: Mesenchymal Stromal Cells (MSCs)
2.10. CD38 Inhibition: Mezagitamab (TAK-079)
2.11. Costimulatory Blockade: Iscalimab (Anti-CD40L)
3. Discussion
3.1. Hydroxychloroquine and Corticosteroids as Benchmarks for Ocular Toxicity
3.2. Novel Therapies and Emerging Safety Signals
3.3. Spectrum of Potential Ocular Complications
- Inflammatory: episcleritis, anterior uveitis, scleritis, chorioretinitis, neuroretinitis;
- Vascular: retinal vasculitis, microaneurysms, capillary non-perfusion (OCTA-detected);
- Neuro-ophthalmic: optic neuritis, ischemic optic neuropathy, cranial nerve palsies;
- Structural: posterior subcapsular cataracts, steroid-induced glaucoma, CSCR, HCQ-related maculopathy.
3.4. Role of Ophthalmologic Monitoring in SLE Care
- Best-corrected visual acuity (BCVA): measured with standardized visual acuity charts (ETDRS or Snellen) under optimal refraction. BCVA provides a reproducible baseline of central visual function and enables longitudinal detection of subtle changes.
- Intraocular pressure (IOP) measurement: Goldmann applanation tonometry remains the gold standard, while rebound tonometry or non-contact tonometry may be used in selected settings. Regular IOP monitoring is essential to detect corticosteroid-induced ocular hypertension and secondary glaucoma.
- Dilated fundus examination: performed via pharmacological mydriasis and indirect ophthalmoscopy, or slit-lamp biomicroscopy with high-resolution fundus lenses (e.g., Volk 90D, 78D, or Goldmann three-mirror). This allows assessment of the optic disc, macula, and retinal vasculature, facilitating recognition of inflammatory, vascular, or neuro-ophthalmic complications.
- Spectral-domain optical coherence tomography (SD-OCT): a high-resolution, non-invasive modality that visualizes retinal microarchitecture. SD-OCT is the gold standard for early detection of hydroxychloroquine retinopathy and can detect parafoveal thinning before clinical symptoms appear.
- Fundus autofluorescence (FAF): captures natural lipofuscin-related fluorescence in the retinal pigment epithelium (RPE), allowing identification of early RPE dysfunction and toxic retinopathy at a preclinical stage.
- Visual field testing (10-2 protocol): automated perimetry targeting the central 10 degrees of vision. This functional test is highly sensitive for early paracentral scotomas associated with hydroxychloroquine toxicity and complements OCT.
- Fluorescein angiography (FA): an invasive but highly informative technique, considered the reference standard for diagnosing retinal vasculitis, vascular leakage, and neovascularization.
3.5. Need for Interdisciplinary Collaboration
- In clinical practice, joint rheumatology–ophthalmology clinics and standardized referral pathways help identify vision-threatening complications in time. Shared care protocols also facilitate risk-stratified monitoring.
- Clinical trials: incorporation of ophthalmological endpoints—including multimodal imaging, functional testing, and standardized adverse event reporting—into trial protocols will allow more accurate characterization of ocular safety profiles.
- Education and patient engagement: interdisciplinary teams can provide comprehensive education, empowering patients to recognize early visual symptoms and adhere to surveillance schedules. This is particularly relevant for HCQ-treated individuals, where delayed detection of retinopathy remains common.
- Research networks: collaborations between ophthalmology, rheumatology, nephrology, and immunology researchers will be essential to uncover mechanistic links between systemic immune dysregulation and ocular manifestations, and to evaluate potential drug–tissue interactions at the ocular level.
3.6. Future Perspectives
- Prospective longitudinal cohorts: large-scale, multicenter studies incorporating predefined ophthalmological endpoints are essential to capture subclinical changes and rare complications that are missed in short-term trials.
- Integration of imaging biomarkers with systemic markers: combining OCTA or FAF findings with serological or molecular biomarkers (e.g., interferon signatures, BAFF/APRIL levels) could help stratify risk and identify patients most vulnerable to drug-induced ocular toxicity.
- Artificial intelligence (AI) applications: recent studies have demonstrated that AI-based analysis of retinal images, including OCT and fundus photography, can accurately detect early signs of retinal pathology in autoimmune and drug-induced conditions. For example, deep learning models have been successfully applied to identify hydroxychloroquine retinopathy and subtle microvascular changes in systemic autoimmune diseases, supporting their potential as tools for automated toxicity screening and risk stratification. Integrating such validated approaches into longitudinal SLE monitoring frameworks could substantially enhance the sensitivity and efficiency of ophthalmological surveillance [70].
- Real-world data and registries: pharmacovigilance registries and electronic health record integration can provide critical post-marketing surveillance data, complementing randomized trial evidence and informing guideline development.
- Personalized surveillance strategies: precision medicine approaches may allow tailoring of ophthalmological monitoring intensity based on drug exposure, cumulative risk factors, and genetic predisposition.
4. Materials and Methods
4.1. Literature Search Strategy
4.2. Eligibility of Sources
4.3. Data Extraction and Organization
4.4. Data Presentation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| AE | Adverse event |
| APRIL | A proliferation-inducing ligand |
| BCVA | Best-corrected visual acuity |
| BAFF | B-cell activating factor |
| CSCR | Central serous chorioretinopathy |
| CMV | Cytomegalovirus |
| FAF | Fundus autofluorescence |
| FA | Fluorescein angiography |
| HCQ | Hydroxychloroquine |
| IFNAR1 | Interferon alpha/beta receptor subunit 1 |
| IOP | Intraocular pressure |
| JAK | Janus kinase |
| MSC | Mesenchymal stromal cell |
| OCT | Optical coherence tomography |
| OCTA | Optical coherence tomography angiography |
| PSC | Posterior subcapsular cataract |
| RCT | Randomized controlled trial |
| RPE | Retinal pigment epithelium |
| SAE | Serious adverse event |
| SD-OCT | Spectral-domain optical coherence tomography |
| SLE | Systemic lupus erythematosus |
| SRI-4 | SLE Responder Index 4 |
| TYK2 | Tyrosine kinase 2 |
| URTI | Upper Respiratory Tract Infection |
| VTE | venous thromboembolis |
References
- Sammaritano, L.R. Systemic Lupus Erythematosus: A Review. JAMA 2024, 331, 1480–1491. [Google Scholar] [CrossRef]
- Musa, M.; Chukwuyem, E.; Ojo, O.M.; Topah, E.K.; Spadea, L.; Salati, C.; Gagliano, C.; Zeppieri, M. Unveiling Ocular Manifestations in Systemic Lupus Erythematosus. J. Clin. Med. 2024, 13, 1047. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Luboń, W.; Luboń, M.; Kotyla, P.; Mrukwa-Kominek, E. Understanding Ocular Findings and Manifestations of Systemic Lupus Erythematosus: Update Review of the Literature. Int. J. Mol. Sci. 2022, 23, 12264. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ferreira, A.; Vieira, R.J.; Furtado, M.J.; Lume, M.; Andrade, J.P.; Menéres, P. Detection of subclinical microvascular changes in systemic lupus erythematosus using OCTA: A systematic review and meta-analysis. Surv. Ophthalmol. 2023, 68, 1115–1128. [Google Scholar] [CrossRef]
- Yang, B.; Chen, Y.; Jiang, J.; Chang, C.; Wu, H.; Gershwin, M.E.; Lu, Q. The importance of developing reproducible primary endpoints for clinical trials in systemic lupus erythematosus. Clin. Rheumatol. 2025, 44, 183–192. [Google Scholar] [CrossRef]
- Fekrazad, S.; Hassanzadeh, G.; Salehi, M.A.; Mozafar, M.; Shahrabi Farahani, M.; Arevalo, J.F. Optical coherence tomography angiography measurements in systemic lupus erythematosus: A systematic review and meta-analysis. Surv. Ophthalmol. 2024, 69, 743–755. [Google Scholar] [CrossRef]
- Meng, L.; Wang, Y.; Yang, Z.; Lin, S.; Wang, Y.; Chen, H.; Zhao, X.; Chen, Y. Ocular fundus changes and association with systemic conditions in systemic lupus erythematosus. Front. Immunol. 2024, 15, 1395609. [Google Scholar] [CrossRef]
- Wallace, D.J.; Atsumi, T.; Daniels, M.; Hammer, A.; Meizlik, P.; Quasny, H.; Schwarting, A.; Zhang, F.; Roth, D.A. Safety of belimumab in adult patients with systemic lupus erythematosus: Results of a large integrated analysis of controlled clinical trial data. Lupus 2022, 31, 1649–1659. [Google Scholar] [CrossRef]
- Xu, Y.; Xu, J.W.; Wang, Y.J.; Tung, T.H.; Chien, C.W. Belimumab combined with standard therapy does not increase adverse effects compared with a control treatment: A systematic review and meta-analysis of randomized controlled trials. Int. Immunopharmacol. 2022, 109, 108811. [Google Scholar] [CrossRef]
- Cheng, H.; Zhang, X.Y.; Yang, H.D.; Yu, Z.; Yan, C.L.; Gao, C.; Wen, H.Y. Efficacy and safety of belimumab/low-dose cyclophosphamide therapy in moderate-to-severe systemic lupus erythematosus. Front. Immunol. 2022, 13, 911730. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, J.; Zhang, Y.; Zhao, N.; Xu, D. Efficacy and safety of belimumab therapy in lupus nephritis: A systematic review and meta-analysis. Ren. Fail. 2023, 45, 2207671. [Google Scholar] [CrossRef]
- Suh, C.H.; Lee, Y.; Yoo, S.B.; Quasny, H.; Navarro Rojas, A.A.; Hammer, A.; Song, Y.W.; Kang, Y.M.; Cho, C.S.; Park, W.; et al. Efficacy and safety of intravenous belimumab in a subgroup of South Korean patients with systemic lupus erythematosus. Int. J. Rheum. Dis. 2024, 27, e14997. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.Z.; Cai, M.L.; Wang, X.; Li, Z.; Ma, B.; Niu, L.; Wang, P.; Pan, H.F.; Li, S.D.; Bao, W.; et al. Effectiveness and safety of belimumab and telitacicept in systemic lupus erythematosus: A real-world, retrospective, observational study. Clin. Rheumatol. 2025, 44, 247–256. [Google Scholar] [CrossRef]
- Chan, J.; Walters, G.D.; Puri, P.; Jiang, S.H. Safety and efficacy of biological agents in the treatment of systemic lupus erythematosus (SLE). BMC Rheumatol. 2023, 7, 37. [Google Scholar] [CrossRef]
- Tummala, R.; Abreu, G.; Pineda, L.; Michaels, M.A.; Kalyani, R.N.; Furie, R.A.; Morand, E.F. Safety profile of anifrolumab in patients with active SLE: An integrated analysis of phase II and III trials. Lupus Sci. Med. 2021, 8, e000464. [Google Scholar] [CrossRef] [PubMed]
- Bruce, I.N.; van Vollenhoven, R.F.; Morand, E.F.; Furie, R.A.; Manzi, S.; White, W.B.; Abreu, G.; Tummala, R. Sustained glucocorticoid tapering in the phase 3 trials of anifrolumab: A post hoc analysis of the TULIP-1 and TULIP-2 trials. Rheumatology 2023, 62, 1526–1534. [Google Scholar] [CrossRef]
- Liu, Z.; Cheng, R.; Liu, Y. Evaluation of anifrolumab safety in systemic lupus erythematosus: A meta-analysis and systematic review. Front. Immunol. 2022, 13, 996662. [Google Scholar] [CrossRef]
- Kalunian, K.C.; Furie, R.; Morand, E.F.; Bruce, I.N.; Manzi, S.; Tanaka, Y.; Winthrop, K.; Hupka, I.; Zhang, L.J.; Werther, S.; et al. A randomized, placebo-controlled phase III extension trial of the long-term safety and tolerability of anifrolumab in active SLE. Arthritis Rheumatol. 2023, 75, 253–265. [Google Scholar] [CrossRef] [PubMed]
- Jayne, D.; Rovin, B.; Mysler, E.F.; Furie, R.A.; Houssiau, F.A.; Trasieva, T.; Knagenhjelm, J.; Schwetje, E.; Chia, Y.L.; Tummala, R.; et al. Phase II randomized trial of type I interferon inhibitor anifrolumab in patients with active lupus nephritis. Ann. Rheum. Dis. 2022, 81, 496–506. [Google Scholar] [CrossRef]
- Loncharich, M.F.; Anderson, C.W. Interferon inhibition for lupus with anifrolumab: Critical appraisal of the evidence leading to FDA approval. ACR Open Rheumatol. 2022, 4, 486–491. [Google Scholar] [CrossRef]
- Jayne, D.; Rovin, B.; Mysler, E.; Furie, R.; Houssiau, F.; Trasieva, T.; Knagenhjelm, J.; Schwetje, E.; Tang, W.; Tummala, R.; et al. Anifrolumab in lupus nephritis: Results from second-year extension of a randomized phase II trial. Lupus Sci. Med. 2023, 10, e000910. [Google Scholar] [CrossRef]
- Rubio, J.; Kyttaris, V. Journal Club: Efficacy and Safety of Voclosporin Versus Placebo for Lupus Nephritis (AURORA 1): A Double-Blind, Randomized, Multicenter, Placebo-Controlled, Phase 3 Trial. ACR Open Rheumatol. 2021, 3, 827–831. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Saxena, A.; Ginzler, E.M.; Gibson, K.; Satirapoj, B.; Santillán, A.E.Z.; Levchenko, O.; Navarra, S.; Atsumi, T.; Yasuda, S.; Chavez-Perez, N.N.; et al. Safety and efficacy of long-term voclosporin treatment for lupus nephritis in the phase 3 AURORA 2 clinical trial. Arthritis Rheumatol. 2024, 76, 59–67. [Google Scholar] [CrossRef]
- Rovin, B.H.; Solomons, N.; Pendergraft WF3rd Dooley, M.A.; Tumlin, J.; Romero-Diaz, J.; Lysenko, L.; Navarra, S.V.; Huizinga, R.B.; AURA-LV Study Group. A randomized, controlled double-blind study comparing the efficacy and safety of dose-ranging voclosporin with placebo in achieving remission in patients with active lupus nephritis. Kidney Int. 2019, 95, 219–231. [Google Scholar] [CrossRef]
- Menn-Josephy, H.; Hodge, L.S.; Birardi, V.; Leher, H. Efficacy of voclosporin in proliferative lupus nephritis with high levels of proteinuria. Clin. J. Am. Soc. Nephrol. 2024, 19, 309–318. [Google Scholar] [CrossRef]
- Dong, Y.; Shi, J.; Wang, S.; Liu, Y.; Yu, S.; Zhao, L. The efficacy of immunosuppressive drugs induction therapy for lupus nephritis: A systematic review and network meta-analysis. Ren. Fail. 2023, 45, 2290365. [Google Scholar] [CrossRef]
- Wang, Z.; Lang, Y.; Liu, X.; Wang, Y.; Shao, L. Post-marketing safety surveillance of voclosporin: An observational, pharmacovigilance study leveraging FAERS database. Front. Pharmacol. 2025, 16, 1506760. [Google Scholar] [CrossRef]
- Mejía-Vilet, J.M.; Romero-Díaz, J. Voclosporin: A novel calcineurin inhibitor for the management of lupus nephritis. Expert. Rev. Clin. Immunol. 2021, 17, 937–945. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Li, J.; Xu, D.; Merrill, J.T.; van Vollenhoven, R.F.; Liu, Y.; Hu, J.; Li, Y.; Li, F.; Huang, C.; et al. Telitacicept in patients with active systemic lupus erythematosus: Results of a phase 2b, randomised, double-blind, placebo-controlled trial. Ann. Rheum. Dis. 2024, 83, 475–487. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Shen, Q.; Gong, Y.; Li, Y.; Lv, Q.; Liu, H.; Zhao, F.; Yu, H.; Qiu, L.; Li, X.; et al. Safety and efficacy of telitacicept in refractory childhood-onset systemic lupus erythematosus: A self-controlled before-after trial. Lupus 2022, 31, 998–1006. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Fu, R.; Lin, Z.; Huang, C.; Huang, W. The efficacy and safety of telitacicept for the treatment of systemic lupus erythematosus: A real-life observational study. Lupus 2023, 32, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Yang, C.; Huang, B.; Yang, L.; Lu, L.; Yang, H.; Li, T.; Pan, Q. Comparative efficacy and safety of different recommended doses of telitacicept in patients with systemic lupus erythematosus in China: A systematic review and meta-analysis. Front. Immunol. 2025, 15, 1472292. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Sun, Y.; Zhang, N.; Chang, L.H.; Jin, L.; Guo, Y. Efficacy and safety of telitacicept in the treatment of systemic lupus erythematosus: A retrospective real-world study. Lupus 2025, 34, 597–607. [Google Scholar] [CrossRef]
- Merrill, J.T.; Wallace, D.J.; Wax, S.; Kao, A.; Fraser, P.A.; Chang, P.; Isenberg, D.; ADDRESS II Investigators. Efficacy and Safety of Atacicept in Patients With Systemic Lupus Erythematosus: Results of a Twenty-Four-Week, Multicenter, Randomized, Double-Blind, Placebo-Controlled, Parallel-Arm, Phase IIb Study. Arthritis Rheumatol. 2018, 70, 266–276, Erratum in Arthritis Rheumatol. 2018, 70, 467. https://doi.org/10.1002/art.40464. Erratum in Arthritis Rheumatol. 2021, 73, 2043. https://doi.org/10.1002/art.41995. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Marmor, M.F.; Kellner, U.; Lai, T.Y.; Lyons, J.S.; Mieler, W.F. Revised recommendations on screening for chloroquine and hydroxychloroquine retinopathy. Ophthalmology 2011, 118, 415–422. [Google Scholar] [CrossRef]
- Browning, D.J. Impact of the revised American Academy of Ophthalmology guidelines regarding hydroxychloroquine screening on actual practice. Am. J. Ophthalmol. 2013, 155, 418–428.e1. [Google Scholar] [CrossRef]
- Marmor, M.F.; Kellner, U.; Lai, T.Y.; Melles, R.B.; Mieler, W.F.; American Academy of Ophthalmology. Recommendations on Screening for Chloroquine and Hydroxychloroquine Retinopathy (2016 Revision). Ophthalmology 2016, 123, 1386–1394. [Google Scholar] [CrossRef] [PubMed]
- Melles, R.B.; Marmor, M.F. The risk of toxic retinopathy in patients on long-term hydroxychloroquine therapy. JAMA Ophthalmol. 2014, 132, 1453–1460. [Google Scholar] [CrossRef]
- Sang, A.C.; Ahmadi Pirshahid, S.; Virgili, G.; Gottlieb, C.C.; Hamilton, J.; Coupland, S.G. Hydroxychloroquine and chloroquine retinopathy: A systematic review evaluating the multifocal electroretinogram as a screening test. Ophthalmology 2015, 122, 1239–1251.e4. [Google Scholar] [CrossRef]
- Tsang, A.C.; Ahmadi, S.; Hamilton, J.; Gao, J.; Virgili, G.; Coupland, S.G.; Gottlieb, C.C. The diagnostic utility of multifocal electroretinography in detecting chloroquine and hydroxychloroquine retinal toxicity. Am. J. Ophthalmol. 2019, 206, 132–139. [Google Scholar] [CrossRef]
- Yen, C.Y.; Lee, P.H.; Yen, J.C.; Chen, C.C.; Hu, H.Y.; Tseng, P.C. Current screening practice in patients under long-term hydroxychloroquine medication in Taiwan: A nationwide population-based cohort study. Medicine 2019, 98, e15122. [Google Scholar] [CrossRef] [PubMed]
- Braga, J.P.R.; Lucena, M.M.; Rodrigues, M.W.; Zupelli, A.; Scott, I.U.; Messias, A.; Silva, D.M.; Jorge, R. Adaptive optics cone arrangement in hydroxychloroquine users without signs of retinal toxicity. Graefes Arch. Clin. Exp. Ophthalmol. 2025, 263, 1279–1287. [Google Scholar] [CrossRef] [PubMed]
- Kassumeh, S.; Schargus, M.; Unverzagt, S.; Geerling, G.; Pfeiffer, N. Prevalence and risk factors of corticosteroid-induced cataract and glaucoma. Acta Ophthalmol. 2016, 94, e105–e113. [Google Scholar] [CrossRef]
- Armaly, M.F. Statistical attributes of the steroid hypertensive response in the clinically normal eye. Invest. Ophthalmol. 1963, 2, 135–143. [Google Scholar] [PubMed]
- Jones, R., 3rd; Rhee, D.J. Corticosteroid-induced ocular hypertension and glaucoma: A brief review and update of the literature. Curr. Opin. Ophthalmol. 2006, 17, 163–167. [Google Scholar] [CrossRef]
- Haimovici, R.; Koh, S.; Gagnon, D.R.; Lehrfeld, T.; Wellik, S. Central Serous Chorioretinopathy Case-Control Study Group. Risk factors for central serous chorioretinopathy: A case-control study. Ophthalmology 2004, 111, 244–249. [Google Scholar] [CrossRef] [PubMed]
- Mok, C.C. Current role of rituximab in systemic lupus erythematosus. Int. J. Rheum. Dis. 2015, 18, 154–163. [Google Scholar] [CrossRef]
- Terrier, B.; Amoura, Z.; Ravaud, P.; Hachulla, E.; Jouenne, R.; Combe, B.; Bonnet, C.; Cacoub, P.; Cantagrel, A.; de Bandt, M.; et al. Safety and efficacy of rituximab in systemic lupus erythematosus: Results from 136 patients from the French AutoImmunity and Rituximab registry. Arthritis Rheum. 2010, 62, 2458–2466. [Google Scholar] [CrossRef]
- Merrill, J.T.; Neuwelt, C.M.; Wallace, D.J.; Shanahan, J.C.; Latinis, K.M.; Oates, J.C.; Utset, T.O.; Gordon, C.; Isenberg, D.A.; Hsieh, H.J.; et al. Efficacy and safety of rituximab in moderately-to-severely active systemic lupus erythematosus: The randomized, double-blind phase II/III EXPLORER trial. Arthritis Rheum. 2010, 62, 222–233. [Google Scholar] [CrossRef]
- Rovin, B.H.; Furie, R.; Latinis, K.; Looney, R.J.; Fervenza, F.C.; Sanchez-Guerrero, J.; Maciuca, R.; Zhang, D.; Garg, J.P.; Brunetta, P.; et al. Efficacy and safety of rituximab in patients with active proliferative lupus nephritis: The LUNAR study. Arthritis Rheum. 2012, 64, 1215–1226. [Google Scholar] [CrossRef]
- Chan, T.S.; Cheung, C.Y.; Yeung, I.Y.; Hwang, Y.Y.; Gill, H.; Wong, I.Y.; Kwong, Y.L. Cytomegalovirus retinitis complicating combination therapy with rituximab and fludarabine. Ann. Hematol. 2015, 94, 1043–1047. [Google Scholar] [CrossRef] [PubMed]
- Schwabe, C.; Rosenstock, B.; Doan, T.; Hamilton, P.; Dunbar, P.R.; Eleftheraki, A.G.; Joseph, D.; Hilbert, J.; Schoelch, C.; Padula, S.J.; et al. Safety, Pharmacokinetics, and Pharmacodynamics of Multiple Rising Doses of BI 655064, an Antagonistic Anti-CD40 Antibody, in Healthy Subjects: A Potential Novel Treatment for Autoimmune Diseases. J. Clin. Pharmacol. 2018, 58, 1566–1577. [Google Scholar] [CrossRef]
- Peters, A.L.; Stunz, L.L.; Bishop, G.A. CD40 and autoimmunity: The dark side of a great activator. Semin. Immunol. 2009, 21, 293–300. [Google Scholar] [CrossRef]
- Karnell, J.L.; Rieder, S.A.; Ettinger, R.; Kolbeck, R. Targeting the CD40-CD40L pathway in autoimmune diseases: Humoral immunity and beyond. Adv. Drug Deliv. Rev. 2019, 141, 92–103. [Google Scholar] [CrossRef] [PubMed]
- Abu El-Asrar, A.M.; Nawaz, M.I.; Ahmad, A.; Dillemans, L.; Siddiquei, M.; Allegaert, E.; Gikandi, P.W.; De Hertogh, G.; Opdenakker, G.; Struyf, S. CD40 Ligand-CD40 Interaction Is an Intermediary between Inflammation and Angiogenesis in Proliferative Diabetic Retinopathy. Int. J. Mol. Sci. 2023, 24, 15582. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- You, H.; Xu, D.; Zhao, J.; Li, J.; Wang, Q.; Tian, X.; Li, M.; Zeng, X. JAK inhibitors: Prospects in connective tissue diseases. Clin. Rev. Allergy Immunol. 2020, 59, 334–351. [Google Scholar] [CrossRef] [PubMed]
- Furie, R.; Morand, E.F.; Tanaka, Y.; Vital, E.M.; Merrill, J.T.; Werth, V.P.; Mitrovic, S.; Kahl, L.E.; Cheng, A.; Kleoudis, C.S.; et al. Efficacy and safety of baricitinib in patients with systemic lupus erythematosus: Results of two phase 3 randomized, controlled trials. Arthritis Rheumatol. 2021, 73, 1210–1219. [Google Scholar] [CrossRef]
- Winthrop, K.L. The emerging safety profile of JAK inhibitors in rheumatic disease. Nat. Rev. Rheumatol. 2017, 13, 234–243, Erratum in Nat. Rev. Rheumatol. 2017, 13, 320. [Google Scholar] [CrossRef] [PubMed]
- Wollenhaupt, J.; Lee, E.B.; Curtis, J.R.; Silverfield, J.; Terry, K.; Soma, K.; Mojcik, C.; DeMasi, R.; Strengholt, S.; Kwok, K. Safety and efficacy of tofacitinib for up to 9.5 years in patients with rheumatoid arthritis: Results of a global, open-label, long-term extension study. Arthritis Res. Ther. 2019, 21, 89. [Google Scholar] [CrossRef] [PubMed]
- Papp, K.; Blauvelt, A.; Bukhalo, M.; Gooderham, M.; Krueger, J.G.; Lacour, J.P.; Menter, A.; Philipp, S.; Sofen, H.; Tyring, S.; et al. Efficacy and safety of deucravacitinib, an oral selective TYK2 inhibitor, in moderate to severe plaque psoriasis: Results from two randomized controlled trials. Lancet 2021, 397, 2151–2160. [Google Scholar] [CrossRef]
- Ranjbar, A.; Hassanzadeh, H.; Jahandoust, F.; Miri, R.; Bidkhori, H.R.; Monzavi, S.M.; Sanjar-Moussavi, N.; Matin, M.M.; Shariati-Sarabi, Z. Allogeneic adipose-derived mesenchymal stromal cell transplantation for refractory lupus nephritis: Results of a phase I clinical trial. Curr. Res. Transl. Med. 2022, 70, 103324. [Google Scholar] [CrossRef] [PubMed]
- Kamen, D.L.; Wallace, C.; Li, Z.; Wyatt, M.; Paulos, C.; Wei, C.; Wang, H.; Wolf, B.J.; Nietert, P.J.; Gilkeson, G. Safety, immunological effects and clinical response in a phase I trial of umbilical cord mesenchymal stromal cells in patients with treatment refractory SLE. Lupus Sci. Med. 2022, 9, e000704. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Cui, W.; Huang, G.; Tian, Y.; Zhang, X.; He, W.; Sun, Q.; Zhao, X.; Zhao, Y.; Li, D.; et al. Efficacy and safety of novel biologics in the treatment of lupus nephritis based on registered clinical trials: A systematic review and network meta-analysis. Clin. Exp. Med. 2023, 23, 3011–3018. [Google Scholar] [CrossRef]
- McDonnell, S.R.P.; Nguyen, V.A.; Walton, N.M.; Merkwirth, C.; Hong, F.; Berg, D.; Muensterman, E.T.; Furie, R.A. Mezagitamab in systemic lupus erythematosus: Clinical and mechanistic findings of CD38 inhibition in an autoimmune disease. Lupus Sci. Med. 2024, 11, e001112. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, W. NAD+ metabolism and eye diseases: Current status and future directions. Mol. Biol. Rep. 2023, 50, 8653–8663. [Google Scholar] [CrossRef] [PubMed]
- Cakir, B.; Cakir, Z.; Dinc, E. CD38 contributes to neurodegeneration in the retina through NAD+ depletion and oxidative stress pathways. Front. Cell. Neurosci. 2019, 13, 290. [Google Scholar] [CrossRef]
- Shen, N.; Weinmann-Menke, J.; Malvar, A.; Serra-Roma, A.; Weiss, M.; Danekula, R.; Sips, C.; Rohr, J.; Felten, R.; Gergely, P.; et al. Efficacy, pharmacokinetics and safety of iscalimab (CFZ533) in patients with proliferative lupus nephritis: A randomised, double-blind, placebo-controlled, phase II study. RMD Open 2025, 11, e005557. [Google Scholar] [CrossRef]
- Nika, M.; Blachley, T.S.; Edwards, P.; Lee, P.P.; Stein, J.D. Regular examinations for toxic maculopathy in long-term chloroquine or hydroxychloroquine users. JAMA Ophthalmol. 2014, 132, 1199–1208. [Google Scholar] [CrossRef]
- Bouyon, A.; Costedoat-Chalumeau, N.; Limal, N.; Fardeau, C.; Bodaghi, B.; Wechsler, B.; Piette, J.C. Central serous chorioretinopathy and systemic diseases: Report of 2 cases associated with corticotherapy. La Rev. De Médecine Interne 2006, 27, 487–491. [Google Scholar] [CrossRef]
- Al-Halafi, A.M. Applications of artificial intelligence-assisted retinal imaging in systemic diseases: A literature review. Saudi J. Ophthalmol. 2023, 37, 185–192. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
| Therapy | Efficacy in SLE | Most Frequent AEs | Serious AEs | Ocular AEs (Documented/Potential) | Predominant Evidence Level |
|---|---|---|---|---|---|
| Belimumab (anti-BAFF) [8,9,10,11,12,13] | ↓ disease activity; effective in lupus nephritis | URTI, headache, nausea | Infections (~5%), rare malignancies | None consistent; vigilance advised | I |
| Anifrolumab (anti-IFNAR1) [15,16,17,18,19,20,21] | Improves global activity; allows steroid tapering | URTI, bronchitis, infusion reactions, herpes zoster | Herpes zoster (5–7%), pneumonia | None documented; theoretical retinal immune effects | I |
| Voclosporin (calcineurin inhibitor) [22,23,24,25,26,27] | ↑ renal response in lupus nephritis | GI upset, hypertension, headache, renal effects | Infections (~21%), renal toxicity, hypertension | None confirmed; class effect: ↑ IOP, cataracts (possible) | I |
| Telitacicept/Atacicept (dual BAFF/APRIL inhibitors) [26,27,28,29] | Telitacicept: ↑ SRI-4 response; Atacicept halted (safety) | URTI, nasopharyngitis, headache, injection-site reactions | Infections (8–12%), hypogammaglobulinemia (atacicept) | None confirmed; blurred vision (isolated cases) | II |
| Hydroxychloroquine (HCQ) [35,36,37,38,39,40,41,42] | Maintains remission, ↓ flares, ↑ survival | Retinal toxicity | Retinopathy prevalence: 7.5% (>5 yrs), >20% (>20 yrs) | Definite: bull’s-eye maculopathy, retinal atrophy | I–II |
| Corticosteroids [43,44,45,46] | Rapid control, life-saving in severe flares | Weight gain, hypertension, hyperglycemia | Cataracts (20–40%), glaucoma (18–36%), CSCR (OR >4) | Definite: PSC cataracts, steroid glaucoma, CSCR | I–II |
| Rituximab (anti-CD20) [47,48,49,50,51] | Benefit in refractory SLE/lupus nephritis (registries) | Infusion reactions, infections | Serious infections (10–15%), viral reactivation | Rare: CMV/HSV retinitis (opportunistic) | II–III |
| Anti-CD40 (BI 655064) [52,53,54,55] | Early-phase; potential efficacy | URTI, headache, injection-site reactions | No major SAE in phase I | None reported; possible retinal vascular effects | II–IV |
| JAK inhibitors (baricitinib, tofacitinib, deucravacitinib) [56,57,58,59,60] | Baricitinib effective for joints/skin; TYK2 promising | URTI, headache, GI upset, herpes zoster | Opportunistic infections, VTE, herpes zoster ophthalmicus | HZ ophthalmicus, keratitis; viral retinitis possible | I–II |
| Mesenchymal stromal cells (MSCs) [61,62,63] | Phase I/II: benefit in refractory SLE/lupus nephritis | Infusion reactions, mild infections | Rare serious infections (<5%) | None reported; theoretical microvascular occlusion, retinitis | II–III |
| CD38 inhibitors (mezagitamab) [64,65,66] | Phase I: ↓ autoantibodies, improved activity | Infusion reactions, mild infections, cytopenias | Cytopenias, infections | None confirmed; possible retinal NAD+/immune effects | II–IV |
| Anti-CD40L (iscalimab) [53,55,67] | Phase II in lupus nephritis: preliminary efficacy | URTI, headache, infusion reactions | Infections (<10%) | None reported; theoretical retinal microangiopathy | II–III |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luboń, W.; Luboń, M.; Agaś-Lange, A.; Dorecka, M. Systemic Lupus Erythematosus: Ophthalmological Safety Considerations of Emerging and Conventional Therapeutic Agents. Int. J. Mol. Sci. 2025, 26, 11744. https://doi.org/10.3390/ijms262311744
Luboń W, Luboń M, Agaś-Lange A, Dorecka M. Systemic Lupus Erythematosus: Ophthalmological Safety Considerations of Emerging and Conventional Therapeutic Agents. International Journal of Molecular Sciences. 2025; 26(23):11744. https://doi.org/10.3390/ijms262311744
Chicago/Turabian StyleLuboń, Wojciech, Małgorzata Luboń, Anna Agaś-Lange, and Mariola Dorecka. 2025. "Systemic Lupus Erythematosus: Ophthalmological Safety Considerations of Emerging and Conventional Therapeutic Agents" International Journal of Molecular Sciences 26, no. 23: 11744. https://doi.org/10.3390/ijms262311744
APA StyleLuboń, W., Luboń, M., Agaś-Lange, A., & Dorecka, M. (2025). Systemic Lupus Erythematosus: Ophthalmological Safety Considerations of Emerging and Conventional Therapeutic Agents. International Journal of Molecular Sciences, 26(23), 11744. https://doi.org/10.3390/ijms262311744

