Special Issue “Molecular Insights into the Developmental Origins of Health and Disease”
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Arima, Y.; Fukuoka, H. Developmental origins of health and disease theory in cardiology. J. Cardiol. 2020, 76, 14–17. [Google Scholar] [CrossRef]
- Zhou, L.Y.; Deng, M.Q.; Zhang, Q.; Xiao, X.H. Early-life nutrition and metabolic disorders in later life: A new perspective on energy metabolism. Chin. Med. J. 2020, 133, 1961–1970. [Google Scholar] [CrossRef]
- Nobile, S.; Di Sipio Morgia, C.; Vento, G. Perinatal origins of adult disease and opportunities for health promotion: A narrative review. J. Pers. Med. 2022, 12, 157. [Google Scholar] [CrossRef]
- Harary, D.; Akinyemi, A.; Charron, M.J.; Fuloria, M. Fetal growth and intrauterine epigenetic programming of obesity and cardiometabolic disease. Neoreviews 2022, 23, e363–e372. [Google Scholar] [CrossRef]
- Alabduljabbar, S.; Zaidan, S.A.; Lakshmanan, A.P.; Terranegra, A. Personalized nutrition approach in pregnancy and early life to tackle childhood and adult non-communicable diseases. Life 2021, 11, 467. [Google Scholar] [CrossRef] [PubMed]
- Picó, C.; Reis, F.; Egas, C.; Mathias, P.; Matafome, P. Lactation as a programming window for metabolic syndrome. Eur. J. Clin. Investig. 2021, 51, e13482. [Google Scholar] [CrossRef] [PubMed]
- Thornburg, K.L.; Valent, A.M. Maternal Malnutrition and elevated disease risk in offspring. Nutrients 2024, 16, 2614. [Google Scholar] [CrossRef]
- Ajuogu, P.K.; Al-Aqbi, M.A.K.; Hart, R.A.; McFarlane, J.R.; Smart, N.A. A low protein maternal diet during gestation has negative effects on male fertility markers in rats—A systematic review and meta-analysis. J. Anim. Physiol. Anim. Nutr. 2021, 105, 157–166. [Google Scholar] [CrossRef]
- Tain, Y.L.; Hsu, C.N. Amino acids during pregnancy and offspring cardiovascular-kidney-metabolic health. Nutrients 2024, 16, 1263. [Google Scholar] [CrossRef] [PubMed]
- Michońska, I.; Łuszczki, E.; Zielińska, M.; Oleksy, Ł.; Stolarczyk, A.; Dereń, K. Nutritional programming: History, hypotheses, and the role of prenatal factors in the prevention of metabolic diseases-a narrative review. Nutrients 2022, 14, 4422. [Google Scholar] [CrossRef]
- Smith, E.V.L.; Dyson, R.M.; Weth, F.R.; Berry, M.J.; Gray, C. Maternal fructose intake, programmed mitochondrial function and predisposition to adult disease. Int. J. Mol. Sci. 2022, 23, 12215. [Google Scholar] [CrossRef]
- Bar, J.; Weiner, E.; Levy, M.; Gilboa, Y. The thrifty phenotype hypothesis: The association between ultrasound and Doppler studies in fetal growth restriction and the development of adult disease. Am. J. Obstet. Gynecol. 2021, 3, 100473. [Google Scholar] [CrossRef]
- Andonotopo, W.; Bachnas, M.A.; Akbar, M.I.A.; Aziz, M.A.; Dewantiningrum, J.; Pramono, M.B.A.; Sulistyowati, S.; Stanojevic, M.; Kurjak, A. Fetal origins of adult disease: Transforming prenatal care by integrating Barker’s Hypothesis with AI-driven 4D ultrasound. J. Perinat. Med. 2025, 53, 418–438. [Google Scholar] [CrossRef]
- Barker, D.J.; Osmond, C. Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales. Lancet 1986, 1, 1077–1081. [Google Scholar] [CrossRef] [PubMed]
- Saavedra, L.P.J.; Piovan, S.; Moreira, V.M.; Gonçalves, G.D.; Ferreira, A.R.O.; Ribeiro, M.V.G.; Peres, M.N.C.; Almeida, D.L.; Raposo, S.R.; da Silva, M.C.; et al. Epigenetic programming for obesity and noncommunicable disease: From womb to tomb. Rev. Endocr. Metab. Disord. 2024, 25, 309–324. [Google Scholar] [CrossRef] [PubMed]
- Dieckmann, L.; Czamara, D. Epigenetics of prenatal stress in humans: The current research landscape. Clin. Epigenetics 2024, 16, 20. [Google Scholar] [CrossRef]
- Quinn, E.B.; Hsiao, C.J.; Maisha, F.M.; Mulligan, C.J. Prenatal maternal stress is associated with site-specific and age acceleration changes in maternal and newborn DNA methylation. Epigenetics 2023, 18, 2222473. [Google Scholar] [CrossRef]
- Saenen, N.D.; Martens, D.S.; Neven, K.Y.; Alfano, R.; Bové, H.; Janssen, B.G.; Roels, H.A.; Plusquin, M.; Vrijens, K.; Nawrot, T.S. Air pollution-induced placental alterations: An interplay of oxidative stress, epigenetics, and the aging phenotype? Clin. Epigenetics 2019, 11, 124. [Google Scholar] [CrossRef]
- Ghazi, T.; Naidoo, P.; Naidoo, R.N.; Chuturgoon, A.A. Prenatal air pollution exposure and placental DNA methylation changes: Implications on fetal development and future disease susceptibility. Cells 2021, 10, 3025. [Google Scholar] [CrossRef] [PubMed]
- Street, M.E.; Shulhai, A.M.; Petraroli, M.; Patianna, V.; Donini, V.; Giudice, A.; Gnocchi, M.; Masetti, M.; Montani, A.G.; Rotondo, R.; et al. The impact of environmental factors and contaminants on thyroid function and disease from fetal to adult life: Current evidence and future directions. Front. Endocrinol. 2024, 15, 1429884. [Google Scholar] [CrossRef]
- Navas-Acien, A.; Spratlen, M.J.; Abuawad, A.; LoIacono, N.J.; Bozack, A.K.; Gamble, M.V. Early-life arsenic exposure, nutritional status, and adult diabetes risk. Curr. Diabetes Rep. 2019, 19, 147. [Google Scholar] [CrossRef]
- Marumure, J.; Simbanegavi, T.T.; Makuvara, Z.; Karidzagundi, R.; Alufasi, R.; Goredema, M.; Gufe, C.; Chaukura, N.; Halabowski, D.; Gwenzi, W. Emerging organic contaminants in drinking water systems: Human intake, emerging health risks, and future research directions. Chemosphere 2024, 356, 141699. [Google Scholar] [CrossRef] [PubMed]
- Mottis, G.; Kandasamey, P.; Peleg-Raibstein, D. The consequences of ultra-processed foods on brain development during prenatal, adolescent and adult stages. Front. Public Health 2025, 13, 1590083. [Google Scholar] [CrossRef] [PubMed]
- Galvan-Martinez, D.H.; Bosquez-Mendoza, V.M.; Ruiz-Noa, Y.; Ibarra-Reynoso, L.D.R.; Barbosa-Sabanero, G.; Lazo-de-la-Vega-Monroy, M.L. Nutritional, pharmacological, and environmental programming of NAFLD in early life. Am. J. Physiol. Gastrointest. Liver Physiol. 2023, 324, G99–G114. [Google Scholar] [CrossRef]
- Mpakosi, A.; Sokou, R.; Theodoraki, M.; Kaliouli-Antonopoulou, C. Neonatal gut mycobiome: Immunity, diversity of fungal strains, and individual and non-individual factors. Life 2024, 14, 902. [Google Scholar] [CrossRef]
- Ahmed, U.; Fatima, F.; Farooq, H.A. Microbial dysbiosis and associated disease mechanisms in maternal and child health. Infect. Immun. 2025, 93, e0017925. [Google Scholar] [CrossRef]
- Vandenplas, Y.; Carnielli, V.P.; Ksiazyk, J.; Luna, M.S.; Migacheva, N.; Mosselmans, J.M.; Picaud, J.C.; Possner, M.; Singhal, A.; Wabitsch, M. Factors affecting early-life intestinal microbiota development. Nutrition 2020, 78, 110812. [Google Scholar] [CrossRef] [PubMed]
- Bolte, E.E.; Moorshead, D.; Aagaard, K.M. Maternal and early life exposures and their potential to influence development of the microbiome. Genome Med. 2022, 14, 4. [Google Scholar] [CrossRef]
- Faienza, M.F.; Urbano, F.; Anaclerio, F.; Moscogiuri, L.A.; Konstantinidou, F.; Stuppia, L.; Gatta, V. Exploring maternal diet-epigenetic-gut microbiome crosstalk as an intervention strategy to counter early obesity programming. Curr. Issues Mol. Biol. 2024, 46, 4358–4378. [Google Scholar] [CrossRef]
- Chandra, M. Developmental origins of non-communicable chronic diseases: Role of fetal undernutrition and gut dysbiosis in infancy. Children 2024, 11, 1387. [Google Scholar] [CrossRef]
- Eid, N.; Morgan, H.L.; Watkins, A.J. Paternal periconception metabolic health and offspring programming. Proc. Nutr. Soc. 2022, 81, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Garrido, M.A.; García-Galiano, D.; Tena-Sempere, M. Early programming of reproductive health and fertility: Novel neuroendocrine mechanisms and implications in reproductive medicine. Hum. Reprod. Update 2022, 28, 346–375. [Google Scholar] [CrossRef]
- Phillips-Beck, W.; Sinclair, S.; Campbell, R.; Star, L.; Cidro, J.; Wicklow, B.; Guillemette, L.; Morris, M.I.; McGavock, J.M. Early-life origins of disparities in chronic diseases among Indigenous youth: Pathways to recovering health disparities from intergenerational trauma. J. Dev. Orig. Health Dis. 2019, 10, 115–122. [Google Scholar] [CrossRef]
- Thornburg, K.L.; Boone-Heinonen, J.; Valent, A.M. Social determinants of placental health and future disease risks for babies. Obstet. Gynecol. Clin. N. Am. 2020, 47, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Krishnaveni, G.V.; Srinivasan, K. Maternal nutrition and offspring stress response-implications for future development of non-communicable disease: A perspective from India. Front. Psychiatry 2019, 10, 795. [Google Scholar] [CrossRef]
- Tappia, P.S.; Nijjar, M.S.; Mahay, A.; Aroutiounova, N.; Dhalla, N.S. Phospholipid profile of developing heart of rats exposed to low-protein diet in pregnancy. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2005, 289, R1400–R1406. [Google Scholar] [CrossRef] [PubMed]
- Ali, O.; Szabó, A. Review of eukaryote cellular membrane lipid composition, with special attention to the fatty acids. Int. J. Mol. Sci. 2023, 24, 15693. [Google Scholar] [CrossRef]
- Chen, Y.; He, Z.; Chen, G.; Liu, M.; Wang, H. Prenatal glucocorticoids exposure and fetal adrenal developmental programming. Toxicology 2019, 428, 152308. [Google Scholar] [CrossRef]
- Tain, Y.-L.; Hsu, C.-N. The impact of the aryl hydrocarbon receptor on antenatal chemical exposure-induced cardiovascular–kidney–metabolic programming. Int. J. Mol. Sci. 2024, 25, 4599. [Google Scholar] [CrossRef]
- Strunz, S.; Strachan, R.; Bauer, M.; Zenclussen, A.C.; Leppert, B.; Junge, K.M.; Polte, T. Maternal exposure to low-dose BDE-47 induced weight gain and impaired insulin sensitivity in the offspring. Int. J. Mol. Sci. 2024, 25, 8620. [Google Scholar] [CrossRef]
- Benítez, L.; Fischer, U.; Crispi, F.; Castro-Barquero, S.; Crovetto, F.; Larroya, M.; Youssef, L.; Kameri, E.; Castillo, H.; Bueno, C.; et al. Modulation of the ETV6::RUNX1 gene fusion prevalence in newborns by corticosteroid use during pregnancy. Int. J. Mol. Sci. 2025, 26, 2971. [Google Scholar] [CrossRef] [PubMed]
- Hamze, M.; Brier, C.; Buhler, E.; Zhang, J.; Medina, I.; Porcher, C. Regulation of Neuronal Chloride Homeostasis by Pro- and Mature Brain-Derived Neurotrophic Factor (BDNF) via KCC2 Cation–Chloride Cotransporters in Rat Cortical Neurons. Int. J. Mol. Sci. 2024, 25, 6253. [Google Scholar] [CrossRef] [PubMed]
- Fernandes-Silva, H.; Alves, M.G.; Garcez, M.R.; Correia-Pinto, J.; Oliveira, P.F.; Homem, C.C.F.; Moura, R.S. Retinoic acid-mediated control of energy metabolism is essential for lung branching morphogenesis. Int. J. Mol. Sci. 2024, 25, 5054. [Google Scholar] [CrossRef]
- Tain, Y.-L.; Hou, C.-Y.; Chang-Chien, G.-P.; Lin, S.; Hsu, C.-N. Perinatal use of citrulline rescues hypertension in adult male offspring born to pregnant uremic rats. Int. J. Mol. Sci. 2024, 25, 1612. [Google Scholar] [CrossRef]
- Lee, W.; Barbosa, A.D.; Lee, A.H.-Y.; Currie, A.; Martino, D.; Stenos, J.; Long, M.; Beaman, M.; Harvey, N.T.; Kresoje, N.; et al. From local to systemic: The journey of tick bite biomarkers in Australian patients. Int. J. Mol. Sci. 2025, 26, 1520. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tappia, P.S.; Ramjiawan, B. Special Issue “Molecular Insights into the Developmental Origins of Health and Disease”. Int. J. Mol. Sci. 2025, 26, 11579. https://doi.org/10.3390/ijms262311579
Tappia PS, Ramjiawan B. Special Issue “Molecular Insights into the Developmental Origins of Health and Disease”. International Journal of Molecular Sciences. 2025; 26(23):11579. https://doi.org/10.3390/ijms262311579
Chicago/Turabian StyleTappia, Paramjit S., and Bram Ramjiawan. 2025. "Special Issue “Molecular Insights into the Developmental Origins of Health and Disease”" International Journal of Molecular Sciences 26, no. 23: 11579. https://doi.org/10.3390/ijms262311579
APA StyleTappia, P. S., & Ramjiawan, B. (2025). Special Issue “Molecular Insights into the Developmental Origins of Health and Disease”. International Journal of Molecular Sciences, 26(23), 11579. https://doi.org/10.3390/ijms262311579

