Comprehensive Liquid Biopsy Approaches for the Clinical Management of Lung Cancer Using Multiple Biological Matrices
Abstract
1. Introduction
2. Peripheral Blood
2.1. Plasma
2.1.1. ctDNA Biomarkers of Prognostic Significance
Mutation Analysis
DNA Methylation
2.1.2. ctDNA Biomarkers of Predictive Significance
Response to Therapy
Resistance to Therapy
2.1.3. ctDNA Biomarkers of Diagnostic Significance
miRNAs and Extracellular Vesicles (EVs)
2.2. CTCs
2.2.1. CTC Biomarkers of Prognostic Significance
CTC Enumeration
Protein Expression
mRNA Expression
2.2.2. CTC Biomarkers of Predictive Significance
3. Bronchoalveolar Lavage (BAL) Fluid Biomarkers
4. Other Biological Fluids
4.1. Urine Samples
4.2. Saliva
4.3. Exhaled Breath Condensate (EBC)
4.4. Cerebrospinal Fluid (CSF)
4.5. Pleural Effusions (PE)
5. Bioinformatic Tool Using Biomarker Analysis
6. Standardization of Liquid Biopsy Testing and Future Directions
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| SCLC | Small cell lung cancer |
| NGS | Next-generation sequencing |
| TKI | Tyrosine kinase inhibitor |
| OS | Overall survival |
| RFS | Relapse-free survival |
| LUSC | Squamous cell carcinoma |
| TMB | Tumor mutational burden |
| DSBs | DNA double-strand breaks |
| CNV | Copy number variation |
| WES | Whole-exome sequencing |
| LAF | Low allele frequency |
| UBL | Ubiquitin-like conjugation |
| ALK-I | Anaplastic lymphoma kinase inhibitor |
| KRT5 | Keratin 5 |
| SFTPB | Surfactant protein B |
| DLL3 | Delta-like 3 ligand |
| PD | Progressive disease |
| BAL | Bronchoalveolar lavage |
| CSF | Cerebrospinal Fluid |
| IGHV4-4 | Immunoglobulin heavy variable 4-4 |
| AHSG | Alpha-2-HS-glycoprotein |
| TCGA | The Cancer Genome Atlas |
| NSCLC | Non-small cell lung cancer |
| MRD | Residual molecular disease |
| ctDNA | circulating tumor DNA |
| PFS | Progression-free survival |
| LUAD | Lung adenocarcinoma |
| HCs | Human controls |
| ICIs | Immune checkpoint inhibitors |
| VAF | Variant allele frequency |
| cfTL | cell-free tumor burden |
| MSAF | Maximum somatic allele frequency |
| AF | Allele frequency |
| SCNAs | Somatic copy-number alterations |
| TT | Targeted therapy |
| CEACAM6 | CEA cell adhesion molecule 6 |
| CTCs | Circulating tumor cells |
| EMT | Epithelial–mesenchymal transition |
| FR | Folate receptor |
| EBC | Exhaled breath condensate |
| PE | Pleural effusions |
| IGLV1-40 | Immunoglobulin lambda variable 1-40 |
| ECM1 | Extracellular matrix protein 1 |
| DEGs | Differentially expressed genes |
| TP63 | Tumor protein P63 |
References
- Bray Bsc, F.; Laversanne, M.; Hyuna, S.; Ferlay, J.; Siegel Mph, R.L.; Soerjomataram, I.; Ahmedin Dvm, J. Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Travis, W.D.; Brambilla, E.; Nicholson, A.G.; Yatabe, Y.; Austin, J.H.M.; Beasley, M.B.; Chirieac, L.R.; Dacic, S.; Duhig, E.; Flieder, D.B.; et al. The 2015 World Health Organization Classification of Lung Tumors: Impact of Genetic, Clinical and Radiologic Advances since the 2004 Classification. J. Thorac. Oncol. 2015, 10, 1243–1260. [Google Scholar] [CrossRef]
- Li, Y.; Yan, B.; He, S. Advances and Challenges in the Treatment of Lung Cancer. Biomed. Pharmacother. 2023, 169, 115891. [Google Scholar] [CrossRef]
- Wu, J.; Hu, S.; Zhang, L.; Xin, J.; Sun, C.; Wang, L.; Ding, K.; Wang, B. Tumor Circulome in the Liquid Biopsies for Cancer Diagnosis and Prognosis. Theranostics 2020, 10, 4544–4556. [Google Scholar] [CrossRef]
- Ai, X.; Cui, J.; Zhang, J.; Chen, R.; Lin, W.; Xie, C.; Liu, A.; Zhang, J.; Yang, W.; Hu, X.; et al. Clonal Architecture of EGFR Mutation Predicts the Efficacy of EGFR-Tyrosine Kinase Inhibitors in Advanced NSCLC: A Prospective Multicenter Study (NCT03059641). Clin. Cancer Res. 2021, 27, 704–712. [Google Scholar] [CrossRef] [PubMed]
- Samol, J.; Ng, D.; Poh, J.; Tan, M.-H.; Dawar, R.; Carney, J.; Orsini, J.; Scilla, K.; Tan, Y.O.; Chin, T.M.; et al. Prospective Multicenter Study Evaluating a Combined Circulating Tumor DNA and Circulating Tumor RNA Liquid Biopsy in Metastatic Non-Small Cell Lung Cancer (LIQUIK). JCO Precis. Oncol. 2025, 9, e2500181. [Google Scholar] [CrossRef]
- Thompson, J.C.; Yee, S.S.; Troxel, A.B.; Savitch, S.L.; Fan, R.; Balli, D.; Lieberman, D.B.; Morrissette, J.D.; Evans, T.L.; Bauml, J.; et al. Detection of Therapeutically Targetable Driver and Resistance Mutations in Lung Cancer Patients by Next-Generation Sequencing of Cell-Free Circulating Tumor DNA. Clin. Cancer Res. 2016, 22, 5772–5782. [Google Scholar] [CrossRef] [PubMed]
- Lianidou, E.S.; Strati, A.; Markou, A. Circulating Tumor Cells as Promising Novel Biomarkers in Solid Cancers. Crit. Rev. Clin. Lab. Sci. 2014, 51, 160–171. [Google Scholar] [CrossRef]
- Strati, A.; Economopoulou, P.; Lianidou, E.; Psyrri, A. Clinical Significance of PD-L1 Status in Circulating Tumor Cells for Cancer Management during Immunotherapy. Biomedicines 2023, 11, 1768. [Google Scholar] [CrossRef]
- Strati, A.; Markou, A.; Kyriakopoulou, E.; Lianidou, E. Detection and Molecular Characterization of Circulating Tumour Cells: Challenges for the Clinical Setting. Cancers 2023, 15, 2185. [Google Scholar] [CrossRef]
- Wu, D.; Liu, Y.; Li, X.; Liu, Y.; Yang, Q.; Liu, Y.; Wu, J.; Tian, C.; Zeng, Y.; Zhao, Z.; et al. Identification of Clonal Neoantigens Derived From Driver Mutations in an EGFR-Mutated Lung Cancer Patient Benefitting From Anti-PD-1. Front. Immunol. 2020, 11, 1366. [Google Scholar] [CrossRef]
- Wang, W.; Song, Z.; Zhang, Y. A Comparison of DdPCR and ARMS for Detecting EGFR T790M Status in CtDNA from Advanced NSCLC Patients with Acquired EGFR-TKI Resistance. Cancer Med. 2017, 6, 154–162. [Google Scholar] [CrossRef] [PubMed]
- Hwang, M.; Canzoniero, J.V.; Rosner, S.; Zhang, G.; White, J.R.; Belcaid, Z.; Cherry, C.; Balan, A.; Pereira, G.; Curry, A.; et al. Peripheral Blood Immune Cell Dynamics Reflect Antitumor Immune Responses and Predict Clinical Response to Immunotherapy. J. Immunother. Cancer 2022, 10, e004688. [Google Scholar] [CrossRef]
- Greulich, H. The Genomics of Lung Adenocarcinoma: Opportunities for Targeted Therapies. Genes Cancer 2010, 1, 1200. [Google Scholar] [CrossRef] [PubMed]
- Buder, A.; Hochmair, M.J.; Filipits, M. The Allele Frequency of EGFR Mutations Predicts Survival in Advanced EGFR T790M-Positive Non-Small Cell Lung Cancer Patients Treated with Osimertinib. Target. Oncol. 2021, 16, 77–84. [Google Scholar] [CrossRef]
- Romero, A.; Serna-Blasco, R.; Alfaro, C.; Sánchez-Herrero, E.; Barquín, M.; Turpin, M.C.; Chico, S.; Sanz-Moreno, S.; Rodrigez-Festa, A.; Laza-Briviesca, R.; et al. CtDNA Analysis Reveals Different Molecular Patterns upon Disease Progression in Patients Treated with Osimertinib. Transl. Lung Cancer Res. 2020, 9, 532–540. [Google Scholar] [CrossRef]
- Guo, W.; Zhang, T.; Li, R.; Chen, X.; Pang, J.; Bao, H.; Wu, X.; Shao, Y.; Qiu, B.; Gao, S.; et al. Molecular Risk Factors for Locoregional Recurrence in Resected Non-Small Cell Lung Cancer. Cancer Med. 2023, 12, 15026–15036. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.A.; Ku, B.M.; Kim, Y.J.; Park, S.; Sun, J.M.; Lee, S.H.; Ahn, J.S.; Cho, J.H.; Kim, H.K.; Choi, Y.S.; et al. Longitudinal Monitoring of Circulating Tumor DNA From Plasma in Patients With Curative Resected Stages I to IIIA EGFR-Mutant Non–Small Cell Lung Cancer. J. Thorac. Oncol. 2023, 18, 1199–1208. [Google Scholar] [CrossRef]
- Roosan, M.R.; Mambetsariev, I.; Pharaon, R.; Fricke, J.; Husain, H.; Reckamp, K.L.; Koczywas, M.; Massarelli, E.; Bild, A.H.; Salgia, R. Usefulness of Circulating Tumor DNA in Identifying Somatic Mutations and Tracking Tumor Evolution in Patients With Non-Small Cell Lung Cancer. Chest 2021, 160, 1095–1107. [Google Scholar] [CrossRef]
- Riudavets, M.; Sullivan, I.; Abdayem, P.; Planchard, D. Targeting HER2 in Non-Small-Cell Lung Cancer (NSCLC): A Glimpse of Hope? An Updated Review on Therapeutic Strategies in NSCLC Harbouring HER2 Alterations. ESMO Open 2021, 6, 100260. [Google Scholar] [CrossRef]
- Dong, Y.; Yang, G.; Yang, Y.; Zhang, S.; Wang, Y.; Xu, H. Dynamic Characterization of Circulating Tumor DNA in HER2-Altered Advanced Non-Small Cell Lung Cancer Treated with Pyrotinib and Apatinib: Exploratory Biomarker Analysis from PATHER2 Study. Lung Cancer 2025, 200, 108062. [Google Scholar] [CrossRef] [PubMed]
- Leest, P.v.d.; Janning, M.; Rifaela, N.; Azpurua, M.L.A.; Kropidlowski, J.; Loges, S.; Lozano, N.; Sartori, A.; Irwin, D.; Lamy, P.J.; et al. Detection and Monitoring of Tumor-Derived Mutations in Circulating Tumor DNA Using the UltraSEEK Lung Panel on the MassARRAY System in Metastatic Non-Small Cell Lung Cancer Patients. Int. J. Mol. Sci. 2023, 24, 13390. [Google Scholar] [CrossRef] [PubMed]
- Peng, M.; Huang, Q.; Yin, W.; Tan, S.; Chen, C.; Liu, W.; Tang, J.; Wang, X.; Zhang, B.; Zou, M.; et al. Circulating Tumor DNA as a Prognostic Biomarker in Localized Non-Small Cell Lung Cancer. Front. Oncol. 2020, 10, 561598. [Google Scholar] [CrossRef]
- Wu, S.; Tang, Y.; Pan, Q.; Zheng, Y.; Tan, Y.; Pan, J.; Li, Y. Unveiling Diagnostic Biomarkers and Therapeutic Targets in Lung Adenocarcinoma Using Bioinformatics and Experimental Validation. Sci. Rep. 2025, 15, 22893. [Google Scholar] [CrossRef]
- De Meo, M.L.; Seitlinger, J.; Rayes, R.F.; Walsh, L.C.; Shahzad, M.H.; Tsering, T.; Saleh, R.; Ezer, N.; Shieh, B.; Wong, A.; et al. KRAS CtDNA Detection in Patients With Resectable Lung Adenocarcinoma. Clin. Lung Cancer 2025, 26, e447–e455.e6. [Google Scholar] [CrossRef]
- Strickler, J.H.; Hanks, B.A.; Khasraw, M. Tumor Mutational Burden as a Predictor of Immunotherapy Response: Is More Always Better? Clin. Cancer Res. 2021, 27, 1236–1241. [Google Scholar] [CrossRef]
- Chae, Y.K.; Davis, A.A.; Agte, S.; Pan, A.; Simon, N.I.; Iams, W.T.; Cruz, M.R.; Tamragouri, K.; Rhee, K.; Mohindra, N.; et al. Clinical Implications of Circulating Tumor DNA Tumor Mutational Burden (CtDNA TMB) in Non-Small Cell Lung Cancer. Oncologist 2019, 24, 820–828. [Google Scholar] [CrossRef]
- Gelmini, S.; Calabri, A.; Mancini, I.; Comin, C.E.; Pasini, V.; Banini, M.; Scotti, V.; Pinzani, P. Circulating Tumor Cell-Free DNA as Prognostic Biomarker in Non-Small Cell Lung Cancer Patients Undergoing Immunotherapy: The CORELAB Experience. Int. J. Mol. Sci. 2025, 26, 611. [Google Scholar] [CrossRef]
- Hellmann, M.D.; Nabet, B.Y.; Rizvi, H.; Chaudhuri, A.A.; Wells, D.K.; Dunphy, M.P.S.; Chabon, J.J.; Liu, C.L.; Hui, A.B.; Arbour, K.C.; et al. Circulating Tumor DNA Analysis to Assess Risk of Progression after Long-Term Response to PD-(L)1 Blockade in NSCLC. Clin. Cancer Res. 2020, 26, 2849–2858. [Google Scholar] [CrossRef]
- Lee, W.S.; Yang, H.; Chon, H.J.; Kim, C. Combination of Anti-Angiogenic Therapy and Immune Checkpoint Blockade Normalizes Vascular-Immune Crosstalk to Potentiate Cancer Immunity. Exp. Mol. Med. 2020, 52, 1475–1485. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Li, X.; Liu, G.; Chen, S.; Xu, M.; Song, L.; Wang, Y. CtDNA Concentration, MIKI67 Mutations and Hyper-Progressive Disease Related Gene Mutations Are Prognostic Markers for Camrelizumab and Apatinib Combined Multiline Treatment in Advanced NSCLC. Front. Oncol. 2020, 10, 1706. [Google Scholar] [CrossRef]
- Yang, F.; Tang, M.; Cui, L.; Bai, J.; Yu, J.; Gao, J.; Nie, X.; Li, X.; Xia, X.; Yi, X.; et al. Prognostic and Predictive Impact of Molecular Tumor Burden Index in Non-Small Cell Lung Cancer Patients. Thorac. Cancer 2023, 14, 3097–3107. [Google Scholar] [CrossRef]
- Aparicio, T.; Baer, R.; Gautier, J. DNA Double-Strand Break Repair Pathway Choice and Cancer. DNA Repair 2014, 19, 169. [Google Scholar] [CrossRef]
- Chen, K.; Yang, A.; Carbone, D.P.; Kanu, N.; Liu, K.; Wang, R.; Nie, Y.; Shen, H.; Bai, J.; Wu, L.; et al. Spatiotemporal Genomic Analysis Reveals Distinct Molecular Features in Recurrent Stage I Non-Small Cell Lung Cancers. Cell Rep. 2022, 40, 111047. [Google Scholar] [CrossRef]
- Chia, B.S.H.; Nei, W.L.; Charumathi, S.; Fong, K.W.; Tan, M.H. Baseline Plasma EGFR Circulating Tumour DNA Levels in a Pilot Cohort of EGFR-Mutant Limited-Stage Lung Adenocarcinoma Patients Undergoing Radical Lung Radiotherapy. Case Rep. Oncol. 2020, 13, 896. [Google Scholar] [CrossRef] [PubMed]
- Gale, D.; Heider, K.; Ruiz-Valdepenas, A.; Hackinger, S.; Perry, M.; Marsico, G.; Rundell, V.; Wulff, J.; Sharma, G.; Knock, H.; et al. Residual CtDNA after Treatment Predicts Early Relapse in Patients with Early-Stage Non-Small Cell Lung Cancer. Ann. Oncol. 2022, 33, 500. [Google Scholar] [CrossRef]
- Schuurbiers, M.M.F.; Smith, C.G.; Hartemink, K.J.; Rintoul, R.C.; Gale, D.; Monkhorst, K.; Mandos, B.L.R.; Paterson, A.L.; van den Broek, D.; Rosenfeld, N.; et al. Recurrence Prediction Using Circulating Tumor DNA in Patients with Early-Stage Non-Small Cell Lung Cancer after Treatment with Curative Intent: A Retrospective Validation Study. PLoS Med. 2025, 22, e1004574. [Google Scholar] [CrossRef] [PubMed]
- Tan, A.C.; Lai, G.G.Y.; Saw, S.P.L.; Chua, K.L.M.; Takano, A.; Ong, B.H.; Koh, T.P.T.; Jain, A.; Tan, W.L.; Ng, Q.S.; et al. Detection of Circulating Tumor DNA with Ultradeep Sequencing of Plasma Cell-Free DNA for Monitoring Minimal Residual Disease and Early Detection of Recurrence in Early-Stage Lung Cancer. Cancer 2024, 130, 1758–1765. [Google Scholar] [CrossRef]
- Tran, H.T.; Heeke, S.; Sujit, S.; Vokes, N.; Zhang, J.; Aminu, M.; Lam, V.K.; Vaporciyan, A.; Swisher, S.G.; Godoy, M.C.B.; et al. Circulating Tumor DNA and Radiological Tumor Volume Identify Patients at Risk for Relapse with Resected, Early-Stage Non-Small-Cell Lung Cancer. Ann. Oncol. 2024, 35, 183–189. [Google Scholar] [CrossRef]
- Jee, J.; Lebow, E.S.; Yeh, R.; Das, J.P.; Namakydoust, A.; Paik, P.K.; Chaft, J.E.; Jayakumaran, G.; Rose Brannon, A.; Benayed, R.; et al. Overall Survival with Circulating Tumor DNA-Guided Therapy in Advanced Non-Small-Cell Lung Cancer. Nat. Med. 2022, 28, 2353–2363. [Google Scholar] [CrossRef] [PubMed]
- Jamal-Hanjani, M.; Wilson, G.A.; McGranahan, N.; Birkbak, N.J.; Watkins, T.B.K.; Veeriah, S.; Shafi, S.; Johnson, D.H.; Mitter, R.; Rosenthal, R.; et al. Tracking the Evolution of Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2017, 376, 2109–2121. [Google Scholar] [CrossRef] [PubMed]
- Sonar, S.; Nyahatkar, S.; Kalele, K.; Adhikari, M.D. Role of DNA Methylation in Cancer Development and Its Clinical Applications. Clin. Transl. Discov. 2024, 4, e279. [Google Scholar] [CrossRef]
- Pfeifer, G.P.; Rauch, T.A. DNA Methylation Patterns in Lung Carcinomas. Semin. Cancer Biol. 2009, 19, 181–187. [Google Scholar] [CrossRef]
- Bjaanæs, M.M.; Fleischer, T.; Halvorsen, A.R.; Daunay, A.; Busato, F.; Solberg, S.; Jørgensen, L.; Kure, E.; Edvardsen, H.; Børresen-Dale, A.L.; et al. Genome-Wide DNA Methylation Analyses in Lung Adenocarcinomas: Association with EGFR, KRAS and TP53 Mutation Status, Gene Expression and Prognosis. Mol. Oncol. 2016, 10, 330–343. [Google Scholar] [CrossRef]
- Balgkouranidou, I.; Chimonidou, M.; Milaki, G.; Tsaroucha, E.; Kakolyris, S.; Georgoulias, V.; Lianidou, E. SOX17 Promoter Methylation in Plasma Circulating Tumor DNA of Patients with Non-Small Cell Lung Cancer. Clin. Chem. Lab. Med. 2016, 54, 1385–1393. [Google Scholar] [CrossRef] [PubMed]
- Janke, F.; Angeles, A.K.; Riediger, A.L.; Bauer, S.; Reck, M.; Stenzinger, A.; Schneider, M.A.; Muley, T.; Thomas, M.; Christopoulos, P.; et al. Longitudinal Monitoring of Cell-Free DNA Methylation in ALK-Positive Non-Small Cell Lung Cancer Patients. Clin. Epigenetics 2022, 14, 163. [Google Scholar] [CrossRef]
- Liu, B.; Zhao, B.; Yin, Y.; Jiang, Y.; Feng, X.; Wang, L.; Zhai, L.; Liu, G.; Shi, D.; Qin, J. CtDNA SNORD3F Hypermethylation Is a Prognostic Indicator in EGFR-TKI-Treated Advanced Non-Small Cell Lung Cancer. Cancer Manag. Res. 2024, 16, 1405. [Google Scholar] [CrossRef]
- Li, W.; Liu, J.B.; Hou, L.K.; Yu, F.; Zhang, J.; Wu, W.; Tang, X.M.; Sun, F.; Lu, H.M.; Deng, J.; et al. Liquid Biopsy in Lung Cancer: Significance in Diagnostics, Prediction, and Treatment Monitoring. Mol. Cancer 2022, 21, 25. [Google Scholar] [CrossRef]
- Kilgour, E.; Rothwell, D.G.; Brady, G.; Dive, C. Liquid Biopsy-Based Biomarkers of Treatment Response and Resistance. Cancer Cell 2020, 37, 485–495. [Google Scholar] [CrossRef]
- Zhou, F.; Guo, H.; Xia, Y.; Le, X.; Tan, D.S.W.; Ramalingam, S.S.; Zhou, C. The Changing Treatment Landscape of EGFR-Mutant Non-Small-Cell Lung Cancer. Nat. Rev. Clin. Oncol. 2025, 22, 95–116. [Google Scholar] [CrossRef]
- Park, C.K.; Cho, H.J.; Choi, Y.D.; Oh, I.J.; Kim, Y.C. A Phase II Trial of Osimertinib in the Second-Line Treatment of Non-Small Cell Lung Cancer with the EGFR T790M Mutation, Detected from Circulating Tumor DNA: LiquidLung-O-Cohort 2. Cancer Res. Treat. 2019, 51, 777–787. [Google Scholar] [CrossRef]
- Boysen Fynboe Ebert, E.; McCulloch, T.; Holmskov Hansen, K.; Linnet, H.; Sorensen, B.; Meldgaard, P. Clearing of Circulating Tumour DNA Predicts Clinical Response to Osimertinib in EGFR Mutated Lung Cancer Patients. Lung Cancer 2020, 143, 67–72. [Google Scholar] [CrossRef]
- Ebert, E.B.F.; McCulloch, T.; Hansen, K.H.; Linnet, H.; Sorensen, B.; Meldgaard, P. Clearing of Circulating Tumour DNA Predicts Clinical Response to First Line Tyrosine Kinase Inhibitors in Advanced Epidermal Growth Factor Receptor Mutated Non-Small Cell Lung Cancer. Lung Cancer 2020, 141, 37–43. [Google Scholar] [CrossRef]
- Fernandes, M.G.O.; Sousa, C.; Reis, J.P.; Cruz-Martins, N.; Moura, C.S.; Guimarães, S.; Justino, A.; Pina, M.J.; Magalhães, A.; Queiroga, H.; et al. Liquid Biopsy for Disease Monitoring in Non-Small Cell Lung Cancer: The Link between Biology and the Clinic. Cells 2021, 10, 1912. [Google Scholar] [CrossRef]
- Nakamura, T.; Sato, A.; Nakashima, C.; Abe, T.; Iwanaga, K.; Umeguchi, H.; Kawaguchi, A.; Sueoka-Aragane, N. Absence of Copy Number Gain of EGFR: A Possible Predictive Marker of Long-Term Response to Afatinib. Cancer Sci. 2023, 114, 1045–1055. [Google Scholar] [CrossRef] [PubMed]
- Schwaederlé, M.C.; Patel, S.P.; Husain, H.; Ikeda, M.; Lanman, R.B.; Banks, K.C.; Talasaz, A.A.; Bazhenova, L.; Kurzrock, R. Utility of Genomic Assessment of Blood-Derived Circulating Tumor DNA (CtDNA) in Patients with Advanced Lung Adenocarcinoma. Clin. Cancer Res. 2017, 23, 5101–5111. [Google Scholar] [CrossRef] [PubMed]
- Passiglia, F.; Pepe, F.; Russo, G.; Garbo, E.; Listì, A.; Benso, F.; Scimone, C.; Palumbo, L.; Pluchino, M.; Minari, R.; et al. Circulating Tumor DNA Dynamic Variation Predicts Sotorasib Efficacy in KRASp.G12C-Mutated Advanced Non-Small Cell Lung Cancer. Cancer 2025, 131, e35917. [Google Scholar] [CrossRef] [PubMed]
- van der Leest, P.; Rozendal, P.; Rifaela, N.; van der Wekken, A.J.; Kievit, H.; de Jager, V.D.; Sidorenkov, G.; van Kempen, L.C.; Hiltermann, T.J.N.; Schuuring, E. Detection of Actionable Mutations in Circulating Tumor DNA for Non-Small Cell Lung Cancer Patients. Commun. Med. 2025, 5, 204. [Google Scholar] [CrossRef]
- Dietz, S.; Christopoulos, P.; Yuan, Z.; Angeles, A.K.; Gu, L.; Volckmar, A.L.; Ogrodnik, S.J.; Janke, F.; Fratte, C.D.; Zemojtel, T.; et al. Longitudinal Therapy Monitoring of ALK-Positive Lung Cancer by Combined Copy Number and Targeted Mutation Profiling of Cell-Free DNA. EBioMedicine 2020, 62, 103103. [Google Scholar] [CrossRef]
- Soo, R.A.; Martini, J.F.; van der Wekken, A.J.; Teraoka, S.; Ferrara, R.; Shaw, A.T.; Shepard, D.; Calella, A.M.; Polli, A.; Toffalorio, F.; et al. Early Circulating Tumor DNA Dynamics and Efficacy of Lorlatinib in Patients With Treatment-Naive, Advanced, ALK-Positive NSCLC. J. Thorac. Oncol. 2023, 18, 1568–1580. [Google Scholar] [CrossRef]
- Sivapalan, L.; Iams, W.T.; Belcaid, Z.; Scott, S.C.; Niknafs, N.; Balan, A.; White, J.R.; Kopparapu, P.; Cann, C.; Landon, B.V.; et al. Dynamics of Sequence and Structural Cell-Free DNA Landscapes in Small-Cell Lung Cancer. Clin. Cancer Res. 2023, 29, 2310–2323. [Google Scholar] [CrossRef]
- Killock, D. TMB—a Histology-Agnostic Predictor of the Efficacy of ICIs? Nat. Rev. Clin. Oncol. 2020, 17, 718. [Google Scholar] [CrossRef]
- Nie, W.; Wang, Z.J.; Zhang, K.; Li, B.; Cai, Y.R.; Wen, F.C.; Zhang, D.; Bai, Y.Z.; Zhang, X.Y.; Wang, S.Y.; et al. CtDNA-Adjusted BTMB as a Predictive Biomarker for Patients with NSCLC Treated with PD-(L)1 Inhibitors. BMC Med. 2022, 20, 170. [Google Scholar] [CrossRef]
- Si, H.; Kuziora, M.; Quinn, K.J.; Helman, E.; Ye, J.; Liu, F.; Scheuring, U.; Peters, S.; Rizvi, N.A.; Brohawn, P.Z.; et al. A Blood-Based Assay for Assessment of Tumor Mutational Burden in First-Line Metastatic NSCLC Treatment: Results from the MYSTIC Study A C. Clin. Cancer Res. 2021, 27, 1631–1640. [Google Scholar] [CrossRef] [PubMed]
- Stensgaard, S.; Thomsen, A.; Helstrup, S.; Meldgaard, P.; Sorensen, B.S. Blood Tumor Mutational Burden and Dynamic Changes in Circulating Tumor DNA Predict Response to Pembrolizumab Treatment in Advanced Non-Small Cell Lung Cancer. Transl. Lung Cancer Res. 2023, 12, 971–984. [Google Scholar] [CrossRef]
- Giroux Leprieur, E.; Hélias-Rodzewicz, Z.; Takam Kamga, P.; Costantini, A.; Julie, C.; Corjon, A.; Dumenil, C.; Dumoulin, J.; Giraud, V.; Labrune, S.; et al. Sequential CtDNA Whole-Exome Sequencing in Advanced Lung Adenocarcinoma with Initial Durable Tumor Response on Immune Checkpoint Inhibitor and Late Progression. J. Immunother. Cancer 2020, 8, e000527. [Google Scholar] [CrossRef]
- Dong, Y.; Zhu, Y.; Zhuo, M.; Chen, X.; Xie, Y.; Duan, J.; Bai, H.; Hao, S.; Yu, Z.; Yi, Y.; et al. Maximum Somatic Allele Frequency-Adjusted Blood-Based Tumor Mutational Burden Predicts the Efficacy of Immune Checkpoint Inhibitors in Advanced Non-Small Cell Lung Cancer. Cancers 2022, 14, 5649. [Google Scholar] [CrossRef]
- Guibert, N.; Jones, G.; Beeler, J.F.; Plagnol, V.; Morris, C.; Mourlanette, J.; Delaunay, M.; Keller, L.; Rouquette, I.; Favre, G.; et al. Targeted Sequencing of Plasma Cell-Free DNA to Predict Response to PD1 Inhibitors in Advanced Non-Small Cell Lung Cancer. Lung Cancer 2019, 137, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Duan, J.; Fang, W.; Wang, Z.; Du, X.; Wang, X.; Li, C.; Cai, S.; Zhao, J.; Li, S.; et al. Identification and Validation of Tissue or CtDNA PTPRD Phosphatase Domain Deleterious Mutations as Prognostic and Predictive Biomarkers for Immune Checkpoint Inhibitors in Non-Squamous NSCLC. BMC Med. 2021, 19, 239. [Google Scholar] [CrossRef] [PubMed]
- Iijima, Y.; Hirotsu, Y.; Amemiya, K.; Ooka, Y.; Mochizuki, H.; Oyama, T.; Nakagomi, T.; Uchida, Y.; Kobayashi, Y.; Tsutsui, T.; et al. Very Early Response of Circulating Tumour-Derived DNA in Plasma Predicts Efficacy of Nivolumab Treatment in Patients with Non-Small Cell Lung Cancer. Eur. J. Cancer 2017, 86, 349–357. [Google Scholar] [CrossRef]
- Gristina, V.; Russo, T.D.B.; Barraco, N.; Gottardo, A.; Pepe, F.; Russo, G.; Fulfaro, F.; Incorvaia, L.; Badalamenti, G.; Troncone, G.; et al. Clinical Utility of CtDNA by Amplicon Based next Generation Sequencing in First Line Non Small Cell Lung Cancer Patients. Sci. Rep. 2024, 14, 22141. [Google Scholar] [CrossRef]
- Raja, R.; Kuziora, M.; Brohawn, P.Z.; Higgs, B.W.; Gupta, A.; Dennis, P.A.; Ranade, K. Early Reduction in CtDNA Predicts Survival in Patients with Lung and Bladder Cancer Treated with Durvalumab. Clin. Cancer Res. 2018, 24, 6212–6222. [Google Scholar] [CrossRef] [PubMed]
- Ricciuti, B.; Jones, G.; Severgnini, M.; Alessi, J.V.; Recondo, G.; Lawrence, M.; Forshew, T.; Lydon, C.; Nishino, M.; Cheng, M.; et al. Early Plasma Circulating Tumor DNA (CtDNA) Changes Predict Response to First-Line Pembrolizumab-Based Therapy in Non-Small Cell Lung Cancer (NSCLC). J. Immunother. Cancer 2021, 9, e001504. [Google Scholar] [CrossRef]
- Weber, S.; Leest, P.v.d.; Donker, H.C.; Schlange, T.; Timens, W.; Tamminga, M.; Hasenleithner, S.O.; Graf, R.; Moser, T.; Spiegl, B.; et al. Dynamic Changes of Circulating Tumor DNA Predict Clinical Outcome in Patients With Advanced Non–Small-Cell Lung Cancer Treated With Immune Checkpoint Inhibitors. JCO Precis. Oncol. 2021, 5, 1540–1553, Erratum in JCO Precis. Oncol. 2022, 6, e2100566. [Google Scholar] [CrossRef]
- Lu, J.; Zhang, Y.; Lou, Y.; Yan, B.; Zou, B.; Hu, M.; Wang, Y.; Chen, Y.; Yang, Z.; Wang, H.; et al. CtDNA-Profiling-Based UBL Biological Process Mutation Status as a Predictor of Atezolizumab Response Among TP53-Negative NSCLC Patients. Front. Genet. 2021, 12, 723670. [Google Scholar] [CrossRef]
- Godin-Heymann, N.; Ulkus, L.; Brannigan, B.W.; McDermott, U.; Lamb, J.; Maheswaran, S.; Settleman, J.; Haber, D.A. The T790M “Gatekeeper” Mutation in EGFR Mediates Resistance to Low Concentrations of an Irreversible EGFR Inhibitor. Mol. Cancer Ther. 2008, 7, 874–879. [Google Scholar] [CrossRef] [PubMed]
- Agulnik, J.S.; Papadakis, A.I.; Pepe, C.; Sakr, L.; Small, D.; Wang, H.; Kasymjanova, G.; Spatz, A.; Cohen, V. Cell-Free Tumor DNA (CtDNA) Utility in Detection of Original Sensitizing and Resistant EGFR Mutations in Non-Small Cell Lung Cancer (NSCLC). Curr. Oncol. 2022, 29, 1107–1116. [Google Scholar] [CrossRef]
- Buder, A.; Heitzer, E.; Waldispühl-Geigl, J.; Weber, S.; Moser, T.; Hochmair, M.J.; Hackner, K.; Errhalt, P.; Setinek, U.; Filipits, M. Somatic Copy-Number Alterations in Plasma Circulating Tumor DNA from Advanced EGFR-Mutated Lung Adenocarcinoma Patients. Biomolecules 2021, 11, 618. [Google Scholar] [CrossRef]
- Fu, Y.; Wang, A.; Zhou, J.; Feng, W.; Shi, M.; Xu, X.; Zhao, H.; Cai, L.; Feng, J.; Lv, X.; et al. Advanced NSCLC Patients With EGFR T790M Harboring TP53 R273C or KRAS G12V Cannot Benefit From Osimertinib Based on a Clinical Multicentre Study by Tissue and Liquid Biopsy. Front. Oncol. 2021, 11, 621992, Erratum in Front. Oncol. 2023, 13, 1236311. [Google Scholar] [CrossRef]
- Xu, Y.; Yang, J.C.H.; Zhao, Y.; Doucet, L.; Zhou, J.; Wang, Y.; Planchard, D.; Fan, Y.; Jin, B.; Han, Z.; et al. Genetic Biomarker Study of Sunvozertinib for Clinical Prognosis and Prediction in NSCLC with EGFR Exon 20 Insertion Mutation. Cell Rep. Med. 2025, 6, 102121. [Google Scholar] [CrossRef] [PubMed]
- Lupini, L.; Roncarati, R.; Belluomini, L.; Lancia, F.; Bassi, C.; D’Abundo, L.; Michilli, A.; Guerriero, P.; Fasano, A.; Tiberi, E.; et al. Monitoring Somatic Genetic Alterations in Circulating Cell-Free DNA/RNA of Patients with “Oncogene-Addicted” Advanced Lung Adenocarcinoma: A Real-World Clinical Study. Int. J. Mol. Sci. 2022, 23, 8546. [Google Scholar] [CrossRef] [PubMed]
- Devarakonda, S.; Sankararaman, S.; Herzog, B.H.; Gold, K.A.; Waqar, S.N.; Ward, J.P.; Raymond, V.M.; Lanman, R.B.; Chaudhuri, A.A.; Owonikoko, T.K.; et al. Circulating Tumor DNA Profiling in Small-Cell Lung Cancer Identifies Potentially Targetable Alterations. Clin. Cancer Res. 2019, 25, 6119–6126. [Google Scholar] [CrossRef] [PubMed]
- Ku, B.M.; Kim, Y.J.; Park, D.; Lee, S.H.; Ahn, J.S.; Park, K.; Ahn, M.J.; Sun, J.M. Role of Circulating Tumor DNA Profiling in Patients with Non-Small Cell Lung Cancer Treated with EGFR Inhibitor. Oncology 2022, 100, 228–237. [Google Scholar] [CrossRef] [PubMed]
- Ai, X.; Niu, X.; Chang, L.; Chen, R.; Ou, S.H.I.; Lu, S. Next Generation Sequencing Reveals a Novel ALK G1128A Mutation Resistant to Crizotinib in an ALK-Rearranged NSCLC Patient. Lung Cancer 2018, 123, 83–86. [Google Scholar] [CrossRef]
- Dietz, S.; Christopoulos, P.; Gu, L.; Volckmar, A.L.; Endris, V.; Yuan, Z.; Ogrodnik, S.J.; Zemojtel, T.; Heussel, C.P.; Schneider, M.A.; et al. Serial Liquid Biopsies for Detection of Treatment Failure and Profiling of Resistance Mechanisms in KLC1–ALK-Rearranged Lung Cancer. Cold Spring Harb. Mol. Case Stud. 2019, 5, a004630. [Google Scholar] [CrossRef]
- Christopoulos, P.; Dietz, S.; Angeles, A.K.; Rheinheimer, S.; Kazdal, D.; Volckmar, A.L.; Janke, F.; Endris, V.; Meister, M.; Kriegsmann, M.; et al. Earlier Extracranial Progression and Shorter Survival in ALK-Rearranged Lung Cancer with Positive Liquid Rebiopsies. Transl. Lung Cancer Res. 2021, 10, 2118. [Google Scholar] [CrossRef]
- Mondaca, S.; Lebow, E.S.; Namakydoust, A.; Razavi, P.; Reis-Filho, J.S.; Shen, R.; Offin, M.; Tu, H.Y.; Murciano-Goroff, Y.; Xu, C.; et al. Clinical Utility of Next-Generation Sequencing-Based CtDNA Testing for Common and Novel ALK Fusions. Lung Cancer 2021, 159, 66–73, Erratum in Lung Cancer 2021, 162, 210. [Google Scholar] [CrossRef]
- Sánchez-Herrero, E.; Serna-Blasco, R.; Ivanchuk, V.; García-Campelo, R.; Dómine Gómez, M.; Sánchez, J.M.; Massutí, B.; Reguart, N.; Camps, C.; Sanz-Moreno, S.; et al. NGS-Based Liquid Biopsy Profiling Identifies Mechanisms of Resistance to ALK Inhibitors: A Step toward Personalized NSCLC Treatment. Mol. Oncol. 2021, 15, 2363–2376. [Google Scholar] [CrossRef]
- Bazhenova, L.; Hodgson, J.G.; Camidge, D.R.; Langer, C.J.; Huber, R.M.; Kim, D.W.; Reckamp, K.L.; Ahn, M.J.; Tan, D.S.W.; Patel, J.D.; et al. Activity of Brigatinib in Patients With Crizotinib-Resistant ALK-Positive Non–Small-Cell Lung Cancer According to ALK Fusion and Mutation Status. Clin. Lung Cancer 2025, 26, e503–e513.e11. [Google Scholar] [CrossRef]
- Planchard, D.; Sanborn, R.E.; Negrao, M.V.; Vaishnavi, A.; Smit, E.F. BRAFV600E-Mutant Metastatic NSCLC: Disease Overview and Treatment Landscape. npj Precis. Oncol. 2024, 8, 90, Erratum in npj Precis. Oncol. 2024, 8, 142. [Google Scholar] [CrossRef]
- Ortiz-Cuaran, S.; Mezquita, L.; Swalduz, A.; Aldea, M.; Mazieres, J.; Leonce, C.; Jovelet, C.; Pradines, A.; Avrillon, V.; Chumbi Flores, W.R.; et al. Circulating Tumor DNA Genomics Reveal Potential Mechanisms of Resistance to BRAF-Targeted Therapies in Patients with BRAF-Mutant Metastatic Non-Small Cell Lung Cancer. Clin. Cancer Res. 2020, 26, 6242–6253. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Li, X.; Liu, L.; Zhu, Z.; He, C. Exosomes in Lung Cancer Metastasis, Diagnosis, and Immunologically Relevant Advances. Front. Immunol. 2023, 14, 1326667. [Google Scholar] [CrossRef] [PubMed]
- Akbar, S.; Raza, A.; Mohsin, R.; Kanbour, A.; Qadri, S.; Parray, A.; Zar Gul, A.R.; Philip, A.; Vijayakumar, S.; Merhi, M.; et al. Circulating Exosomal Immuno-Oncological Checkpoints and Cytokines Are Potential Biomarkers to Monitor Tumor Response to Anti-PD-1/PD-L1 Therapy in Non-Small Cell Lung Cancer Patients. Front. Immunol. 2023, 13, 1097117. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Ma, X.; Lou, C.; Zhou, C.; Zhao, X.; Li, N.; Tian, H.; Meng, X. PLA2G10 Incorporated in Exosomes Could Be Diagnostic and Prognostic Biomarker for Non-Small Cell Lung Cancer. Clin. Chim. Acta 2022, 530, 55–65. [Google Scholar] [CrossRef]
- Chen, Z.; Ma, X.; Chen, Z.; Chen, W.; Li, L.; Lin, Y.; Hu, Y.; Shang, Y.; Zhao, Y.; He, J.; et al. Exosome-Transported Circ_0061407 and Circ_0008103 Play a Tumour-Repressive Role and Show Diagnostic Value in Non-Small-Cell Lung Cancer. J. Transl. Med. 2024, 22, 427. [Google Scholar] [CrossRef]
- Jeong, H.; Choi, B.H.; Park, J.; Jung, J.H.; Shin, H.; Kang, K.W.; Quan, Y.H.; Yu, J.; Park, J.H.; Park, Y.; et al. GCC2 as a New Early Diagnostic Biomarker for Non-Small Cell Lung Cancer. Cancers 2021, 13, 5482. [Google Scholar] [CrossRef]
- Li, L.; Zhang, Z.; Xu, W.; Wang, J.; Feng, X. The Diagnostic Value of Serum Exosomal SNORD116 and SNORA21 for NSCLC Patients. Clin Transl. Oncol. 2025, 27, 650–659. [Google Scholar] [CrossRef]
- Zhang, Z.; Tang, Y.; Song, X.; Xie, L.; Zhao, S.; Song, X. Tumor-Derived Exosomal MiRNAs as Diagnostic Biomarkers in Non-Small Cell Lung Cancer. Front. Oncol. 2020, 10, 560025. [Google Scholar] [CrossRef]
- Zheng, B.; Song, X.; Wang, L.; Zhang, Y.; Tang, Y.; Wang, S.; Li, L.; Wu, Y.; Song, X.; Xie, L. Plasma Exosomal TRNA-Derived Fragments as Diagnostic Biomarkers in Non-Small Cell Lung Cancer. Front. Oncol. 2022, 12, 1037523. [Google Scholar] [CrossRef]
- Liu, L.; Li, D.; Zhuo, A.; Lu, J.; Zou, J.; Huang, G.; Hu, Z.; Zhang, Z.; Deng, Y.; Yang, L. A LncRNA Panel within EpCAM-Specific Exosomes for Noninvasive Early Diagnosing Non-Small Cell Lung Cancer. Respir. Res. 2025, 26, 144. [Google Scholar] [CrossRef]
- Lou, C.; Ma, X.; Chen, Z.; Zhao, Y.; Yao, Q.; Zhou, C.; Zhao, X.; Meng, X. The MtDNA Fragments within Exosomes Might Be Novel Diagnostic Biomarkers of Non-Small Cell Lung Cancer. Pathol. Res. Pract. 2023, 249, 154718. [Google Scholar] [CrossRef]
- Min, L.; Zhu, T.; Lv, B.; An, T.; Zhang, Q.; Shang, Y.; Yu, Z.; Zheng, L.; Wang, Q. Exosomal LncRNA RP5-977B1 as a Novel Minimally Invasive Biomarker for Diagnosis and Prognosis in Non-Small Cell Lung Cancer. Int. J. Clin. Oncol. 2022, 27, 1013–1024. [Google Scholar] [CrossRef]
- Niu, L.; Song, X.; Wang, N.; Xue, L.; Song, X.; Xie, L. Tumor-Derived Exosomal Proteins as Diagnostic Biomarkers in Non-Small Cell Lung Cancer. Cancer Sci. 2019, 110, 433–442. [Google Scholar] [CrossRef]
- Tang, Y.; Zhang, Z.; Song, X.; Yu, M.; Niu, L.; Zhao, Y.; Wang, L.; Song, X.; Xie, L. Tumor-Derived Exosomal MiR-620 as a Diagnostic Biomarker in Non-Small-Cell Lung Cancer. J. Oncol. 2020, 2020, 6691211. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Feng, X.H.; Liu, C.C.; Huang, Y.; Su, L.J.; Li, X.F.; Zhu, J.F. Diagnostic Value of Exosome-Derived LncRNA PITPNA-AS1 in Lung Cancer. Front. Immunol. 2025, 16, 1539557. [Google Scholar] [CrossRef]
- Hsu, C.C.; Su, Y.; Rittenhouse-Olson, K.; Attwood, K.M.; Mojica, W.; Reid, M.E.; Dy, G.K.; Wu, Y. Exosomal Thomsen-Friedenreich Glycoantigen: A New Liquid Biopsy Biomarker for Lung and Breast Cancer Diagnoses. Cancer Res. Commun. 2024, 4, 1933–1945. [Google Scholar] [CrossRef]
- Sandfeld-Paulsen, B.; Jakobsen, K.R.; Bæk, R.; Folkersen, B.H.; Rasmussen, T.R.; Meldgaard, P.; Varming, K.; Jørgensen, M.M.; Sorensen, B.S. Exosomal Proteins as Diagnostic Biomarkers in Lung Cancer. J. Thorac. Oncol. 2016, 11, 1701–1710. [Google Scholar] [CrossRef]
- Fang, W.; You, J.; Xu, Q.; Jiang, Y.; Hu, H.; Chen, F.; Chen, L. Plasma Exosomal CXCL7 Is a Potential Biomarker for Lung Adenocarcinoma. Clin. Lab. 2022, 68, 2171–2179. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Feng, Z.; Hu, J.; Gao, J.; Li, A.; He, X.; Liu, L.; Shen, Z. Identification of Hsa-MiR-619-5p and Hsa-MiR-4454 in Plasma-Derived Exosomes as a Potential Biomarker for Lung Adenocarcinoma. Front. Genet. 2023, 14, 1138230. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, N.; Zhang, F.; Jin, S.; Dong, Y.; Dong, X.; Chen, Y.; Kong, X.; Tong, Y.; Mi, Q.; et al. PIWI-Interacting RNAs Are Aberrantly Expressed and May Serve as Novel Biomarkers for Diagnosis of Lung Adenocarcinoma. Thorac. Cancer 2021, 12, 2468–2477. [Google Scholar] [CrossRef]
- Wu, J.; Feng, Z.; Wang, R.; Li, A.; Wang, H.; He, X.; Shen, Z. Integration of Bioinformatics Analysis and Experimental Validation Identifies Plasma Exosomal MiR-103b/877-5p/29c-5p as Diagnostic Biomarkers for Early Lung Adenocarcinoma. Cancer Med. 2022, 11, 4411. [Google Scholar] [CrossRef]
- Wu, Y.; Wei, J.; Zhang, W.; Xie, M.; Wang, X.; Xu, J. Serum Exosomal MiR-1290 Is a Potential Biomarker for Lung Adenocarcinoma. Onco. Targets Ther. 2020, 13, 7809–7818. [Google Scholar] [CrossRef]
- Cao, B.; Wang, P.; Gu, L.; Liu, J. Use of Four Genes in Exosomes as Biomarkers for the Identification of Lung Adenocarcinoma and Lung Squamous Cell Carcinoma. Oncol. Lett. 2021, 21, 249. [Google Scholar] [CrossRef]
- Torok, Z.; Garai, K.; Bovari-Biri, J.; Adam, Z.; Miskei, J.A.; Kajtar, B.; Sarosi, V.; Pongracz, J.E. Serum and Exosome WNT5A Levels as Biomarkers in Non-Small Cell Lung Cancer. Respir. Res. 2025, 26, 141. [Google Scholar] [CrossRef]
- Cazzoli, R.; Buttitta, F.; Di Nicola, M.; Malatesta, S.; Marchetti, A.; Rom, W.N.; Pass, H.I. MicroRNAs Derived from Circulating Exosomes as Noninvasive Biomarkers for Screening and Diagnosing Lung Cancer. J. Thorac. Oncol. 2013, 8, 1156–1162. [Google Scholar] [CrossRef]
- Jin, X.; Chen, Y.; Chen, H.; Fei, S.; Chen, D.; Cai, X.; Liu, L.; Lin, B.; Su, H.; Zhao, L.; et al. Evaluation of Tumor-Derived Exosomal MiRNA as Potential Diagnostic Biomarkers for Early-Stage Non-Small Cell Lung Cancer Using Next-Generation Sequencing. Clin. Cancer Res. 2017, 23, 5311–5319. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Guo, W.; Song, X.; Liu, L.; Niu, L.; Song, X.; Xie, L. Tumor-Associated Exosomal MiRNA Biomarkers to Differentiate Metastatic vs. Nonmetastatic Non-Small Cell Lung Cancer. Clin. Chem. Lab. Med. 2020, 58, 1535–1545. [Google Scholar] [CrossRef]
- Wang, N.; Song, X.; Liu, L.; Niu, L.; Wang, X.; Song, X.; Xie, L. Circulating Exosomes Contain Protein Biomarkers of Metastatic Non-Small-Cell Lung Cancer. Cancer Sci. 2018, 109, 1701–1709. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Chiang, C.L.; Kwak, K.J.; Lee, H.L.; Wang, X.; Romano, G.; Saviana, M.; Toft, R.; Cheng, T.S.; Chang, Y.; et al. Extracellular Vesicular Delta-Like Ligand 3 and Subtype Transcription Factors for Small Cell Lung Cancer Diagnosis. Adv. Sci. 2025, 12, 2416711. [Google Scholar] [CrossRef] [PubMed]
- Piñeiro, R. Editorial: Mechanisms of Metastasis from Circulating and Disseminated Tumor Cells. Front. Cell. Dev. Biol. 2024, 12, 1386050. [Google Scholar] [CrossRef]
- Dandachi, N.; Tiran, V.; Lindenmann, J.; Brcic, L.; Fink-Neuboeck, N.; Kashofer, K.; Absenger, G.; Bezan, A.; Cote, R.J.; Datar, R.; et al. Frequency and Clinical Impact of Preoperative Circulating Tumor Cells in Resectable Non-Metastatic Lung Adenocarcinomas. Lung Cancer 2017, 113, 152–157. [Google Scholar] [CrossRef]
- Frick, M.A.; Feigenberg, S.J.; Jean-Baptiste, S.R.; Aguarin, L.A.; Mendes, A.; Chinniah, C.; Swisher-McClure, S.; Berman, A.; Levin, W.; Cengel, K.A.; et al. Circulating Tumor Cells Are Associated with Recurrent Disease in Patients with Early-Stage Non-Small Cell Lung Cancer Treated with Stereotactic Body Radiotherapy. Clin. Cancer Res. 2020, 26, 2372–2380. [Google Scholar] [CrossRef]
- Cohen, E.N.; Jayachandran, G.; Gao, H.; Qiao, W.; Liu, S.; He, J.; Qiao, Y.; Yao, L.; Lin, S.H.; Reuben, J.M. Enumeration and Molecular Characterization of Circulating Tumor Cells Enriched by Microcavity Array from Stage III Non-Small Cell Lung Cancer Patients. Transl. Lung Cancer Res. 2020, 9, 1974–1985. [Google Scholar] [CrossRef]
- Lindsay, C.R.; Faugeroux, V.; Michiels, S.; Pailler, E.; Facchinetti, F.; Ou, D.; Bluthgen, M.V.; Pannet, C.; Ngo-Camus, M.; Bescher, G.; et al. A Prospective Examination of Circulating Tumor Cell Profiles in Non-Small-Cell Lung Cancer Molecular Subgroups. Ann. Oncol. 2017, 28, 1523–1531. [Google Scholar] [CrossRef]
- Muinelo-Romay, L.; Vieito, M.; Abalo, A.; Nocelo, M.A.; Barón, F.; Anido, U.; Brozos, E.; Vázquez, F.; Aguín, S.; Abal, M.; et al. Evaluation of Circulating Tumor Cells and Related Events as Prognostic Factors and Surrogate Biomarkers in Advanced NSCLC Patients Receiving First-Line Systemic Treatment. Cancers 2014, 6, 153–165. [Google Scholar] [CrossRef]
- Foy, V.; Lindsay, C.R.; Carmel, A.; Fernandez-Gutierrez, F.; Krebs, M.G.; Priest, L.; Carter, M.; Groen, H.J.M.; Hiltermann, T.J.; de Luca, A.; et al. EPAC-Lung: European Pooled Analysis of the Prognostic Value of Circulating Tumour Cells in Small Cell Lung Cancer. Transl. Lung Cancer Res. 2021, 10, 1653–1665. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.M.; Krebs, M.G.; Lancashire, L.; Sloane, R.; Backen, A.; Swain, R.K.; Priest, L.J.C.; Greystoke, A.; Zhou, C.; Morris, K.; et al. Clinical Significance and Molecular Characteristics of Circulating Tumor Cells and Circulating Tumor Microemboli in Patients with Small-Cell Lung Cancer. J. Clin. Oncol. 2012, 30, 525–532. [Google Scholar] [CrossRef] [PubMed]
- Mondelo-Macía, P.; García-González, J.; León-Mateos, L.; Anido, U.; Aguín, S.; Abdulkader, I.; Sánchez-Ares, M.; Abalo, A.; Rodríguez-Casanova, A.; Díaz-Lagares, Á.; et al. Clinical Potential of Circulating Free DNA and Circulating Tumour Cells in Patients with Metastatic Non-Small-Cell Lung Cancer Treated with Pembrolizumab. Mol. Oncol. 2021, 15, 2923–2940. [Google Scholar] [CrossRef]
- Reddy, R.M.; Murlidhar, V.; Zhao, L.; Grabauskiene, S.; Zhang, Z.; Ramnath, N.; Lin, J.; Chang, A.C.; Carrott, P.; Lynch, W.; et al. Pulmonary Venous Blood Sampling Significantly Increases the Yield of Circulating Tumor Cells in Early-Stage Lung Cancer. J. Thorac. Cardiovasc. Surg. 2016, 151, 852–858. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Zhu, D.; Tang, X.; Lu, D.; Qiu, X.; Li, B.; Lin, D.; Li, L.; Liu, J.; Zhou, Q. Circulating Tumor Cells in Pulmonary Vein and Peripheral Arterial Provide a Metric for PD-L1 Diagnosis and Prognosis of Patients with Non-Small Cell Lung Cancer. PLoS ONE 2019, 14, e0220306. [Google Scholar] [CrossRef]
- Crosbie, P.A.J.; Shah, R.; Krysiak, P.; Zhou, C.; Morris, K.; Tugwood, J.; Booton, R.; Blackhall, F.; Dive, C. Circulating Tumor Cells Detected in the Tumor-Draining Pulmonary Vein Are Associated with Disease Recurrence after Surgical Resection of NSCLC. J. Thorac. Oncol. 2016, 11, 1793–1797. [Google Scholar] [CrossRef]
- Potapova, T.A.; Zhu, J.; Li, R. Aneuploidy and Chromosomal Instability: A Vicious Cycle Driving Cellular Evolution and Cancer Genome Chaos. Cancer Metastasis Rev. 2013, 32, 377–389. [Google Scholar] [CrossRef]
- Zhang, J.; Hong, Y.; Wang, L.; Hu, W.; Tian, G.; Wu, D.; Wang, Y.; Dai, L.; Zhang, Z.; Yang, Y.; et al. Aneuploid Subtypes of Circulating Tumor Cells and Circulating Tumor-Derived Endothelial Cells Predict the Overall Survival of Advanced Lung Cancer. Front. Oncol. 2023, 13, 829054. [Google Scholar] [CrossRef]
- Bayarri-Lara, C.; Ortega, F.G.; Cueto Ladrón De Guevara, A.; Puche, J.L.; Ruiz Zafra, J.; De Miguel-Pérez, D.; Ramos, A.S.P.; Giraldo-Ospina, C.F.; Navajas Gómez, J.A.; Delgado-Rodriguez, M.; et al. Circulating Tumor Cells Identify Early Recurrence in Patients with Non-Small Cell Lung Cancer Undergoing Radical Resection. PLoS ONE 2016, 11, e0148659. [Google Scholar] [CrossRef]
- Messaritakis, I.; Nikolaou, M.; Koinis, F.; Politaki, E.; Koutsopoulos, A.; Lagoudaki, E.; Vetsika, E.K.; Georgoulias, V.; Kotsakis, A. Characterization of DLL3-Positive Circulating Tumor Cells (CTCs) in Patients with Small Cell Lung Cancer (SCLC) and Evaluation of Their Clinical Relevance during Front-Line Treatment. Lung Cancer 2019, 135, 33–39. [Google Scholar] [CrossRef]
- Papakonstantinou, D.; Roumeliotou, A.; Pantazaka, E.; Shaukat, A.N.; Christopoulou, A.; Koutras, A.; Dimitrakopoulos, F.I.; Georgoulias, V.; Xagara, A.; Chantzara, E.; et al. Integrative Analysis of Circulating Tumor Cells (CTCs) and Exosomes from Small-Cell Lung Cancer (SCLC) Patients: A Comprehensive Approach. Mol. Oncol. 2025, 19, 2038–2055. [Google Scholar] [CrossRef] [PubMed]
- Boffa, D.J.; Graf, R.P.; Salazar, M.C.; Hoag, J.; Lu, D.; Krupa, R.; Louw, J.; Dugan, L.; Wang, Y.; Landers, M.; et al. Cellular Expression of PD-L1 in the Peripheral Blood of Lung Cancer Patients Is Associated with Worse Survival. Cancer Epidemiol. Biomark. Prev. 2017, 26, 1139–1145. [Google Scholar] [CrossRef]
- Sinoquet, L.; Jacot, W.; Gauthier, L.; Pouderoux, S.; Viala, M.; Cayrefourcq, L.; Quantin, X.; Alix-Panabières, C. Programmed Cell Death Ligand 1-Expressing Circulating Tumor Cells: A New Prognostic Biomarker in Non-Small Cell Lung Cancer. Clin. Chem. 2021, 67, 1503–1512. [Google Scholar] [CrossRef] [PubMed]
- Allgayer, H.; Mahapatra, S.; Mishra, B.; Swain, B.; Saha, S.; Khanra, S.; Kumari, K.; Panda, V.K.; Malhotra, D.; Patil, N.S.; et al. Epithelial-to-Mesenchymal Transition (EMT) and Cancer Metastasis: The Status Quo of Methods and Experimental Models 2025. Mol. Cancer. 2025, 24, 167. [Google Scholar] [CrossRef]
- Messaritakis, I.; Politaki, E.; Kotsakis, A.; Dermitzaki, E.K.; Koinis, F.; Lagoudaki, E.; Koutsopoulos, A.; Kallergi, G.; Souglakos, J.; Georgoulias, V. Phenotypic Characterization of Circulating Tumor Cells in the Peripheral Blood of Patients with Small Cell Lung Cancer. PLoS ONE 2017, 12, e0181211. [Google Scholar] [CrossRef] [PubMed]
- Pore, M.; Meijer, C.; de Bock, G.H.; Boersma-van Ek, W.; Terstappen, L.W.M.M.; Groen, H.J.M.; Timens, W.; Kruyt, F.A.E.; Hiltermann, T.J.N. Cancer Stem Cells, Epithelial to Mesenchymal Markers, and Circulating Tumor Cells in Small Cell Lung Cancer. Clin. Lung Cancer 2016, 17, 535–542. [Google Scholar] [CrossRef]
- Manjunath, Y.; Upparahalli, S.V.; Avella, D.M.; Deroche, C.B.; Kimchi, E.T.; Staveley-O’carroll, K.F.; Smith, C.J.; Li, G.; Kaifi, J.T. PD-L1 Expression with Epithelial Mesenchymal Transition of Circulating Tumor Cells Is Associated with Poor Survival in Curatively Resected Non-Small Cell Lung Cancer. Cancers 2019, 11, 806. [Google Scholar] [CrossRef] [PubMed]
- Kallergi, G.; Vetsika, E.K.; Aggouraki, D.; Lagoudaki, E.; Koutsopoulos, A.; Koinis, F.; Katsarlinos, P.; Trypaki, M.; Messaritakis, I.; Stournaras, C.; et al. Evaluation of PD-L1/PD-1 on Circulating Tumor Cells in Patients with Advanced Non-Small Cell Lung Cancer. Ther. Adv. Med. Oncol. 2018, 10, 1758834017750121. [Google Scholar] [CrossRef]
- Matikas, A.; Kotsakis, A.; Apostolaki, S.; Politaki, H.; Perraki, M.; Kalbakis, K.; Nikolaou, M.; Economopoulou, P.; Hatzidaki, D.; Georgoulias, V. Detection of Circulating Tumour Cells before and Following Adjuvant Chemotherapy and Long-Term Prognosis of Early Breast Cancer. Br. J. Cancer 2022, 126, 1563–1569. [Google Scholar] [CrossRef]
- Milaki, G.; Messaritakis, I.; Koinis, F.; Kotsakis, A.; Apostolaki, S.; Dermitzaki, E.K.; Perraki, M.; Hatzidaki, D.; Georgoulias, V. Prognostic Value of Chemotherapy-Resistant CK19mRNA-Positive Circulating Tumor Cells in Patients with Advanced/Metastatic Non-Small Cell Lung Cancer. Cancer Chemother. Pharmacol. 2017, 80, 101–108. [Google Scholar] [CrossRef]
- Obermayr, E.; Koppensteiner, N.; Heinzl, N.; Schuster, E.; Holzer, B.; Fabikan, H.; Weinlinger, C.; Illini, O.; Hochmair, M.; Zeillinger, R. Cancer Stem Cell-Like Circulating Tumor Cells Are Prognostic in Non-Small Cell Lung Cancer. J. Pers. Med. 2021, 11, 1225. [Google Scholar] [CrossRef]
- Cohen, E.N.; Jayachandran, G.; Gao, H.; Peabody, P.; McBride, H.B.; Alvarez, F.D.; Lopez Bravo, P.; Qiao, W.; Liu, S.; Yao, L.; et al. Gene Expression Profiling of Circulating Tumor Cells Captured by MicroCavity Array Is Superior to Enumeration in Demonstrating Therapy Response in Patients with Newly Diagnosed Advanced and Locally Advanced Non-Small Cell Lung Cancer. Transl. Lung Cancer Res. 2023, 12, 109–126. [Google Scholar] [CrossRef]
- Zhu, W.F.; Li, J.; Yu, L.C.; Wu, Y.; Tang, X.P.; Hu, Y.M.; Chen, Y.C. Prognostic Value of EpCAM/MUC1 MRNA-Positive Cells in Non-Small Cell Lung Cancer Patients. Tumour. Biol. 2014, 35, 1211–1219. [Google Scholar] [CrossRef] [PubMed]
- Papadaki, M.A.; Messaritakis, I.; Fiste, O.; Souglakos, J.; Politaki, E.; Kotsakis, A.; Georgoulias, V.; Mavroudis, D.; Agelaki, S. Assessment of the Efficacy and Clinical Utility of Different Circulating Tumor Cell (CTC) Detection Assays in Patients with Chemotherapy-Naïve Advanced or Metastatic Non-Small Cell Lung Cancer (NSCLC). Int. J. Mol. Sci. 2021, 22, 925. [Google Scholar] [CrossRef] [PubMed]
- Obermayr, E.; Agreiter, C.; Schuster, E.; Fabikan, H.; Weinlinger, C.; Baluchova, K.; Hamilton, G.; Hochmair, M.; Zeillinger, R. Molecular Characterization of Circulating Tumor Cells Enriched by A Microfluidic Platform in Patients with Small-Cell Lung Cancer. Cells 2019, 8, 880. [Google Scholar] [CrossRef]
- Wang, Y.; Kim, T.H.; Fouladdel, S.; Zhang, Z.; Soni, P.; Qin, A.; Zhao, L.; Azizi, E.; Lawrence, T.S.; Ramnath, N.; et al. PD-L1 Expression in Circulating Tumor Cells Increases during Radio(Chemo)Therapy and Indicates Poor Prognosis in Non-Small Cell Lung Cancer. Sci. Rep. 2019, 9, 566. [Google Scholar] [CrossRef]
- Kelemen, L.E. The Role of Folate Receptor Alpha in Cancer Development, Progression and Treatment: Cause, Consequence or Innocent Bystander? Int. J. Cancer 2006, 119, 243–250. [Google Scholar] [CrossRef]
- Scaranti, M.; Cojocaru, E.; Banerjee, S.; Banerji, U. Exploiting the Folate Receptor α in Oncology. Nat. Rev. Clin. Oncol. 2020, 17, 349–359. [Google Scholar] [CrossRef]
- Li, H.; Li, B.; Pan, Y.; Zhang, Y.; Xiang, J.; Zhang, Y.; Sun, Y.; Yu, X.; He, W.; Hu, H. Preoperative Folate Receptor-Positive Circulating Tumor Cell Level Is a Prognostic Factor of Long Term Outcome in Non-Small Cell Lung Cancer Patients. Front. Oncol. 2021, 10, 621435. [Google Scholar] [CrossRef] [PubMed]
- Bao, H.; Bai, T.; Takata, K.; Yokobori, T.; Ohnaga, T.; Hisada, T.; Maeno, T.; Bao, P.; Yoshida, T.; Kumakura, Y.; et al. High Expression of Carcinoembryonic Antigen and Telomerase Reverse Transcriptase in Circulating Tumor Cells Is Associated with Poor Clinical Response to the Immune Checkpoint Inhibitor Nivolumab. Oncol. Lett. 2018, 15, 3061–3067. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.Y.; Xu, G.B. Effect of Circulating Tumor Cells Combined with Negative Enrichment and CD45-FISH Identification in Diagnosis, Therapy Monitoring and Prognosis of Primary Lung Cancer. Med. Oncol. 2014, 31, 240, Erratum in Med. Oncol. 2015, 32, 190. [Google Scholar] [CrossRef] [PubMed]
- Hiltermann, T.J.N.; Pore, M.M.; Van den Berg, A.; Timens, W.; Boezen, H.M.; Liesker, J.J.W.; Schouwink, J.H.; Wijnands, W.J.A.; Kerner, G.S.M.A.; Kruyt, F.A.E.; et al. Circulating Tumor Cells in Small-Cell Lung Cancer: A Predictive and Prognostic Factor. Ann. Oncol. 2012, 23, 2937–2942. [Google Scholar] [CrossRef]
- Punnoose, E.A.; Atwal, S.; Liu, W.; Raja, R.; Fine, B.M.; Hughes, B.G.M.; Hicks, R.J.; Hampton, G.M.; Amler, L.C.; Pirzkall, A.; et al. Evaluation of Circulating Tumor Cells and Circulating Tumor DNA in Non-Small Cell Lung Cancer: Association with Clinical Endpoints in a Phase II Clinical Trial of Pertuzumab and Erlotinib. Clin. Cancer Res. 2012, 18, 2391–2401. [Google Scholar] [CrossRef]
- Gorges, T.M.; Penkalla, N.; Schalk, T.; Joosse, S.A.; Riethdorf, S.; Tucholski, J.; Lücke, K.; Wikman, H.; Jackson, S.; Brychta, N.; et al. Enumeration and Molecular Characterization of Tumor Cells in Lung Cancer Patients Using a Novel In Vivo Device for Capturing Circulating Tumor Cells. Clin. Cancer Res. 2016, 22, 2197–2206. [Google Scholar] [CrossRef]
- Janning, M.; Kobus, F.; Babayan, A.; Wikman, H.; Velthaus, J.L.; Bergmann, S.; Schatz, S.; Falk, M.; Berger, L.A.; Böttcher, L.M.; et al. Determination of PD-L1 Expression in Circulating Tumor Cells of NSCLC Patients and Correlation with Response to PD-1/PD-L1 Inhibitors. Cancers 2019, 11, 835. [Google Scholar] [CrossRef]
- Jiang, T.; Zhao, J.; Zhao, C.; Li, X.; Shen, J.; Zhou, J.; Ren, S.; Su, C.; Zhou, C.; O’Brien, M. Dynamic Monitoring and Predictive Value of Circulating Tumor Cells in EGFR-Mutated Advanced Non-Small-Cell Lung Cancer Patients Treated With First-Line EGFR Tyrosine Kinase Inhibitors. Clin. Lung Cancer 2019, 20, 124–133.e2. [Google Scholar] [CrossRef] [PubMed]
- Tong, B.; Xu, Y.; Zhao, J.; Chen, M.; Zhong, W.; Xing, J.; Wang, M. Prognostic Role of Circulating Tumor Cells in Patients with EGFR-Mutated or ALK-Rearranged Non-Small Cell Lung Cancer. Thorac. Cancer 2018, 9, 640–645. [Google Scholar] [CrossRef]
- Patel, P.H.; Antoine, M.H.; Sankari, A.; Ullah, S. Bronchoalveolar Lavage; Statpearls: Treasure Island, FL, USA, 2024. [Google Scholar]
- Huang, H.; Kai, Z.; Wang, Y.; Zhang, X.; Wang, J.; Zhang, W.; Xue, Q.; Zhang, H.; Jin, H.; Meng, P.; et al. Evaluating Personalized Circulating Tumor DNA Detection for Early-Stage Lung Cancer. Cancer Med. 2024, 13, e6817. [Google Scholar] [CrossRef]
- Park, S.; Hur, J.Y.; Lee, K.Y.; Lee, J.C.; Rho, J.K.; Shin, S.H.; Choi, C.M. Assessment of EGFR Mutation Status Using Cell-Free DNA from Bronchoalveolar Lavage Fluid. Clin. Chem. Lab. Med. 2017, 55, 1489–1495. [Google Scholar] [CrossRef]
- Lin, X.; Cai, Y.; Zong, C.; Chen, B.; Shao, D.; Cui, H.; Li, Z.; Xu, P. Bronchoalveolar Lavage as Potential Diagnostic Specimens to Genetic Testing in Advanced Nonsmall Cell Lung Cancer. Technol. Cancer Res. Treat. 2023, 22, 15330338231202881. [Google Scholar] [CrossRef]
- Nair, V.S.; Hui, A.B.Y.; Chabon, J.J.; Esfahani, M.S.; Stehr, H.; Nabet, B.Y.; Zhou, L.; Chaudhuri, A.A.; Benson, J.; Ayers, K.; et al. Genomic Profiling of Bronchoalveolar Lavage Fluid in Lung Cancer. Cancer Res. 2022, 82, 2838–2847. [Google Scholar] [CrossRef]
- Yanev, N.; Mekov, E.; Valev, D.; Yankov, G.; Milanov, V.; Bichev, S.; Gabrovska, N.; Kostadinov, D. EGFR Mutation Status Yield from Bronchoalveolar Lavage in Patients with Primary Pulmonary Adenocarcinoma Compared to a Venous Blood Sample and Tissue Biopsy. PeerJ 2021, 9, e11448. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.A.; Hur, J.Y.; Kim, H.J.; Kim, W.S.; Lee, K.Y. Extracellular Vesicle-Based Bronchoalveolar Lavage Fluid Liquid Biopsy for EGFR Mutation Testing in Advanced Non-Squamous NSCLC. Cancers 2022, 14, 2744. [Google Scholar] [CrossRef]
- Li, L.; Ye, Z.; Yang, S.; Yang, H.; Jin, J.; Zhu, Y.; Tao, J.; Chen, S.; Xu, J.; Liu, Y.; et al. Diagnosis of Pulmonary Nodules by DNA Methylation Analysis in Bronchoalveolar Lavage Fluids. Clin. Epigenetics 2021, 13, 185. [Google Scholar] [CrossRef] [PubMed]
- Villalba, M.; Exposito, F.; Pajares, M.J.; Sainz, C.; Redrado, M.; Remirez, A.; Wistuba, I.; Behrens, C.; Jantus-Lewintre, E.; Camps, C.; et al. TMPRSS4: A Novel Tumor Prognostic Indicator for the Stratification of Stage IA Tumors and a Liquid Biopsy Biomarker for NSCLC Patients. J. Clin. Med. 2019, 8, 2134. [Google Scholar] [CrossRef]
- de la Fuente, E.; Morgado, O.; de la Gala, F.; Vara, E.; Zuluaga, P.; Reyes, A.; Simón, C.M.; Hortal, J.; Piñeiro, P.; Garutti, I. Exploring the Relationship Between Perioperative Inflammatory Biomarkers and Oncological Recurrence in Patients Undergoing Pulmonary Cancer Surgery. Cancers 2025, 17, 1159. [Google Scholar] [CrossRef]
- Mariniello, A.; Tabbò, F.; Indellicati, D.; Tesauro, M.; Rezmives, N.A.; Reale, M.L.; Listì, A.; Capelletto, E.; Carnio, S.; Bertaglia, V.; et al. Comparing T Cell Subsets in Broncho-Alveolar Lavage (BAL) and Peripheral Blood in Patients with Advanced Lung Cancer. Cells 2022, 11, 3226. [Google Scholar] [CrossRef]
- Carvalho, A.S.; Cuco, C.M.; Lavareda, C.; Miguel, F.; Ventura, M.; Almeida, S.; Pinto, P.; De Abreu, T.T.; Rodrigues, L.V.; Seixas, S.; et al. Bronchoalveolar Lavage Proteomics in Patients with Suspected Lung Cancer. Sci. Rep. 2017, 7, 42190. [Google Scholar] [CrossRef]
- Li, Q.K.; Shah, P.; Li, Y.; Aiyetan, P.O.; Chen, J.; Yung, R.; Molena, D.; Gabrielson, E.; Askin, F.; Chan, D.W.; et al. Glycoproteomic Analysis of Bronchoalveolar Lavage (BAL) Fluid Identifies Tumor-Associated Glycoproteins from Lung Adenocarcinoma. J. Proteome Res. 2013, 12, 3689–3696. [Google Scholar] [CrossRef]
- Chen, S.; Zhao, J.; Cui, L.; Liu, Y. Urinary Circulating DNA Detection for Dynamic Tracking of EGFR Mutations for NSCLC Patients Treated with EGFR-TKIs. Clin. Transl. Oncol. 2017, 19, 332–340. [Google Scholar] [CrossRef]
- Husain, H.; Melnikova, V.O.; Kosco, K.; Woodward, B.; More, S.; Pingle, S.C.; Weihe, E.; Park, B.H.; Tewari, M.; Erlander, M.G.; et al. Monitoring Daily Dynamics of Early Tumor Response to Targeted Therapy by Detecting Circulating Tumor DNA in Urine. Clin. Cancer Res. 2017, 23, 4716–4723. [Google Scholar] [CrossRef] [PubMed]
- Wever, B.M.M.; Bach, S.; Tibbesma, M.; ter Braak, T.J.; Wajon, D.; Dickhoff, C.; Lissenberg-Witte, B.I.; Hulbert, A.; Kazemier, G.; Bahce, I.; et al. Detection of Non-Metastatic Non-Small-Cell Lung Cancer in Urine by Methylation-Specific PCR Analysis: A Feasibility Study. Lung Cancer 2022, 170, 156–164. [Google Scholar] [CrossRef]
- Li, F.; Wei, F.; Huang, W.L.; Lin, C.C.; Li, L.; Shen, M.M.; Yan, Q.; Liao, W.; Chia, D.; Tu, M.; et al. Ultra-Short Circulating Tumor DNA (UsctDNA) in Plasma and Saliva of Non-Small Cell Lung Cancer (NSCLC) Patients. Cancers 2020, 12, 2041. [Google Scholar] [CrossRef]
- Ryan, D.J.; Toomey, S.; Smyth, R.; Madden, S.F.; Workman, J.; Cummins, R.; Sheehan, K.; Fay, J.; Naidoo, J.; Breathnach, O.S.; et al. Exhaled Breath Condensate (EBC) Analysis of Circulating Tumour DNA (CtDNA) Using a Lung Cancer Specific UltraSEEK Oncogene Panel. Lung Cancer 2022, 168, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Xu, X.; Li, D.; Chen, K.; Zhan, Q.; Ge, M.; Zhou, X.; Liang, X.; Guan, M. Digital PCR-Based Detection of EGFR Mutations in Paired Plasma and CSF Samples of Lung Adenocarcinoma Patients with Central Nervous System Metastases. Target Oncol. 2019, 14, 343–350. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Chen, J.; Zhang, B.; Yu, J.; Wang, N.; Li, D.; Shao, Y.; Zhu, D.; Liang, C.; Ma, Y.; et al. Dynamic Monitoring of Cerebrospinal Fluid Circulating Tumor DNA to Identify Unique Genetic Profiles of Brain Metastatic Tumors and Better Predict Intracranial Tumor Responses in Non-Small Cell Lung Cancer Patients with Brain Metastases: A Prospective Cohort Study (GASTO 1028). BMC Med. 2022, 20, 398, Erratum in BMC Med. 2023, 21, 15. [Google Scholar] [CrossRef]
- Sun, Q.; Xing, P.; Wang, Q.; Xia, Z.; Li, J.; Li, Z.; Meng, F.; Liu, T.; Wang, S.; Yin, R. ANKRD11 as a Potential Biomarker for Brain Metastasis from Lung Adenocarcinoma via Cerebrospinal Fluid Liquid Biopsy. Transl. Lung Cancer Res. 2025, 14, 662–676. [Google Scholar] [CrossRef]
- Ma, C.; Yang, X.; Xing, W.; Yu, H.; Si, T.; Guo, Z. Detection of Circulating Tumor DNA from Non-small Cell Lung Cancer Brain Metastasis in Cerebrospinal Fluid Samples. Thorac. Cancer 2020, 11, 588. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Liu, Z.; Huang, T.; Wang, Y.; Song, M.M.; Song, T.; Long, G.; Zhang, X.; Li, X.; Zhang, L. Cerebrospinal Fluid Circulating Tumor DNA Depicts Profiling of Brain Metastasis in NSCLC. Mol. Oncol. 2023, 17, 810–824. [Google Scholar] [CrossRef]
- Jiang, B.Y.; Li, Y.S.; Guo, W.B.; Zhang, X.C.; Chen, Z.H.; Su, J.; Zhong, W.Z.; Yang, X.N.; Yang, J.J.; Shao, Y.; et al. Detection of Driver and Resistance Mutations in Leptomeningeal Metastases of NSCLC by Next-Generation Sequencing of Cerebrospinal Fluid Circulating Tumor Cells. Clin. Cancer Res. 2017, 23, 5480–5488. [Google Scholar] [CrossRef]
- Wu, H.; Ji, H.; Yang, W.; Zhang, M.; Guo, Y.; Li, B.; Wang, J.; Chen, R.; Chen, Y.; Wang, X. Liquid Biopsy Using Ascitic Fluid and Pleural Effusion Supernatants for Genomic Profiling in Gastrointestinal and Lung Cancers. BMC Cancer 2022, 22, 1020. [Google Scholar] [CrossRef]
- de Kock, R.; Knoops, C.; Baselmans, M.; Borne, B.v.d.; Brunsveld, L.; Scharnhorst, V.; Deiman, B. Sensitive Cell-Free Tumor DNA Analysis in Supernatant Pleural Effusions Supports Therapy Selection and Disease Monitoring of Lung Cancer Patients. Cancer Treat. Res. Commun. 2021, 29, 100449, Erratum in Cancer Treat. Res. Commun. 2022, 32, 100608. [Google Scholar] [CrossRef]
- Wang, H.Y.; Liao, W.Y.; Ho, C.C.; Wu, S.G.; Yang, C.Y.; Hsu, C.L.; Lin, Y.T.; Yang, J.C.H.; Shih, J.Y. Enhanced Detection of Actionable Mutations in NSCLC through Pleural Effusion Cell-Free DNA Sequencing: A Prospective Study. Eur. J. Cancer 2025, 217, 115224. [Google Scholar] [CrossRef] [PubMed]
- Abbosh, C.; Frankell, A.M.; Harrison, T.; Kisistok, J.; Garnett, A.; Johnson, L.; Veeriah, S.; Moreau, M.; Chesh, A.; Chaunzwa, T.L.; et al. Tracking Early Lung Cancer Metastatic Dissemination in TRACERx Using CtDNA. Nature 2023, 616, 553. [Google Scholar] [CrossRef] [PubMed]
- Carter, L.; Rothwell, D.G.; Mesquita, B.; Smowton, C.; Leong, H.S.; Fernandez-Gutierrez, F.; Li, Y.; Burt, D.J.; Antonello, J.; Morrow, C.J.; et al. Molecular Analysis of Circulating Tumor Cells Identifies Distinct Copy-Number Profiles in Patients with Chemosensitive and Chemorefractory Small-Cell Lung Cancer. Nat. Med. 2017, 23, 114–119. [Google Scholar] [CrossRef]
- Yuan, M.; Feng, W.; Ding, H.; Yang, Y.; Xu, X.S. Discovery of Mutations Predictive of Survival Benefit from Immunotherapy in First-Line NSCLC: A Retrospective Machine Learning Study of IMpower150 Liquid Biopsy Data. Comput. Biol. Med. 2025, 189, 109964. [Google Scholar] [CrossRef] [PubMed]
- Nabet, B.Y.; Esfahani, M.S.; Moding, E.J.; Hamilton, E.G.; Chabon, J.J.; Rizvi, H.; Steen, C.B.; Chaudhuri, A.A.; Liu, C.L.; Hui, A.B.; et al. Noninvasive Early Identification of Therapeutic Benefit from Immune Checkpoint Inhibition. Cell 2020, 183, 363. [Google Scholar] [CrossRef]
- Chen, K.; Yang, F.; Shen, H.; Wang, C.; Li, X.; Chervova, O.; Wu, S.; Qiu, F.; Peng, D.; Zhu, X.; et al. Individualized Tumor-Informed Circulating Tumor DNA Analysis for Postoperative Monitoring of Non-Small Cell Lung Cancer. Cancer Cell 2023, 41, 1749–1762.e6. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Li, C.; Yang, Y.; Zhang, T.; Wang, J.; Tang, W.; Li, N.; Bao, H.; Wang, X.; Bi, N. Predicting Disease Progression in Inoperable Localized NSCLC Patients Using CtDNA Machine Learning Model. Cancer Med. 2024, 13, e70316. [Google Scholar] [CrossRef] [PubMed]
- Madej, R.M.; Davis, J.; Holden, M.J.; Kwang, S.; Labourier, E.; Schneider, G.J. International Standards and Refer-ence Materials for Quantitative Molecular Infectious Disease Testing. J. Mol. Diagn. 2010, 12, 133. [Google Scholar] [CrossRef]
- Rolfo, C.; Mack, P.; Scagliotti, G.V.; Aggarwal, C.; Arcila, M.E.; Barlesi, F.; Bivona, T.; Diehn, M.; Dive, C.; Dziadziuszko, R.; et al. Liquid Biopsy for Advanced NSCLC: A Consensus Statement From the International Association for the Study of Lung Cancer. J. Thorac. Oncol. 2021, 16, 1647–1662. [Google Scholar] [CrossRef]
- Strati, A.; Zavridou, M.; Economopoulou, P.; Gkolfinopoulos, S.; Psyrri, A.; Lianidou, E. Development and Ana-lytical Validation of a Reverse Transcription Droplet Digital PCR (RT-DdPCR) Assay for PD-L1 Transcripts in Circulating Tumor Cells. Clin. Chem. 2021, 67, 642–652. [Google Scholar] [CrossRef]
- Zavridou, M.; Smilkou, S.; Tserpeli, V.; Sfika, A.; Bournakis, E.; Strati, A.; Lianidou, E. Development and Analyti-cal Validation of a 6-Plex Reverse Transcription Droplet Digital PCR Assay for the Absolute Quantification of Prostate Cancer Biomarkers in Circulating Tumor Cells of Patients with Metastatic Castration-Resistant Prostate Cancer. Clin. Chem. 2022, 68, 1323–1335, Correction in Clin. Chem. 2023, 69, 669. [Google Scholar] [CrossRef]
- Williams, P.M.; Lively, T.G.; Jessup, J.M.; Conley, B.A. Bridging the Gap: Moving Predictive and Prognostic As-says from Research to Clinical Use. Clin. Cancer Res. 2012, 18, 1531–1539. [Google Scholar] [CrossRef]
- Geeurickx, E.; Hendrix, A. Targets, Pitfalls and Reference Materials for Liquid Biopsy Tests in Cancer Diagnostics. Mol. Aspects Med. 2020, 72. [Google Scholar] [CrossRef]
- Ntzifa, A.; Lianidou, E. Pre-Analytical Conditions and Implementation of Quality Control Steps in Liquid Biopsy Analysis. Crit. Rev. Clin. Lab. Sci. 2023, 60, 573–594. [Google Scholar] [CrossRef] [PubMed]
- Schneegans, S.; Lück, L.; Besler, K.; Bluhm, L.; Stadler, J.C.; Staub, J.; Greinert, R.; Volkmer, B.; Kubista, M.; Gebhardt, C.; et al. Pre-Analytical Factors Affecting the Establishment of a Single Tube Assay for Multiparameter Liquid Biopsy Detection in Melanoma Patients. Mol. Oncol. 2020, 14, 1001–1015. [Google Scholar] [CrossRef]
- Zavridou, M.; Mastoraki, S.; Strati, A.; Tzanikou, E.; Chimonidou, M.; Lianidou, E. Evaluation of Preanalytical Conditions and Implementation of Quality Control Steps for Reliable Gene Expression and DNA Methylation Analyses in Liquid Biopsies. Clin. Chem. 2018, 64, 1522–1533. [Google Scholar] [CrossRef]
- Van Der Schueren, C.; Decruyenaere, P.; Avila Cobos, F.; Bult, J.; Deleu, J.; Dipalo, L.L.; Helsmoortel, H.H.; Hulstaert, E.; Morlion, A.; Ramos Varas, E.; et al. Subpar Reporting of Pre-Analytical Variables in RNA-Focused Blood Plasma Studies. Mol. Oncol. 2025, 19, 1968–1978. [Google Scholar] [CrossRef]
- Fusco, N.; Venetis, K.; Pepe, F.; Shetty, O.; Farinas, S.C.; Heeke, S.; Burnier, J.V.; Patton, S.J.; Heitzer, E.; Nigita, G.; et al. International Society of Liquid Biopsy (ISLB) Perspective on Minimal Requirements for CtDNA Testing in Solid Tumors. J. Liq. Biopsy 2025, 8, 100301. [Google Scholar] [CrossRef] [PubMed]
- Fusco, N.; Jantus-Lewintre, E.; Serrano, M.J.; Gandara, D.; Malapelle, U.; Rolfo, C. Role of the International Society of Liquid Biopsy (ISLB) in Establishing Quality Control Frameworks for Clinical Integration. Crit. Rev. Oncol. Hematol. 2025, 209, 104619. [Google Scholar] [CrossRef] [PubMed]





Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Strati, A.; Zavridou, M.; Papavassiliou, K.A.; Papavassiliou, A.G. Comprehensive Liquid Biopsy Approaches for the Clinical Management of Lung Cancer Using Multiple Biological Matrices. Int. J. Mol. Sci. 2025, 26, 11304. https://doi.org/10.3390/ijms262311304
Strati A, Zavridou M, Papavassiliou KA, Papavassiliou AG. Comprehensive Liquid Biopsy Approaches for the Clinical Management of Lung Cancer Using Multiple Biological Matrices. International Journal of Molecular Sciences. 2025; 26(23):11304. https://doi.org/10.3390/ijms262311304
Chicago/Turabian StyleStrati, Areti, Martha Zavridou, Kostas A. Papavassiliou, and Athanasios G. Papavassiliou. 2025. "Comprehensive Liquid Biopsy Approaches for the Clinical Management of Lung Cancer Using Multiple Biological Matrices" International Journal of Molecular Sciences 26, no. 23: 11304. https://doi.org/10.3390/ijms262311304
APA StyleStrati, A., Zavridou, M., Papavassiliou, K. A., & Papavassiliou, A. G. (2025). Comprehensive Liquid Biopsy Approaches for the Clinical Management of Lung Cancer Using Multiple Biological Matrices. International Journal of Molecular Sciences, 26(23), 11304. https://doi.org/10.3390/ijms262311304

