Beyond Protein Building Blocks: A Review of Biological Roles and Therapeutic Potential of Free Amino Acids
Abstract
1. Introduction
2. Review of Individual AAs
2.1. Alanine
2.2. Arginine
2.3. Asparagine
2.4. Aspartic Acid
2.5. Cysteine
2.6. Glutamic Acid
2.7. Glutamine
2.8. Glycine
2.9. Histidine
2.10. Isoleucine
2.11. Leucine
2.12. Lysine
2.13. Methionine
2.14. Phenylalanine
2.15. Proline
2.16. Serine
2.17. Threonine
2.18. Tryptophan
2.19. Tyrosine
2.20. Valine
3. Daily AA Intake Requirements
4. Nutritional Sources of AAs
5. Possible Therapeutic Effects of AA Blends
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
| Amino Acid | Biological Function | Deficiency | Excess |
|---|---|---|---|
| Alanine non-essential | Conversion into pyruvate and glutamate [11,12] Substrate for gluconeogenesis, particularly during fasting or intense exercise [12] Neuromodulator of glutamate and GABA [13,14] Maintaining synaptic plasticity and overall brain function [15,16] Synthesis of important biomolecules (aspartate, glutamate and carnosine) [17] Transporting nitrogen waste from muscles to the liver [18,19] | Dihydropyrimidine dehydrogenase deficiency (genetic disorder) [20,21] Disruption in the balance of β-alanine activation of GABA_A and glycine receptors [22,23] Metabolic disorders that affect liver function [26,27] Impaired immune responses [24,25] | Increased levels of alanine aminotransferase, a marker for liver damage or dysfunction [28,29] Hyperammonemia [28,29] |
| Arginine semi-essential | Precursor to NO [1,30] Detoxification of ammonia [31,32] Synthesis of creatine, glutamate, proline, agmatine and polyamines [30,33] Muscle growth and repair [34,35] Influence on the mTOR signaling pathway [39] Embryo implantation and growth [37,38] Proliferation and differentiation of T cells [40] Wound healing and tissue repair [36] | Impaired immune function [43,44] Cardiovascular complications [43,44] Neurological symptoms [45] Impaired wound healing [36] Conditions associated with increased arginase activity, such as liver disease and certain inflammatory states [46,47] Potential therapeutic strategy for cancer [49,50] | Metabolic imbalances [55,56] Excessive NO production [51,52] Increased production of guanidino compounds [57,58] |
| Asparagine non-essential | Optimal protein synthesis [59] Cellular adaptation to metabolic stress [60] Mediates important signaling pathways (mTOR) [63,64] Influence on tumor growth and progression [64,65] T cell activation and function [61,62] | Asparagine synthetase deficiency [66,67] Neurological impairments [66,67] Impact on the immune function [61] Hinder cancer cell growth and survival [65,68] | Enhanced tumor growth and survival [65,68] Risk of type 2 diabetes with age [69] |
| L-Aspartic acid non-essential | Synthesis of other AAs and neurotransmitters (glutamate and asparagine) [1,71] | Asparagine deficiency and neurological symptoms Impaired metabolic pathways [1,71] Accumulation of ammonia [71,74] | Excitotoxicity—neuronal damage and cell death due to overstimulation of receptors [76,77] |
| D-Aspartic acid non-essential | Excitatory neurotransmitter in the CNS [70,72] Neurotransmission and hormonal regulation [70,71] | Hormonal imbalance [73,75] | Hormonal imbalances [78,79] |
| Cysteine semi-essential | Stabilization of protein structures [80,81] Sites for redox reactions [82,83] Synthesis of GSH [84,85] Enzymatic catalysis and signal transduction pathways [82,86] Synthesis of other essential biomolecules, including coenzyme A and taurine [87,88] | Increased susceptibility to oxidative damage [89,90] Impaired immune function [89,90] Deficiency of coenzyme A and taurine [87,92] Type 2 diabetes, particularly in the context of oxidative stress [92,93] Cognitive decline and increased risk for diseases like Alzheimer’s and Parkinson’s [90,91] | Toxicity due to inhibiting key metabolic pathways, insulin resistance and diabetes [94,95] Cellular toxicity by disrupting the iron homeostasis [96] CVD [97,98] |
| Glutamic acid non-essential | Primary excitatory neurotransmitter in the CNS [103,104] Nitrogen donor and precursor to other AAs and purines and pyrimidines [105] Part of the TCA cycle [108] Regulation of insulin secretion [109,110] Synthesis of GSH [85,111] | Cognitive deficits, difficulties in learning and memory [112,113] Reduced GABA synthesis [106,107] Neurological disorders, including depression and anxiety [114,115] | Excitotoxicity that can lead to cell death [116] Stroke and traumatic brain injury [117,120] Ischemic stroke [121,122] Abnormal electrical activity in the brain, resulting in seizure disorders [116,117] Schizophrenia and major depressive disorder [118,119] Retinal excitotoxicity [123] |
| Glutamine semi-essential | Important carbon and nitrogen donor for biosynthesis [125,126] “Fuel” for tumor growth [135,136] Supports the proliferation and activity of lymphocytes and macrophages [127,128] Regulation of pH balance [129,130] Influences on mTOR [134] Precursor to glutamate, GABA, GSH [131] | Congenital glutamine synthetase (GS) deficiency [137] Impaired immune responses [133] Increased susceptibility to infections [133] Delayed wound healing [138] Sepsis [139,140] Cognitive deficits [141,142] Exacerbation in conditions like cancer [145,146] Intestinal dysfunction [143,144] | Hyperammonemia [148,149] Tumor progression and resistance to therapy [150,151] |
| Glycine semi-essential | Inhibitory neurotransmission—modulation of synaptic transmission [152,153] Excitatory neurotransmission co-agonist at NMDA receptors [153,154] Promotes the survival of NSCs [155,156] Influence the migration of microglial cells [157,158] Cytoprotective properties in various non-neuronal cells, including immune cells [159,160] Synthesis of various biomolecules, including GSH, creatine, purine, collagen and heme [161,162] | Impaired collagen synthesis and connective tissue weakness [165] Obesity, type 2 diabetes [163] NAFLD [164] Impaired hemoglobinization of erythroid cells, potentially resulting in anemia [162] | NKH [167] Sensorimotor gating, particularly in the context of psychiatric disorders such as schizophrenia [168,169] Metabolic dysregulation [161] |
| Histidine essential | Precursor for synthesis of histamine [170,171] Buffer in physiological pH range [172] Coordination of metal ions, such as zinc and copper, in various enzymatic processes and cellular signaling pathways [172,173] Mitigating damage caused by ROS [172,173] Improves insulin sensitivity and reduces markers of systemic inflammation [174,175] | Symptoms associated with major depressive disorder [176,177] Impaired intestinal health and antioxidant capacity [178] Skin and joint problems [172,179] | Histidinemia, leading to neurological symptoms [180] Gastrointestinal disturbances [181] Decrease in appetite, taste and smell [182] Increased zinc excretion [175] |
| Isoleucine essential branched-chain | Muscle protein synthesis—stimulates the mTOR signaling pathway [184,185] Both a ketogenic and glucogenic [188] Favorable influence on insulin sensitivity and glucose metabolism [186,187] Enhances immune function [189,190] | Acrodermatitis dysmetabolica, observed in patients with MSUD [191,192] Muscle wasting and impaired physical performance [193,194] Major depressive disorder [177,195] | Induce metabolic dysregulation and increased insulin resistance [196,197] Adverse effect on growth and development [198,199] Increased fat deposition [194,200] |
| Leucine essential branched-chain | Key regulator of the mTORC1 signaling pathway [201,202] Regulator of energy metabolism and insulin sensitivity [203] Modulator of feeding behavior and energy balance in the CNS [204,205] Autophagy regulation [201,206] Muscle preservation [207,208] Promoting cardiovascular health [209,210] Influences on lipogenesis and lipolysis [211,212] | Impaired protein synthesis, particularly in muscle tissue [201,202] Elevated levels of other BCAAs [213] Cognitive impairments and mood disorders [177,195] Reduced fat mass and improved glucose regulation, and enhanced hepatic insulin signaling [213,214] | MSUD [215,216] Neurotoxicity, particularly in the context of MSUD [215,216] Disturbances in AA balance [217,218] Disrupted serotonin synthesis [219,220] |
| Lysine essential | Integral to PTMs, particularly acetylation and succinylation [221,222] Involved in the biosynthesis of carnitine [223,224] Epigenetic regulation through acetylation [227,228] Malonylation and isobutyrylation in protein modifications [225,226] Role in regulation of hormones such as ghrelin and leptin [229,230] Collagen and elastin cross-linking [231] Role in bone health and immune function [232,233] | Growth and developmental issues further exacerbated by potential development of hypoproteinemia [234,235] Impaired immune responses [236,237] Potential accumulation of lipids [238,239] Mood instability, sleep disturbances, and cognitive impairments [240,241] | Oxidative stress because of formation of ROS [243,244] Renal stress and potential development of kidney-related issues [245] Gastrointestinal disturbances [246] |
| Methionine essential | Regulation of gene expression and protein stability [247] Precursor to SAM [248,249] Important antioxidant through the methionine—methionine sulfoxide oxidation-reduction cycle [250,251] Regulation of cellular signaling pathways, crucial for cell growth and protein synthesis [252,253] Conversion to other sulfur-containing compounds like cysteine and consequently GSH [254,255] Precursor to polyamines, succinyl-CoA, homocysteine, creatine, and carnitine [256] | Alternation of miRNAs and gene expression [257,258] Improved insulin sensitivity and promoted fat oxidation [259,260] Improve cardiovascular health, despite potential for hyperhomocysteinemia [258,261] Improved antioxidation and anti-inflammatory response [262] Beneficial effect on cognitive function [263,264] Reduce tumor growth and survival [265,266] | Hyperhomocysteinemia—elevated homocysteine is a well-established risk factor for CVD [268,269] Stimulate inflammatory pathways [269,270] Neurotoxic effects [269,270] Renal impairment [271,272] Oxidative stress—increased production of ROS [273,274] |
| Phenylalanine essential aromatic | Conversion into tyrosine and subsequently—neurotransmitter synthesis [276,277] Biosynthesis of melanin [278] Impact on gut hormone secretion [279,280] | Impaired growth and development, particularly in infants and children with Tyrosinemia type 1 [281,282] Cognitive impairments and neurocognitive problems [281] Dermatological issues like eczema and other skin problems [281] | PKU impaired conversion of phenylalanine to tyrosine [283] Neurotoxic effect [284,285] Increased levels of anxiety and behavioral problems [286] Skin problems and hypopigmentation [287,288] Cardiovascular complications [289,290] |
| Proline semi-essential | Osmolyte [291,292] Antioxidant—scavenging ROS [293] Critical component of collagen [294,295] Essential in the folding of proteins due to its unique cyclic structure [296,297] Production of glutamate and a subsequent release of energy, which can also provide cancer cells energy [297,298,299] Maintenance of redox homeostasis through the proline-P5C cycle [300,301] Influence on neurotransmission [302,303] | Oxidative stress Impaired collagen synthesis, leading to compromised connective tissue integrity [305,306] Impaired ability to respond to osmotic stress in plants [292,304] | Hyperprolinemia, associated with symptoms such as neurological impairment and psychiatric disorders, including schizophrenia [303,308] Oxidative stress [309,310] Ultrastructure of essential organelles such as chloroplasts and mitochondria [307] |
| L-Serine non-essential D-Serine non-essential | Involvement in one-carbon metabolism—synthesis of nucleotides, SAM and NADPH [311,312] Precursor to glycine, cysteine, GSH [313] Important in growth and survival of cancer cells [321,322] Integral to lipid metabolism Regulation of immune responses [314,315] Neuronal development, neurotransmitter synthesis, and overall brain function [319,320] Co-agonist of NMDA receptors [323,324] | Congenital microcephaly, seizures, and severe psychomotor retardation [319,320] Developmental delays and neurological symptoms from birth [319,328] Impaired antioxidant defenses and increased susceptibility to oxidative damage [329] Cognitive impairments and neurodevelopmental disorders [326,327] | Increased D-Serine synthesis [330] Disruptions in normal neuromuscular function and development [323] Nephrotoxic effects, leading to glucosuria and polyuria [331,332] |
| Threonine essential | Formation of mucins [333,334] Precursor for the synthesis of various biomolecules (glycine, serine and isoleucine) [335,336] Plays a significant role in PTMs of proteins, particularly phosphorylation [337,338] Maintenance of pluripotent and multipotent stem cells in both plants and animals [339,340] | Impaired gut function [341,342] Negative effect on metabolic processes, particularly those related to energy metabolism [333,343] Weakened immune response [333,344] Reduced body weight gain and impaired growth rates [345,346] Disruption in the estrous cycle [347] | Accumulation of toxic intermediates in metabolic pathways, such as homoserine [348] Negative neurological impact [349] Reduced protein synthesis and growth [346,350] |
| Tryptophan essential aromatic | Precursor to serotonin [351,352] Immune system modulation—production of kynurenines [352,353] Influence on the gastrointestinal function and overall health [354,355] Regulation of sleep and circadian rhythms through its conversion to melatonin [356] Precursor for the synthesis of NAD [352] | Impact on serotonin levels, leading to depression and anxiety [357,358] Deficits in cognitive functions, such as memory and learning [358,359] Impair energy metabolism and contribute to fatigue and muscle weakness [360] Increased susceptibility to infections and inflammatory diseases [357,361] | Serotonin toxicity [363,364,365] Excessive production of kynurenine and its derivatives may contribute to oxidative stress and inflammation [366,367] |
| Tyrosine semi-essential aromatic | Biosynthesis of catecholamines [368,369] Precursor to thyroid hormones and melanin [370,371] Tyrosine phosphorylation, nitrosation, and sulfonation are critical PTMs that play pivotal roles in cellular signaling and regulation [372,373] | Tyrosine hydroxylase (TH) deficiency [374,375] Depression and anxiety [375,377] | Heightened physiological arousal and anxiety symptoms [378,379] Obesity and insulin resistance [380,381] Tyrosinemia type I—severe liver dysfunction, neurological crises, and rickets due to the accumulation of toxic metabolites [382] Tyrosinemia type II—skin lesions, corneal deposits, and neurological impairments [383,384] Tyrosinemia type III—neurological symptoms and intellectual disability [385,386] |
| Valine essential branched-chain | Muscle maintenance and repair [184] Stimulating mitochondrial function in muscle cells [387,388] Enhances insulin sensitivity [389,390] Influence on triglyceride synthesis and overall lipid profiles [388,391] Enhances intestinal health and immune status [392,393] Regulation of synthesis of neurotransmitter synthesis [394] | Loss in weight due to decreased protein synthesis and stimulated protein and fat break down [193,395] Increased insulin sensitivity [213,389] Neurotoxic effects [396,397] | Impaired insulin signaling and glucose metabolism [398,399] Cardiovascular complications [398,400] Impaired lipid metabolism and enhanced NAFLD [401,402] |
References
- Wu, G. Amino Acids: Metabolism, Functions, and Nutrition. Amino Acids 2009, 37, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Ayon, N. Features, roles and chiral analyses of proteinogenic amino acids. AIMS Mol. Sci. 2020, 7, 229–268. [Google Scholar] [CrossRef]
- Müller, M.M.; Allison, J.R.; Hongdilokkul, N.; Gaillon, L.; Kast, P.; Van Gunsteren, W.F.; Marlière, P.; Hilvert, D. Directed Evolution of a Model Primordial Enzyme Provides Insights into the Development of the Genetic Code. PLoS Genet. 2013, 9, e1003187. [Google Scholar] [CrossRef]
- Malkov, S.N.; Živković, M.V.; Beljanski, M.V.; Hall, M.B.; Zarić, S.D. A Reexamination of the Propensities of Amino Acids towards a Particular Secondary Structure: Classification of Amino Acids Based on Their Chemical Structure. J. Mol. Model. 2008, 14, 769–775. [Google Scholar] [CrossRef]
- Kimball, S.R.; Jefferson, L.S. New Functions for Amino Acids: Effects on Gene Transcription and Translation. Am. J. Clin. Nutr. 2006, 83, 500S–507S. [Google Scholar] [CrossRef]
- Dale, T.; Uhlenbeck, O.C. Amino Acid Specificity in Translation. Trends Biochem. Sci. 2005, 30, 659–665. [Google Scholar] [CrossRef]
- Kobayashi, H.; Børsheim, E.; Anthony, T.G.; Traber, D.L.; Badalamenti, J.; Kimball, S.R.; Jefferson, L.S.; Wolfe, R.R. Reduced Amino Acid Availability Inhibits Muscle Protein Synthesis and Decreases Activity of Initiation Factor eIF2B. Am. J. Physiol. Endocrinol. Metab. 2003, 284, E488–E498. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, P.M.J.; Bush, J.A.; Suryawan, A.; Nguyen, H.V.; Davis, T.A. Insulin and Amino Acids Independently Stimulate Skeletal Muscle Protein Synthesis in Neonatal Pigs. Am. J. Physiol. Endocrinol. Metab. 2003, 284, E110–E119. [Google Scholar] [CrossRef]
- Tipton, K.D.; Rasmussen, B.B.; Miller, S.L.; Wolf, S.E.; Owens-Stovall, S.K.; Petrini, B.E.; Wolfe, R.R. Timing of Amino Acid-Carbohydrate Ingestion Alters Anabolic Response of Muscle to Resistance Exercise. Am. J. Physiol. Endocrinol. Metab. 2001, 281, E197–E206. [Google Scholar] [CrossRef]
- De Proença, A.R.G.; Pereira, K.D.; Meneguello, L.; Tamborlin, L.; Luchessi, A.D. Insulin Action on Protein Synthesis and Its Association with eIF5A Expression and Hypusination. Mol. Biol. Rep. 2019, 46, 587–596. [Google Scholar] [CrossRef]
- Pudakalakatti, S.; Audia, A.; Mukhopadhyay, A.; Enriquez, J.S.; Bourgeois, D.; Tayob, N.; Zacharias, N.M.; Millward, S.W.; Carson, D.; Farach-Carson, M.C.; et al. NMR Spectroscopy-Based Metabolomics of Platelets to Analyze Brain Tumors. Reports 2021, 4, 32. [Google Scholar] [CrossRef]
- Holeček, M. Origin and Roles of Alanine and Glutamine in Gluconeogenesis in the Liver, Kidneys, and Small Intestine under Physiological and Pathological Conditions. Int. J. Mol. Sci. 2024, 25, 7037. [Google Scholar] [CrossRef]
- Engskog, M.K.R.; Ersson, L.; Haglöf, J.; Arvidsson, T.; Pettersson, C.; Brittebo, E. β-N-Methylamino-l-Alanine (BMAA) Perturbs Alanine, Aspartate and Glutamate Metabolism Pathways in Human Neuroblastoma Cells as Determined by Metabolic Profiling. Amino Acids 2017, 49, 905–919. [Google Scholar] [CrossRef]
- Márquez, D.; Escalera-Fanjul, X.; El Hafidi, M.; Aguirre-López, B.; Riego-Ruiz, L.; González, A. Alanine Represses γ-Aminobutyric Acid Utilization and Induces Alanine Transaminase Required for Mitochondrial Function in Saccharomyces cerevisiae. Front. Microbiol. 2021, 12, 695382. [Google Scholar] [CrossRef]
- Parle, M.; Kulkarni, S.; Dhingra, D. β-Alanine Protects Mice from Memory Deficits Induced by Ageing, Scopolamine, Diazepam and Ethanol. Indian J. Pharm. Sci. 2006, 68, 216. [Google Scholar] [CrossRef]
- Ostfeld, I.; Ben-Zeev, T.; Zamir, A.; Levi, C.; Gepner, Y.; Springer, S.; Hoffman, J.R. Role of β-Alanine Supplementation on Cognitive Function, Mood, and Physical Function in Older Adults; Double-Blind Randomized Controlled Study. Nutrients 2023, 15, 923. [Google Scholar] [CrossRef]
- Guo, G.; Fan, L.; Yan, Y.; Xu, Y.; Deng, Z.; Tian, M.; Geng, Y.; Xia, Z.; Xu, Y. Shared Metabolic Shifts in Endothelial Cells in Stroke and Alzheimer’s Disease Revealed by Integrated Analysis. Sci. Data 2023, 10, 666. [Google Scholar] [CrossRef] [PubMed]
- Newsholme, P.; Procopio, J.; Lima, M.M.R.; Pithon-Curi, T.C.; Curi, R. Glutamine and Glutamate—Their Central Role in Cell Metabolism and Function. Cell Biochem. Funct. 2003, 21, 1–9. [Google Scholar] [CrossRef]
- Coqueiro, A.; Raizel, R.; Bonvini, A.; Hypólito, T.; Godois, A.; Pereira, J.; Garcia, A.; Lara, R.; Rogero, M.; Tirapegui, J. Effects of Glutamine and Alanine Supplementation on Central Fatigue Markers in Rats Submitted to Resistance Training. Nutrients 2018, 10, 119. [Google Scholar] [CrossRef] [PubMed]
- Hu, V.W.; Sarachana, T.; Kim, K.S.; Nguyen, A.; Kulkarni, S.; Steinberg, M.E.; Luu, T.; Lai, Y.; Lee, N.H. Gene Expression Profiling Differentiates Autism Case–Controls and Phenotypic Variants of Autism Spectrum Disorders: Evidence for Circadian Rhythm Dysfunction in Severe Autism. Autism Res. 2009, 2, 78–97. [Google Scholar] [CrossRef]
- Hubert, L.; Sutton, V.R. Disorders of Purine and Pyrimidine Metabolism. In Biomarkers in Inborn Errors of Metabolism; Garg, U., Smith, L., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 283–299. [Google Scholar] [CrossRef]
- Wu, F.-S.; Gibbs, T.T.; Farb, D.H. Dual Activation of GABAA and Glycine Receptors by β-Alanine: Inverse Modulation by Progesterone and 5α-Pregnan-3α-Ol-20-One. Eur. J. Pharmacol. 1993, 246, 239–246. [Google Scholar] [CrossRef]
- Tiedje, K.E.; Stevens, K.; Barnes, S.; Weaver, D.F. β-Alanine as a Small Molecule Neurotransmitter. Neurochem. Int. 2010, 57, 177–188. [Google Scholar] [CrossRef]
- Tran, M.N.; Kim, S.; Nguyen, Q.H.N.; Lee, S. Molecular Mechanisms Underlying Qi-Invigorating Effects in Traditional Medicine: Network Pharmacology-Based Study on the Unique Functions of Qi-Invigorating Herb Group. Plants 2022, 11, 2470. [Google Scholar] [CrossRef] [PubMed]
- Ron-Harel, N.; Ghergurovich, J.M.; Notarangelo, G.; LaFleur, M.W.; Tsubosaka, Y.; Sharpe, A.H.; Rabinowitz, J.D.; Haigis, M.C. T Cell Activation Depends on Extracellular Alanine. Cell Rep. 2019, 28, 3011–3021.e4. [Google Scholar] [CrossRef] [PubMed]
- Kimura, T.; Sakai, S.; Horio, M.; Takahara, S.; Ishigo, S.; Nakane, M.; Negishi, E.; Imoto, H.; Mita, M.; Hamase, K.; et al. Kinetic Analysis of D-Alanine upon Oral Intake in Humans. Amino Acids 2024, 56, 61. [Google Scholar] [CrossRef]
- Porcellati, F.; Pampanelli, S.; Rossetti, P.; Busciantella Ricci, N.; Marzotti, S.; Lucidi, P.; Santeusanio, F.; Bolli, G.B.; Fanelli, C.G. Effect of the Amino Acid Alanine on Glucagon Secretion in Non-Diabetic and Type 1 Diabetic Subjects during Hyperinsulinaemic Euglycaemia, Hypoglycaemia and Post-Hypoglycaemic Hyperglycaemia. Diabetologia 2007, 50, 422–430. [Google Scholar] [CrossRef] [PubMed]
- Tofteng, F.; Hauerberg, J.; Hansen, B.A.; Pedersen, C.B.; Jørgensen, L.; Larsen, F.S. Persistent Arterial Hyperammonemia Increases the Concentration of Glutamine and Alanine in the Brain and Correlates with Intracranial Pressure in Patients with Fulminant Hepatic Failure. J. Cereb. Blood Flow Metab. 2006, 26, 21–27. [Google Scholar] [CrossRef]
- Dadsetan, S.; Kukolj, E.; Bak, L.K.; SØrensen, M.; Ott, P.; Vilstrup, H.; Schousboe, A.; Keiding, S.; Waagepetersen, H.S. Brain Alanine Formation as an Ammonia-Scavenging Pathway during Hyperammonemia: Effects of Glutamine Synthetase Inhibition in Rats and Astrocyte—Neuron Co-Cultures. J. Cereb. Blood Flow Metab. 2013, 33, 1235–1241. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Y.; Wang, M.; Zhou, G.; Chen, L.; Ding, L.; Bu, D.; Loor, J. Arginine Supply Impacts the Expression of Candidate microRNA Controlling Milk Casein Yield in Bovine Mammary Tissue. Animals 2020, 10, 797. [Google Scholar] [CrossRef]
- Silva, M.A.; Richards, D.A.; Bramhall, S.R.; Adams, D.H.; Mirza, D.F.; Murphy, N. A Study of the Metabolites of Ischemia-Reperfusion Injury and Selected Amino Acids in the Liver Using Microdialysis during Transplantation. Transplantation 2005, 79, 828–835. [Google Scholar] [CrossRef]
- Chen, R. Dietary Arginine Supplementation Altered Expression of IGFs and IGF Receptors in Weaning Piglets. J. Cell Anim. Biol. 2013, 7, 44–50. [Google Scholar] [CrossRef]
- Teixeira, D.; Santaolaria, M.L.; Meneu, V.; Alonso, E. Dietary Arginine Slightly and Variably Affects Tissue Polyamine Levels in Male Swiss Albino Mice. J. Nutr. 2002, 132, 3715–3720. [Google Scholar] [CrossRef]
- Zhou, M.; Wei, Y.; Feng, Y.; Zhang, S.; Ma, N.; Wang, K.; Tan, P.; Zhao, Y.; Zhao, J.; Ma, X. Arginine Regulates Skeletal Muscle Fiber Type Formation via mTOR Signaling Pathway. Int. J. Mol. Sci. 2024, 25, 6184. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Li, K.; Sun, L.; Jiao, H.; Zhou, Y.; Li, H.; Wang, X.; Zhao, J.; Lin, H. L-Arginine/Nitric Oxide Regulates Skeletal Muscle Development via Muscle Fibre-Specific Nitric Oxide/mTOR Pathway in Chickens. Anim. Nutr. 2022, 10, 68–85. [Google Scholar] [CrossRef]
- Arribas-López, E.; Zand, N.; Ojo, O.; Snowden, M.J.; Kochhar, T. The Effect of Amino Acids on Wound Healing: A Systematic Review and Meta-Analysis on Arginine and Glutamine. Nutrients 2021, 13, 2498. [Google Scholar] [CrossRef]
- Dai, D.; Zhang, H.; Qiu, K.; Qi, G.; Wang, J.; Wu, S. Supplemental L-Arginine Improves the Embryonic Intestine Development and Microbial Succession in a Chick Embryo Model. Front. Nutr. 2021, 8, 692305. [Google Scholar] [CrossRef]
- Bodis, J.; Farkas, B.; Nagy, B.; Kovacs, K.; Sulyok, E. The Role of L-Arginine-NO System in Female Reproduction: A Narrative Review. Int. J. Mol. Sci. 2022, 23, 14908. [Google Scholar] [CrossRef] [PubMed]
- Yao, K.; Yin, Y.-L.; Chu, W.; Liu, Z.; Deng, D.; Li, T.; Huang, R.; Zhang, J.; Tan, B.; Wang, W.; et al. Dietary Arginine Supplementation Increases mTOR Signaling Activity in Skeletal Muscle of Neonatal Pigs. J. Nutr. 2008, 138, 867–872. [Google Scholar] [CrossRef] [PubMed]
- Werner, A.; Koschke, M.; Leuchtner, N.; Luckner-Minden, C.; Habermeier, A.; Rupp, J.; Heinrich, C.; Conradi, R.; Closs, E.I.; Munder, M. Reconstitution of T Cell Proliferation under Arginine Limitation: Activated Human T Cells Take Up Citrulline via L-Type Amino Acid Transporter 1 and Use It to Regenerate Arginine after Induction of Argininosuccinate Synthase Expression. Front. Immunol. 2017, 8, 864. [Google Scholar] [CrossRef]
- Filho, S.T.S.; Lima, E.M.d.C.; De Oliveira, D.H.; De Abreu, M.L.T.; Rosa, P.V.; De Laurentiz, A.C.; Naves, L.d.P.; Rodrigues, P.B. Supplemental L-Arginine Improves Feed Conversion and Modulates Lipid Metabolism in Male and Female Broilers from 29 to 42 Days of Age. Animal 2021, 15, 100120. [Google Scholar] [CrossRef]
- Hu, S.; Han, M.; Rezaei, A.; Li, D.; Wu, G.; Ma, X. L-Arginine Modulates Glucose and Lipid Metabolism in Obesity and Diabetes. Curr. Protein Pept. Sci. 2017, 18, 599–608. [Google Scholar] [CrossRef]
- Morris, C.R.; Hamilton-Reeves, J.; Martindale, R.G.; Sarav, M.; Ochoa Gautier, J.B. Acquired Amino Acid Deficiencies: A Focus on Arginine and Glutamine. Nutr. Clin. Pract. 2017, 32, 30S–47S. [Google Scholar] [CrossRef] [PubMed]
- Durante, W.; Johnson, F.K.; Johnson, R.A. Arginase: A Critical Regulator of Nitric Oxide Synthesis and Vascular Function. Clin. Exp. Pharmacol. Physiol. 2007, 34, 906–911. [Google Scholar] [CrossRef]
- Boenzi, S.; Pastore, A.; Martinelli, D.; Goffredo, B.M.; Boiani, A.; Rizzo, C.; Dionisi-Vici, C. Creatine Metabolism in Urea Cycle Defects. J. Inherit. Metab. Dis. 2012, 35, 647–653. [Google Scholar] [CrossRef]
- Wijnands, K.; Castermans, T.; Hommen, M.; Meesters, D.; Poeze, M. Arginine and Citrulline and the Immune Response in Sepsis. Nutrients 2015, 7, 1426–1463. [Google Scholar] [CrossRef]
- Morris, S.M. Arginases and Arginine Deficiency Syndromes. Curr. Opin. Clin. Nutr. Metab. Care 2012, 15, 64–70. [Google Scholar] [CrossRef]
- Huemer, M.; Carvalho, D.R.; Brum, J.M.; Ünal, Ö.; Coskun, T.; Weisfeld-Adams, J.D.; Schrager, N.L.; Scholl-Bürgi, S.; Schlune, A.; Donner, M.G.; et al. Clinical Phenotype, Biochemical Profile, and Treatment in 19 Patients with Arginase 1 Deficiency. J. Inherit. Metab. Dis. 2016, 39, 331–340. [Google Scholar] [CrossRef] [PubMed]
- Feun, L.G.; Kuo, M.T.; Savaraj, N. Arginine Deprivation in Cancer Therapy. Curr. Opin. Clin. Nutr. Metab. Care 2015, 18, 78–82. [Google Scholar] [CrossRef]
- Al-Koussa, H.; El Mais, N.; Maalouf, H.; Abi-Habib, R.; El-Sibai, M. Arginine Deprivation: A Potential Therapeutic for Cancer Cell Metastasis? A Review. Cancer Cell Int. 2020, 20, 150. [Google Scholar] [CrossRef] [PubMed]
- Kao, C.C.; Bandi, V.; Guntupalli, K.K.; Wu, M.; Castillo, L.; Jahoor, F. Arginine, Citrulline and Nitric Oxide Metabolism in Sepsis. Clin. Sci. 2009, 117, 23–30. [Google Scholar] [CrossRef]
- Luiking, Y.C.; Deutz, N.E.P. Biomarkers of Arginine and Lysine Excess. J. Nutr. 2007, 137, 1662S–1668S. [Google Scholar] [CrossRef]
- Abdalla, K.B.; Da Silveira, D.X.; Fidalgo, T.M. Poppers Use and HIV Infection—A Literature Review. Sex. Med. Rev. 2023, 12, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Becker, Y.; Olshevsky, U.; Levitt, J. The Role of Arginine in the Replication of Herpes Simplex Virus. J. Gen. Virol. 1967, 1, 471–478. [Google Scholar] [CrossRef]
- Ma, X.; Han, M.; Li, D.; Hu, S.; Gilbreath, K.R.; Bazer, F.W.; Wu, G. L-Arginine Promotes Protein Synthesis and Cell Growth in Brown Adipocyte Precursor Cells via the mTOR Signal Pathway. Amino Acids 2017, 49, 957–964. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Ren, M.; Xie, J.; Ge, X.; Liu, B.; Zhou, Q.; Song, C.; Zhang, H. Dietary Arginine Requirement for Blunt Snout Bream (Megalobrama amblycephala) with Two Fish Sizes Associated with Growth Performance and Plasma Parameters. Turk. J. Fish. Aquat. Sci. 2017, 17, 171–179. [Google Scholar] [CrossRef]
- Yokozawa, T.; Cho, E.J.; Nakagawa, T. Influence of Green Tea Polyphenol in Rats with Arginine-Induced Renal Failure. J. Agric. Food Chem. 2003, 51, 2421–2425. [Google Scholar] [CrossRef]
- Deignan, J.L.; Marescau, B.; Livesay, J.C.; Iyer, R.K.; De Deyn, P.P.; Cederbaum, S.D.; Grody, W.W. Increased Plasma and Tissue Guanidino Compounds in a Mouse Model of Hyperargininemia. Mol. Genet. Metab. 2008, 93, 172–178. [Google Scholar] [CrossRef]
- Pant, A.; Cao, S.; Yang, Z. Asparagine Is a Critical Limiting Metabolite for Vaccinia Virus Protein Synthesis during Glutamine Deprivation. J. Virol. 2019, 93, e01834-18. [Google Scholar] [CrossRef]
- Zhang, J.; Fan, J.; Venneti, S.; Cross, J.R.; Takagi, T.; Bhinder, B.; Djaballah, H.; Kanai, M.; Cheng, E.H.; Judkins, A.R.; et al. Asparagine Plays a Critical Role in Regulating Cellular Adaptation to Glutamine Depletion. Mol. Cell 2014, 56, 205–218. [Google Scholar] [CrossRef] [PubMed]
- Hope, H.C.; Brownlie, R.J.; Fife, C.M.; Steele, L.; Lorger, M.; Salmond, R.J. Coordination of Asparagine Uptake and Asparagine Synthetase Expression Modulates CD8+ T Cell Activation. JCI Insight 2021, 6, e137761. [Google Scholar] [CrossRef]
- Wu, J.; Li, G.; Li, L.; Li, D.; Dong, Z.; Jiang, P. Asparagine Enhances LCK Signalling to Potentiate CD8+ T-Cell Activation and Anti-Tumour Responses. Nat. Cell Biol. 2021, 23, 75–86. [Google Scholar] [CrossRef]
- Krall, A.S.; Mullen, P.J.; Surjono, F.; Momcilovic, M.; Schmid, E.W.; Halbrook, C.J.; Thambundit, A.; Mittelman, S.D.; Lyssiotis, C.A.; Shackelford, D.B.; et al. Asparagine Couples Mitochondrial Respiration to ATF4 Activity and Tumor Growth. Cell Metab. 2021, 33, 1013–1026.e6. [Google Scholar] [CrossRef]
- Meng, D.; Yang, Q.; Wang, H.; Melick, C.H.; Navlani, R.; Frank, A.R.; Jewell, J.L. Glutamine and Asparagine Activate mTORC1 Independently of Rag GTPases. J. Biol. Chem. 2020, 295, 2890–2899. [Google Scholar] [CrossRef] [PubMed]
- Nishikawa, G.; Kawada, K.; Hanada, K.; Maekawa, H.; Itatani, Y.; Miyoshi, H.; Taketo, M.M.; Obama, K. Targeting Asparagine Synthetase in Tumorgenicity Using Patient-Derived Tumor-Initiating Cells. Cells 2022, 11, 3273. [Google Scholar] [CrossRef] [PubMed]
- Ben-Salem, S.; Gleeson, J.G.; Al-Shamsi, A.M.; Islam, B.; Hertecant, J.; Ali, B.R.; Al-Gazali, L. Asparagine Synthetase Deficiency Detected by Whole Exome Sequencing Causes Congenital Microcephaly, Epileptic Encephalopathy and Psychomotor Delay. Metab. Brain Dis. 2015, 30, 687–694. [Google Scholar] [CrossRef]
- Ruzzo, E.K.; Capo-Chichi, J.-M.; Ben-Zeev, B.; Chitayat, D.; Mao, H.; Pappas, A.L.; Hitomi, Y.; Lu, Y.-F.; Yao, X.; Hamdan, F.F.; et al. Deficiency of Asparagine Synthetase Causes Congenital Microcephaly and a Progressive Form of Encephalopathy. Neuron 2013, 80, 429–441. [Google Scholar] [CrossRef]
- Yuan, Q.; Yin, L.; He, J.; Zeng, Q.; Liang, Y.; Shen, Y.; Zu, X. Metabolism of Asparagine in the Physiological State and Cancer. Cell Commun. Signal. 2024, 22, 163. [Google Scholar] [CrossRef]
- Luo, H.-H.; Feng, X.-F.; Yang, X.-L.; Hou, R.-Q.; Fang, Z.-Z. Interactive Effects of Asparagine and Aspartate Homeostasis with Sex and Age for the Risk of Type 2 Diabetes Risk. Biol. Sex. Differ. 2020, 11, 58. [Google Scholar] [CrossRef] [PubMed]
- Ota, N.; Shi, T.; Sweedler, J.V. D-Aspartate Acts as a Signaling Molecule in Nervous and Neuroendocrine Systems. Amino Acids 2012, 43, 1873–1886. [Google Scholar] [CrossRef] [PubMed]
- Holeček, M. Aspartic Acid in Health and Disease. Nutrients 2023, 15, 4023. [Google Scholar] [CrossRef]
- Kiriyama, Y.; Nochi, H. D-Amino Acids in the Nervous and Endocrine Systems. Scientifica 2016, 2016, 6494621. [Google Scholar] [CrossRef]
- Di Fiore, M.M.; Boni, R.; Santillo, A.; Falvo, S.; Gallo, A.; Esposito, S.; Chieffi Baccari, G. D-Aspartic Acid in Vertebrate Reproduction: Animal Models and Experimental Designs. Biomolecules 2019, 9, 445. [Google Scholar] [CrossRef] [PubMed]
- Diez-Fernandez, C.; Rüfenacht, V.; Häberle, J. Mutations in the Human Argininosuccinate Synthetase (ASS1) Gene, Impact on Patients, Common Changes, and Structural Considerations. Hum. Mutat. 2017, 38, 471–484. [Google Scholar] [CrossRef]
- D’Aniello, G.; Ronsini, S.; Notari, T.; Grieco, N.; Infante, V.; D’Angel, N.; Mascia, F.; Fiore, M.M.D.; Fisher, G.; D’Aniello, A. D-Aspartate, a Key Element for the Improvement of Sperm Quality. Adv. Sex. Med. 2012, 2, 45–53. [Google Scholar] [CrossRef]
- Rycerz, K.; Jaworska-Adamu, J.E. Effects of Aspartame Metabolites on Astrocytes and Neurons. Folia Neuropathol. 2013, 1, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Glaser, T.; Silva, J.B.; Juvenal, G.; Maiolini, P.N.; Turrini, N.; Petiz, L.L.; Marques, L.B.; Ribeiro, D.E.; Ye, Q.; Tang, Y.; et al. Various Facets of Excitotoxicity. Explor. Neuroprot. Ther. 2022, 2, 36–64. [Google Scholar] [CrossRef]
- Burrone, L.; Santillo, A.; Pinelli, C.; Chieffi Baccari, G.; Di Fiore, M.M. Induced Synthesis of P450 Aromatase and 17β-Estradiol by D-Aspartate in Frog Brain. J. Exp. Biol. 2012, 215, 3559–3565. [Google Scholar] [CrossRef]
- Melville, G.W.; Siegler, J.C.; Marshall, P.W. Three and Six Grams Supplementation of D-Aspartic Acid in Resistance Trained Men. Int. Soc. Sports Nutr. 2015, 12, 15. [Google Scholar] [CrossRef]
- Bulaj, G. Formation of Disulfide Bonds in Proteins and Peptides. Biotechnol. Adv. 2005, 23, 87–92. [Google Scholar] [CrossRef]
- Beeby, M.; O’Connor, B.D.; Ryttersgaard, C.; Boutz, D.R.; Perry, L.J.; Yeates, T.O. The Genomics of Disulfide Bonding and Protein Stabilization in Thermophiles. PLoS Biol. 2005, 3, e309. [Google Scholar] [CrossRef]
- Giles, N.M.; Watts, A.B.; Giles, G.I.; Fry, F.H.; Littlechild, J.A.; Jacob, C. Metal and Redox Modulation of Cysteine Protein Function. Chem. Biol. 2003, 10, 677–693. [Google Scholar] [CrossRef]
- Matsui, R.; Ferran, B.; Oh, A.; Croteau, D.; Shao, D.; Han, J.; Pimentel, D.R.; Bachschmid, M.M. Redox Regulation via Glutaredoxin-1 and Protein S-Glutathionylation. Antioxid. Redox Signal. 2020, 32, 677–700. [Google Scholar] [CrossRef]
- Bouazzaoui, W.; Xiao, P.; Couve-Bonnaire, S.; Bouillon, J.; Mulengi, J.K. Chronic Inflammation and Chronic Diseases: Potential Healing with Glutathione-Inspired Fragments. ChemistrySelect 2022, 7, e202203051. [Google Scholar] [CrossRef]
- Anderson, M.E. Glutathione: An Overview of Biosynthesis and Modulation. Chem. Biol. Interact. 1998, 111–112, 1–14. [Google Scholar] [CrossRef]
- Pace, N.; Weerapana, E. Zinc-Binding Cysteines: Diverse Functions and Structural Motifs. Biomolecules 2014, 4, 419–434. [Google Scholar] [CrossRef]
- Stipanuk, M.H.; Dominy, J.E.; Lee, J.-I.; Coloso, R.M. Mammalian Cysteine Metabolism: New Insights into Regulation of Cysteine Metabolism. J. Nutr. 2006, 136, 1652S–1659S. [Google Scholar] [CrossRef] [PubMed]
- Dominy, J.E.; Stipanuk, M.H. New Roles for Cysteine and Transsulfuration Enzymes: Production of H2 S, A Neuromodulator and Smooth Muscle Relaxant. Nutr. Rev. 2004, 62, 348–353. [Google Scholar] [CrossRef]
- Sikalidis, A.K.; Mazor, K.M.; Lee, J.-I.; Roman, H.B.; Hirschberger, L.L.; Stipanuk, M.H. Upregulation of Capacity for Glutathione Synthesis in Response to Amino Acid Deprivation: Regulation of Glutamate–Cysteine Ligase Subunits. Amino Acids 2014, 46, 1285–1296. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Lupton, J.R.; Turner, N.D.; Fang, Y.-Z.; Yang, S. Glutathione Metabolism and Its Implications for Health. J. Nutr. 2004, 134, 489–492. [Google Scholar] [CrossRef] [PubMed]
- Aoyama, K. Glutathione in the Brain. Int. J. Mol. Sci. 2021, 22, 5010. [Google Scholar] [CrossRef]
- Patriarca, S.; Furfaro, A.L.; Domenicotti, C.; Odetti, P.; Cottalasso, D.; Marinari, U.M.; Pronzato, M.A.; Traverso, N. Supplementation with N-Acetylcysteine and Taurine Failed to Restore Glutathione Content in Liver of Streptozotocin-Induced Diabetics Rats but Protected from Oxidative Stress. Biochim. Biophys. Acta 2005, 1741, 48–54. [Google Scholar] [CrossRef]
- Sekhar, R.V. GlyNAC (Glycine and N-Acetylcysteine) Supplementation Improves Impaired Mitochondrial Fuel Oxidation and Lowers Insulin Resistance in Patients with Type 2 Diabetes: Results of a Pilot Study. Antioxidants 2022, 11, 154. [Google Scholar] [CrossRef]
- Nakatsu, D.; Horiuchi, Y.; Kano, F.; Noguchi, Y.; Sugawara, T.; Takamoto, I.; Kubota, N.; Kadowaki, T.; Murata, M. L-Cysteine Reversibly Inhibits Glucose-Induced Biphasic Insulin Secretion and ATP Production by Inactivating PKM2. Proc. Natl. Acad. Sci. USA 2015, 112, E1067–E1076. [Google Scholar] [CrossRef]
- Kaneko, Y.; Kimura, Y.; Kimura, H.; Niki, I. l-Cysteine Inhibits Insulin Release from the Pancreatic β-Cell. Diabetes 2006, 55, 1391–1397. [Google Scholar] [CrossRef]
- Hughes, C.E.; Coody, T.K.; Jeong, M.-Y.; Berg, J.A.; Winge, D.R.; Hughes, A.L. Cysteine Toxicity Drives Age-Related Mitochondrial Decline by Altering Iron Homeostasis. Cell 2020, 180, 296–310.e18. [Google Scholar] [CrossRef]
- Focks, J.J.; Van Schaik, A.; Clappers, N.; Van Dijk, E.G.J.A.; Van Oijen, M.G.H.; Verheugt, F.W.A.; Peters, W.H.M. Assessment of Plasma Aminothiol Levels and the Association with Recurrent Atherothrombotic Events in Patients Hospitalized for an Acute Coronary Syndrome: A Prospective Study. Clin. Chem. Lab. Med. 2013, 51, 2187–2193. [Google Scholar] [CrossRef] [PubMed]
- Lima, A.; Ferin, R.; Fontes, A.; Santos, E.; Martins, D.; Baptista, J.; Pavão, M.L. Cysteine Is a Better Predictor of Coronary Artery Disease than Conventional Homocysteine in High-Risk Subjects under Preventive Medication. Nutr. Metab. Cardiovasc. Dis. 2020, 30, 1281–1288. [Google Scholar] [CrossRef] [PubMed]
- Traverso, N.; Ricciarelli, R.; Nitti, M.; Marengo, B.; Furfaro, A.L.; Pronzato, M.A.; Marinari, U.M.; Domenicotti, C. Role of Glutathione in Cancer Progression and Chemoresistance. Oxidative Med. Cell. Longev. 2013, 2013, 972913. [Google Scholar] [CrossRef] [PubMed]
- Niu, B.; Liao, K.; Zhou, Y.; Wen, T.; Quan, G.; Pan, X.; Wu, C. Application of Glutathione Depletion in Cancer Therapy: Enhanced ROS-Based Therapy, Ferroptosis, and Chemotherapy. Biomaterials 2021, 277, 121110. [Google Scholar] [CrossRef]
- Zhang, H.; Montesdeoca, N.; Tang, D.; Liang, G.; Cui, M.; Xu, C.; Servos, L.-M.; Bing, T.; Papadopoulos, Z.; Shen, M.; et al. Tumor-Targeted Glutathione Oxidation Catalysis with Ruthenium Nanoreactors against Hypoxic Osteosarcoma. Nat. Commun. 2024, 15, 9405. [Google Scholar] [CrossRef]
- Giustarini, D.; Colombo, G.; Garavaglia, M.L.; Astori, E.; Portinaro, N.M.; Reggiani, F.; Badalamenti, S.; Aloisi, A.M.; Santucci, A.; Rossi, R.; et al. Assessment of Glutathione/Glutathione Disulphide Ratio and S-Glutathionylated Proteins in Human Blood, Solid Tissues, and Cultured Cells. Free Radic. Biol. Med. 2017, 112, 360–375. [Google Scholar] [CrossRef]
- Pal, M.M. Glutamate: The Master Neurotransmitter and Its Implications in Chronic Stress and Mood Disorders. Front. Hum. Neurosci. 2021, 15, 722323. [Google Scholar] [CrossRef]
- Rumping, L.; Vringer, E.; Houwen, R.H.J.; Van Hasselt, P.M.; Jans, J.J.M.; Verhoeven-Duif, N.M. Inborn Errors of Enzymes in Glutamate Metabolism. J. Inherit. Metab. Dis. 2020, 43, 200–215. [Google Scholar] [CrossRef]
- Walker, M.C.; Van Der Donk, W.A. The Many Roles of Glutamate in Metabolism. J. Ind. Microbiol. Biotechnol. 2016, 43, 419–430. [Google Scholar] [CrossRef]
- Dade, M.; Berzero, G.; Izquierdo, C.; Giry, M.; Benazra, M.; Delattre, J.-Y.; Psimaras, D.; Alentorn, A. Neurological Syndromes Associated with Anti-GAD Antibodies. Int. J. Mol. Sci. 2020, 21, 3701. [Google Scholar] [CrossRef]
- Rashmi, D.; Zanan, R.; John, S.; Khandagale, K.; Nadaf, A. γ-Aminobutyric Acid (GABA): Biosynthesis, Role, Commercial Production, and Applications. In Studies in Natural Products Chemistry; Rahman, A., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; Volume 57, pp. 413–452. [Google Scholar] [CrossRef]
- Hohnholt, M.C.; Andersen, V.H.; Andersen, J.V.; Christensen, S.K.; Karaca, M.; Maechler, P.; Waagepetersen, H.S. Glutamate Dehydrogenase Is Essential to Sustain Neuronal Oxidative Energy Metabolism during Stimulation. J. Cereb. Blood Flow Metab. 2018, 38, 1754–1768. [Google Scholar] [CrossRef]
- Graham, T.E.; Sgro, V.; Friars, D.; Gibala, M.J. Glutamate Ingestion: The Plasma and Muscle Free Amino Acid Pools of Resting Humans. Am. J. Physiol. Endocrinol. Metab. 2000, 278, E83–E89. [Google Scholar] [CrossRef]
- Han, G.; Takahashi, H.; Murao, N.; Gheni, G.; Yokoi, N.; Hamamoto, Y.; Asahara, S.; Seino, Y.; Kido, Y.; Seino, S. Glutamate Is an Essential Mediator in Glutamine-amplified Insulin Secretion. J. Diabetes Investig. 2021, 12, 920–930. [Google Scholar] [CrossRef] [PubMed]
- Iwanaga, T.; Goto, M.; Watanabe, M. Cellular Distribution of Glutamate Transporters in the Gastrointestinal Tract of Mice. An Immunohistochemical and in Situ Hybridization Approach. Biomed. Res. 2005, 26, 271–278. [Google Scholar] [CrossRef] [PubMed]
- Gasbarri, A.; Pompili, A. Involvement of Glutamate in Learning and Memory. In Identification of Neural Markers Accompanying Memory; Meneses, A., Ed.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 63–77. [Google Scholar] [CrossRef]
- Brown, M.N.; Walters, D.C.; Schmidt, M.A.; Hill, J.; McConnell, A.; Jansen, E.E.W.; Salomons, G.S.; Arning, E.; Bottiglieri, T.; Gibson, K.M.; et al. Maternal Glutamine Supplementation in Murine Succinic Semialdehyde Dehydrogenase Deficiency, a Disorder of γ-aminobutyric Acid Metabolism. J. Inherit. Metab. Dis. 2019, 42, 1030–1039. [Google Scholar] [CrossRef] [PubMed]
- Hasler, G.; Van Der Veen, J.W.; Tumonis, T.; Meyers, N.; Shen, J.; Drevets, W.C. Reduced Prefrontal Glutamate/Glutamine and γ-Aminobutyric Acid Levels in Major Depression Determined Using Proton Magnetic Resonance Spectroscopy. Arch. Gen. Psychiatry 2007, 64, 193. [Google Scholar] [CrossRef]
- Abdallah, C.G.; Jiang, L.; De Feyter, H.M.; Fasula, M.; Krystal, J.H.; Rothman, D.L.; Mason, G.F.; Sanacora, G. Glutamate Metabolism in Major Depressive Disorder. Am. J. Psychiatry 2014, 171, 1320–1327. [Google Scholar] [CrossRef] [PubMed]
- Yap, H.-M.; Lye, K.-L.; Tan, L.T.-H. Comprehensive Insight of Neurodegenerative Diseases and The Role of Neurotoxin Agents—Glutamate. Prog. Microbes Mol. Biol. 2020, 3, a0000070. [Google Scholar] [CrossRef]
- Suzuki, H.; Kawakita, F.; Asada, R.; Nakano, F.; Nishikawa, H.; Fujimoto, M. Old but Still Hot Target, Glutamate-Mediated Neurotoxicity in Stroke. Transl. Stroke Res. 2022, 13, 216–217. [Google Scholar] [CrossRef]
- Kruse, A.O.; Bustillo, J.R. Glutamatergic Dysfunction in Schizophrenia. Transl. Psychiatry 2022, 12, 500. [Google Scholar] [CrossRef] [PubMed]
- Inoshita, M.; Umehara, H.; Watanabe, S.; Nakataki, M.; Kinoshita, M.; Tomioka, Y.; Tajima, A.; Numata, S.; Ohmori, T. Elevated Peripheral Blood Glutamate Levels in Major Depressive Disorder. Neuropsychiatr. Dis. Treat. 2018, 14, 945–953. [Google Scholar] [CrossRef]
- Li, Q.; Wang, S.; Xiao, W.; Huang, C.; Li, H.; Sun, M. BBB: Permeable Conjugate of Exogenic GABA. ACS Omega 2017, 2, 4108–4111. [Google Scholar] [CrossRef]
- Shen, Z.; Xiang, M.; Chen, C.; Ding, F.; Wang, Y.; Shang, C.; Xin, L.; Zhang, Y.; Cui, X. Glutamate Excitotoxicity: Potential Therapeutic Target for Ischemic Stroke. Biomed. Pharmacother. 2022, 151, 113125. [Google Scholar] [CrossRef]
- Belov Kirdajova, D.; Kriska, J.; Tureckova, J.; Anderova, M. Ischemia-Triggered Glutamate Excitotoxicity from the Perspective of Glial Cells. Front. Cell. Neurosci. 2020, 14, 51. [Google Scholar] [CrossRef]
- Ishikawa, M. Abnormalities in Glutamate Metabolism and Excitotoxicity in the Retinal Diseases. Scientifica 2013, 2013, 528940. [Google Scholar] [CrossRef]
- Egunlusi, A.O.; Joubert, J. NMDA Receptor Antagonists: Emerging Insights into Molecular Mechanisms and Clinical Applications in Neurological Disorders. Pharmaceuticals 2024, 17, 639. [Google Scholar] [CrossRef]
- Tan, H.W.S.; Sim, A.Y.L.; Long, Y.C. Glutamine Metabolism Regulates Autophagy-Dependent mTORC1 Reactivation during Amino Acid Starvation. Nat. Commun. 2017, 8, 338. [Google Scholar] [CrossRef]
- Zhang, D.; Hua, Z.; Li, Z. The Role of Glutamate and Glutamine Metabolism and Related Transporters in Nerve Cells. CNS Neurosci. Ther. 2024, 30, e14617. [Google Scholar] [CrossRef]
- Feng, X.; Li, X.; Liu, N.; Hou, N.; Sun, X.; Liu, Y. Glutaminolysis and CD4+ T-Cell Metabolism in Autoimmunity: From Pathogenesis to Therapy Prospects. Front. Immunol. 2022, 13, 986847. [Google Scholar] [CrossRef]
- Newsholme, P. Why Is L-Glutamine Metabolism Important to Cells of the Immune System in Health, Postinjury, Surgery or Infection? J. Nutr. 2001, 131, 2515S–2522S. [Google Scholar] [CrossRef]
- Patience, J.F. A Review of the Role of Acid-Base Balance in Amino Acid Nutrition. J. Anim. Sci. 1990, 68, 398. [Google Scholar] [CrossRef]
- Nagami, G.T.; Kraut, J.A. The Role of the Endocrine System in the Regulation of Acid–Base Balance by the Kidney and the Progression of Chronic Kidney Disease. Int. J. Mol. Sci. 2024, 25, 2420. [Google Scholar] [CrossRef] [PubMed]
- Albrecht, J.; Sidoryk-Węgrzynowicz, M.; Zielińska, M.; Aschner, M. Roles of Glutamine in Neurotransmission. Neuron Glia Biol. 2010, 6, 263–276. [Google Scholar] [CrossRef]
- Amores-Sánchez, M.I.; Medina, M.Á. Glutamine, as a Precursor of Glutathione, and Oxidative Stress. Mol. Genet. Metab. 1999, 67, 100–105. [Google Scholar] [CrossRef] [PubMed]
- Cruzat, V.; Macedo Rogero, M.; Noel Keane, K.; Curi, R.; Newsholme, P. Glutamine: Metabolism and Immune Function, Supplementation and Clinical Translation. Nutrients 2018, 10, 1564. [Google Scholar] [CrossRef] [PubMed]
- Jewell, J.L.; Kim, Y.C.; Russell, R.C.; Yu, F.-X.; Park, H.W.; Plouffe, S.W.; Tagliabracci, V.S.; Guan, K.-L. Differential Regulation of mTORC1 by Leucine and Glutamine. Science 2015, 347, 194–198. [Google Scholar] [CrossRef]
- Jablonowski, C.M.; Quarni, W.; Singh, S.; Tan, H.; Bostanthirige, D.H.; Jin, H.; Fang, J.; Chang, T.-C.; Finkelstein, D.; Cho, J.-H.; et al. Metabolic Reprogramming of Cancer Cells by JMJD6-Mediated Pre-mRNA Splicing Associated with Therapeutic Response to Splicing Inhibitor. eLife 2024, 12, RP90993. [Google Scholar] [CrossRef]
- Li, T.; Le, A. Glutamine Metabolism in Cancer. In The Heterogeneity of Cancer Metabolism; Le, A., Ed.; Advances in Experimental Medicine and Biology; Springer International Publishing: Cham, Switzerland, 2018; Volume 1063, pp. 13–32. [Google Scholar] [CrossRef]
- Spodenkiewicz, M.; Diez-Fernandez, C.; Rüfenacht, V.; Gemperle-Britschgi, C.; Häberle, J. Minireview on Glutamine Synthetase Deficiency, an Ultra-Rare Inborn Error of Amino Acid Biosynthesis. Biology 2016, 5, 40. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Yan, X.; Cao, Y.; Bao, T.; Li, G.; Gu, S.; Xiong, K.; Xiao, T. Meta-Analysis of Glutamine on Immune Function and Post-Operative Complications of Patients with Colorectal Cancer. Front. Nutr. 2021, 8, 765809. [Google Scholar] [CrossRef] [PubMed]
- Safranek, R.; Holecek, M.; Sispera, L.; Muthný, T. Aspects of Protein and Amino Acid Metabolism in a Model of Severe Glutamine Deficiency in Sepsis. Ann. Nutr. Metab. 2006, 50, 361–367. [Google Scholar] [CrossRef] [PubMed]
- Karinch, A.M.; Pan, M.; Lin, C.-M.; Strange, R.; Souba, W.W. Glutamine Metabolism in Sepsis and Infection. J. Nutr. 2001, 131, 2535S–2538S. [Google Scholar] [CrossRef]
- Chen, J.; Herrup, K. Glutamine Acts as a Neuroprotectant against DNA Damage, Beta-Amyloid and H2O2-Induced Stress. PLoS ONE 2012, 7, e33177. [Google Scholar] [CrossRef]
- Baek, J.H.; Park, H.; Kang, H.; Kim, R.; Kang, J.S.; Kim, H.J. The Role of Glutamine Homeostasis in Emotional and Cognitive Functions. Int. J. Mol. Sci. 2024, 25, 1302. [Google Scholar] [CrossRef]
- Kim, M.-H.; Kim, H. The Roles of Glutamine in the Intestine and Its Implication in Intestinal Diseases. Int. J. Mol. Sci. 2017, 18, 1051. [Google Scholar] [CrossRef]
- Ji, F.J.; Wang, L.X.; Yang, H.S.; Hu, A.; Yin, Y.L. Review: The Roles and Functions of Glutamine on Intestinal Health and Performance of Weaning Pigs. Animal 2019, 13, 2727–2735. [Google Scholar] [CrossRef]
- Tran, T.Q.; Ishak Gabra, M.B.; Lowman, X.H.; Yang, Y.; Reid, M.A.; Pan, M.; O’Connor, T.R.; Kong, M. Glutamine Deficiency Induces DNA Alkylation Damage and Sensitizes Cancer Cells to Alkylating Agents through Inhibition of ALKBH Enzymes. PLoS Biol. 2017, 15, e2002810. [Google Scholar] [CrossRef]
- Muranaka, H.; Akinsola, R.; Billet, S.; Pandol, S.J.; Hendifar, A.E.; Bhowmick, N.A.; Gong, J. Glutamine Supplementation as an Anticancer Strategy: A Potential Therapeutic Alternative to the Convention. Cancers 2024, 16, 1057. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, S.; Kaibara, A.; Ishibashi, N.; Shirouzu, K. Glutamine Supplementation in Cancer Patients. Nutrition 2001, 17, 766–768. [Google Scholar] [CrossRef]
- Díaz-Fontenla, F.; Castillo-Pradillo, M.; Díaz-Gómez, A.; Ibañez-Samaniego, L.; Gancedo, P.; Guzmán-de-Villoria, J.A.; Fernández-García, P.; Bañares-Cañizares, R.; García-Martínez, R. Refractory Hepatic Encephalopathy in a Patient with Hypothyroidism: Another Element in Ammonia Metabolism. World J. Gastroenterol. 2017, 23, 5246. [Google Scholar] [CrossRef]
- Lee, B.; Diaz, G.A.; Rhead, W.; Lichter-Konecki, U.; Feigenbaum, A.; Berry, S.A.; Le Mons, C.; Bartley, J.; Longo, N.; Nagamani, S.C.; et al. Glutamine and Hyperammonemic Crises in Patients with Urea Cycle Disorders. Mol. Genet. Metab. 2016, 117, 27–32. [Google Scholar] [CrossRef]
- Rais, R.; Lemberg, K.M.; Tenora, L.; Arwood, M.L.; Pal, A.; Alt, J.; Wu, Y.; Lam, J.; Aguilar, J.M.H.; Zhao, L.; et al. Discovery of DRP-104, a Tumor-Targeted Metabolic Inhibitor Prodrug. Sci. Adv. 2022, 8, eabq5925. [Google Scholar] [CrossRef]
- Nan, D.; Yao, W.; Huang, L.; Liu, R.; Chen, X.; Xia, W.; Sheng, H.; Zhang, H.; Liang, X.; Lu, Y. Glutamine and Cancer: Metabolism, Immune Microenvironment, and Therapeutic Targets. Cell Commun. Signal. 2025, 23, 45. [Google Scholar] [CrossRef] [PubMed]
- Dutertre, S.; Becker, C.-M.; Betz, H. Inhibitory Glycine Receptors: An Update. J. Biol. Chem. 2012, 287, 40216–40223. [Google Scholar] [CrossRef] [PubMed]
- De Bartolomeis, A.; Manchia, M.; Marmo, F.; Vellucci, L.; Iasevoli, F.; Barone, A. Glycine Signaling in the Framework of Dopamine-Glutamate Interaction and Postsynaptic Density. Implications for Treatment-Resistant Schizophrenia. Front. Psychiatry 2020, 11, 369. [Google Scholar] [CrossRef]
- Rosini, E.; Piubelli, L.; Molla, G.; Frattini, L.; Valentino, M.; Varriale, A.; D’Auria, S.; Pollegioni, L. Novel Biosensors Based on Optimized Glycine Oxidase. FASEB J. 2014, 281, 3460–3472. [Google Scholar] [CrossRef]
- Bekri, A.; Drapeau, P. Glycine Promotes the Survival of a Subpopulation of Neural Stem Cells. Front. Cell Dev. Biol. 2018, 6, 68. [Google Scholar] [CrossRef]
- Samarut, E.; Bekri, A.; Drapeau, P. Transcriptomic Analysis of Purified Embryonic Neural Stem Cells from Zebrafish Embryos Reveals Signaling Pathways Involved in Glycine-Dependent Neurogenesis. Front. Mol. Neurosci. 2016, 9, 22. [Google Scholar] [CrossRef]
- Kittl, M.; Dobias, H.; Beyreis, M.; Kiesslich, T.; Mayr, C.; Gaisberger, M.; Ritter, M.; Kerschbaum, H.H.; Jakab, M. Glycine Induces Migration of Microglial BV-2 Cells via SNAT-Mediated Cell Swelling. Cell. Physiol. Biochem. 2018, 50, 1460–1473. [Google Scholar] [CrossRef]
- Carmans, S.; Hendriks, J.J.A.; Thewissen, K.; Van Den Eynden, J.; Stinissen, P.; Rigo, J.; Hellings, N. The Inhibitory Neurotransmitter Glycine Modulates Macrophage Activity by Activation of Neutral Amino Acid Transporters. J. Neurosci. Res. 2010, 88, 2420–2430. [Google Scholar] [CrossRef]
- Van Den Eynden, J. Glycine and Glycine Receptor Signalling in Non-Neuronal Cells. Front. Mol. Neurosci. 2009, 2, 799. [Google Scholar] [CrossRef] [PubMed]
- Schilling, T.; Eder, C. A Novel Physiological Mechanism of Glycine-induced Immunomodulation: Na+-coupled Amino Acid Transporter Currents in Cultured Brain Macrophages. J. Physiol. 2004, 559, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Meléndez-Hevia, E.; De Paz-Lugo, P.; Cornish-Bowden, A.; Cárdenas, M.L. A Weak Link in Metabolism: The Metabolic Capacity for Glycine Biosynthesis Does Not Satisfy the Need for Collagen Synthesis. J. Biosci. 2009, 34, 853–872. [Google Scholar] [CrossRef]
- Garcia-Santos, D.; Schranzhofer, M.; Bergeron, R.; Sheftel, A.D.; Ponka, P. Extracellular Glycine Is Necessary for Optimal Hemoglobinization of Erythroid Cells. Haematologica 2017, 102, 1314–1323. [Google Scholar] [CrossRef] [PubMed]
- Alves, A.; Bassot, A.; Bulteau, A.-L.; Pirola, L.; Morio, B. Glycine Metabolism and Its Alterations in Obesity and Metabolic Diseases. Nutrients 2019, 11, 1356. [Google Scholar] [CrossRef]
- Tan, H.C.; Hsu, J.W.; Tai, E.S.; Chacko, S.; Wu, V.; Lee, C.F.; Kovalik, J.-P.; Jahoor, F. De Novo Glycine Synthesis Is Reduced in Adults with Morbid Obesity and Increases Following Bariatric Surgery. Front. Endocrinol. 2022, 13, 900343. [Google Scholar] [CrossRef]
- Li, P.; Wu, G. Roles of Dietary Glycine, Proline, and Hydroxyproline in Collagen Synthesis and Animal Growth. Amino Acids 2018, 50, 29–38. [Google Scholar] [CrossRef]
- Johnson, A.A.; Cuellar, T.L. Glycine and Aging: Evidence and Mechanisms. Ageing Res. Rev. 2023, 87, 101922. [Google Scholar] [CrossRef]
- Nowak, M.; Chuchra, P.; Paprocka, J. Nonketotic Hyperglycinemia: Insight into Current Therapies. J. Clin. Med. 2022, 11, 3027. [Google Scholar] [CrossRef]
- O’Neill, B.; Croft, R.; Mann, C.; Dang, O.; Leung, S.; Galloway, M.; Phan, K.; Nathan, P. High-Dose Glycine Impairs the Prepulse Inhibition Measure of Sensorimotor Gating in Humans. J. Psychopharmacol. 2011, 25, 1632–1638. [Google Scholar] [CrossRef]
- Hashimoto, K. Glycine Transport Inhibitors for the Treatment of Schizophrenia. Open Med. Chem. J. 2010, 4, 10–19. [Google Scholar] [CrossRef]
- Brosnan, M.E.; Brosnan, J.T. Histidine Metabolism and Function. J. Nutr. 2020, 150, 2570S–2575S. [Google Scholar] [CrossRef]
- Branco, A.C.C.C.; Yoshikawa, F.S.Y.; Pietrobon, A.J.; Sato, M.N. Role of Histamine in Modulating the Immune Response and Inflammation. Mediat. Inflamm. 2018, 2018, 9524075. [Google Scholar] [CrossRef] [PubMed]
- Holeček, M. Histidine in Health and Disease: Metabolism, Physiological Importance, and Use as a Supplement. Nutrients 2020, 12, 848. [Google Scholar] [CrossRef] [PubMed]
- Vera-Aviles, M.; Vantana, E.; Kardinasari, E.; Koh, N.L.; Latunde-Dada, G.O. Protective Role of Histidine Supplementation Against Oxidative Stress Damage in the Management of Anemia of Chronic Kidney Disease. Pharmaceuticals 2018, 11, 111. [Google Scholar] [CrossRef] [PubMed]
- DiNicolantonio, J.J.; McCarty, M.F.; OKeefe, J.H. Correction: Role of Dietary Histidine in the Prevention of Obesity and Metabolic Syndrome. Open Heart 2020, 7, e000676corr1. [Google Scholar] [CrossRef]
- Thalacker-Mercer, A.E.; Gheller, M.E. Benefits and Adverse Effects of Histidine Supplementation. J. Nutr. 2020, 150, 2588S–2592S. [Google Scholar] [CrossRef]
- Ong, S.; Husain, S.; Wee, H.; Ching, J.; Kovalik, J.-P.; Cheng, M.; Schwarz, H.; Tang, T.; Ho, C. Integration of the Cortical Haemodynamic Response Measured by Functional Near-Infrared Spectroscopy and Amino Acid Analysis to Aid in the Diagnosis of Major Depressive Disorder. Diagnostics 2021, 11, 1978. [Google Scholar] [CrossRef]
- Solís-Ortiz, S.; Arriaga-Avila, V.; Trejo-Bahena, A.; Guevara-Guzmán, R. Deficiency in the Essential Amino Acids L-Isoleucine, l-Leucine and l-Histidine and Clinical Measures as Predictors of Moderate Depression in Elderly Women: A Discriminant Analysis Study. Nutrients 2021, 13, 3875. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; Xu, P.; Xu, G.; Zhang, L.; Huang, D.; Ren, M.; Zhang, L. Histidine Deficiency Inhibits Intestinal Antioxidant Capacity and Induces Intestinal Endoplasmic-Reticulum Stress, Inflammatory Response, Apoptosis, and Necroptosis in Largemouth Bass (Micropterus salmoides). Antioxidants 2022, 11, 2399. [Google Scholar] [CrossRef]
- Gibbs, N.K. l-Histidine Supplementation in Adults and Young Children with Atopic Dermatitis (Eczema). J. Nutr. 2020, 150, 2576S–2579S. [Google Scholar] [CrossRef] [PubMed]
- Ajikumar, A.; Premkumar, A.K.N.; Narayanan, S.P. The Self-Assembly of l-Histidine Might Be the Cause of Histidinemia. Sci. Rep. 2023, 13, 17461. [Google Scholar] [CrossRef]
- Wu, Z.; Xu, E.; Jiao, A.; Jin, Z.; Irudayaraj, J. Bimodal Counterpropagating-Responsive Sensing Material for the Detection of Histamine. RSC Adv. 2017, 7, 44933–44944. [Google Scholar] [CrossRef]
- Moro, J.; Tomé, D.; Schmidely, P.; Demersay, T.-C.; Azzout-Marniche, D. Histidine: A Systematic Review on Metabolism and Physiological Effects in Human and Different Animal Species. Nutrients 2020, 12, 1414. [Google Scholar] [CrossRef]
- Panula, P. Histamine Receptors, Agonists, and Antagonists in Health and Disease. In Handbook of Clinical Neurology; Swaab, D., Kreier, F., Lucassen, P., Salehi, A., Buijs, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; Volume 180, pp. 377–387. [Google Scholar] [CrossRef]
- Gorissen, S.H.M.; Phillips, S.M. Branched-Chain Amino Acids (Leucine, Isoleucine, and Valine) and Skeletal Muscle. In Nutrition and Skeletal Muscle; Walrand, S., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 283–298. [Google Scholar] [CrossRef]
- Appuhamy, J.A.D.R.N.; Knoebel, N.A.; Nayananjalie, W.A.D.; Escobar, J.; Hanigan, M.D. Isoleucine and Leucine Independently Regulate mTOR Signaling and Protein Synthesis in MAC-T Cells and Bovine Mammary Tissue Slices. J. Nutr. 2012, 142, 484–491. [Google Scholar] [CrossRef]
- Ma, Q.; Zhou, X.; Hu, L.; Chen, J.; Zhu, J.; Shan, A. Leucine and Isoleucine Have Similar Effects on Reducing Lipid Accumulation, Improving Insulin Sensitivity and Increasing the Browning of WAT in High-Fat Diet-Induced Obese Mice. Food Funct. 2020, 11, 2279–2290. [Google Scholar] [CrossRef]
- Mansoori, S.; Ho, M.Y.; Ng, K.K.; Cheng, K.K. Branched-chain Amino Acid Metabolism: Pathophysiological Mechanism and Therapeutic Intervention in Metabolic Diseases. Obes. Rev. 2025, 26, e13856. [Google Scholar] [CrossRef]
- Sperringer, J.E.; Addington, A.; Hutson, S.M. Branched-Chain Amino Acids and Brain Metabolism. Neurochem. Res. 2017, 42, 1697–1709. [Google Scholar] [CrossRef] [PubMed]
- Obvintseva, O.; Erimbetov, K.; Mikhailov, V.; Sofronova, O.; Polyakova, L. The Role and Metabolic Functions of the Branched-Chain Amino Acids: A Review. E3S Web Conf. 2022, 363, 03054. [Google Scholar] [CrossRef]
- Calder, P.C. Branched-Chain Amino Acids and Immunity. J. Nutr. 2006, 136, 288S–293S. [Google Scholar] [CrossRef]
- Alkhayal, F.A.; Al Haddad, S.; Bakraa, R.M.; Alqahtani, A. Acrodermatitis Dysmetabolica Secondary to Isoleucine Deficiency in Infant with Maple Syrup Urine Disease. Dermatol. Rep. 2023, 15, 9750. [Google Scholar] [CrossRef]
- Uaariyapanichkul, J.; Saengpanit, P.; Damrongphol, P.; Suphapeetiporn, K.; Chomtho, S. Skin Lesions Associated with Nutritional Management of Maple Syrup Urine Disease. Case Rep. Dermatol. Med. 2017, 2017, 3905658. [Google Scholar] [CrossRef]
- Du, Y.; Meng, Q.; Zhang, Q.; Guo, F. Isoleucine or Valine Deprivation Stimulates Fat Loss via Increasing Energy Expenditure and Regulating Lipid Metabolism in WAT. Amino Acids 2012, 43, 725–734. [Google Scholar] [CrossRef]
- Liu, S.; Sun, Y.; Zhao, R.; Wang, Y.; Zhang, W.; Pang, W. Isoleucine Increases Muscle Mass through Promoting Myogenesis and Intramyocellular Fat Deposition. Food Funct. 2021, 12, 144–153. [Google Scholar] [CrossRef] [PubMed]
- Baranyi, A.; Amouzadeh-Ghadikolai, O.; Von Lewinski, D.; Rothenhäusler, H.-B.; Theokas, S.; Robier, C.; Mangge, H.; Reicht, G.; Hlade, P.; Meinitzer, A. Branched-Chain Amino Acids as New Biomarkers of Major Depression—A Novel Neurobiology of Mood Disorder. PLoS ONE 2016, 11, e0160542. [Google Scholar] [CrossRef] [PubMed]
- Sardar, S.W.; Nam, J.; Kim, T.E.; Kim, H.; Park, Y.H. Identification of Novel Biomarkers for Early Diagnosis of Atherosclerosis Using High-Resolution Metabolomics. Metabolites 2023, 13, 1160. [Google Scholar] [CrossRef]
- O’Rielly, R.; Li, H.; Lim, S.M.; Yazbeck, R.; Kritas, S.; Ullrich, S.S.; Feinle-Bisset, C.; Heilbronn, L.; Page, A.J. The Effect of Isoleucine Supplementation on Body Weight Gain and Blood Glucose Response in Lean and Obese Mice. Nutrients 2020, 12, 2446. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.A.; Abidi, S.F. Dietary Isoleucine Requirement of Fingerling Indian Major Carp, Labeo Rohita (Hamilton). Aquac. Nutr. 2007, 13, 424–430. [Google Scholar] [CrossRef]
- Sharf, Y.; Khan, M.A. Effect of Dietary Isoleucine Level on Growth, Protein Retention Efficiency, Haematological Parameter, Lysozyme Activity and Serum Antioxidant Status of Fingerling Channa punctatus (Bloch). Aquac. Nutr. 2020, 26, 908–920. [Google Scholar] [CrossRef]
- Ren, M.; Habte-Tsion, H.-M.; Liu, B.; Miao, L.; Ge, X.; Xie, J.; Zhou, Q. Dietary Isoleucine Requirement of Juvenile Blunt Snout Bream, Megalobrama amblycephala. Aquac. Nutr. 2017, 23, 322–330. [Google Scholar] [CrossRef]
- Wang, X.; Wang, X.; Xie, F.; Sun, Z.; Guo, B.; Li, F.; Wang, S.; Wang, Y.; Tian, Y.; Zhao, Y.; et al. Leucine Mediates Cognitive Dysfunction in Early Life Stress-Induced Mental Disorders by Activating Autophagy. Front. Cell. Neurosci. 2023, 16, 1060712. [Google Scholar] [CrossRef]
- Duan, Y.; Li, F.; Li, Y.; Tang, Y.; Kong, X.; Feng, Z.; Anthony, T.G.; Watford, M.; Hou, Y.; Wu, G.; et al. The Role of Leucine and Its Metabolites in Protein and Energy Metabolism. Amino Acids 2016, 48, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Chi, Y.; Burkhardt, B.R.; Guan, Y.; Wolf, B.A. Leucine Metabolism in Regulation of Insulin Secretion from Pancreatic Beta Cells. Nutr. Rev. 2010, 68, 270–279. [Google Scholar] [CrossRef]
- Laeger, T.; Reed, S.D.; Henagan, T.M.; Fernandez, D.H.; Taghavi, M.; Addington, A.; Münzberg, H.; Martin, R.J.; Hutson, S.M.; Morrison, C.D. Leucine Acts in the Brain to Suppress Food Intake but Does Not Function as a Physiological Signal of Low Dietary Protein. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2014, 307, R310–R320. [Google Scholar] [CrossRef]
- Blouet, C.; Jo, Y.-H.; Li, X.; Schwartz, G.J. Mediobasal Hypothalamic Leucine Sensing Regulates Food Intake through Activation of a Hypothalamus-Brainstem Circuit. J. Neurosci. 2009, 29, 8302–8311. [Google Scholar] [CrossRef]
- Son, S.M.; Park, S.J.; Stamatakou, E.; Vicinanza, M.; Menzies, F.M.; Rubinsztein, D.C. Leucine Regulates Autophagy via Acetylation of the mTORC1 Component Raptor. Nat. Commun. 2020, 11, 3148. [Google Scholar] [CrossRef]
- Garlick, P.J. The Role of Leucine in the Regulation of Protein Metabolism. J. Nutr. 2005, 135, 1553S–1556S. [Google Scholar] [CrossRef] [PubMed]
- Ely, I.A.; Phillips, B.E.; Smith, K.; Wilkinson, D.J.; Piasecki, M.; Breen, L.; Larsen, M.S.; Atherton, P.J. A Focus on Leucine in the Nutritional Regulation of Human Skeletal Muscle Metabolism in Ageing, Exercise and Unloading States. Clin. Nutr. 2023, 42, 1849–1865. [Google Scholar] [CrossRef]
- Hong, W.; You, G.; Luo, Z.; Zhang, M.; Chen, J. High Gestational Leucine Level Dampens WDPCP/MAPK Signaling to Impair the EMT and Migration of Cardiac Microvascular Endothelial Cells in Congenital Heart Defects. Pulm. Circ. 2024, 14, e70013. [Google Scholar] [CrossRef]
- Satomi, S.; Morio, A.; Miyoshi, H.; Nakamura, R.; Tsutsumi, R.; Sakaue, H.; Yasuda, T.; Saeki, N.; Tsutsumi, Y.M. Branched-Chain Amino Acids-Induced Cardiac Protection against Ischemia/Reperfusion Injury. Life Sci. 2020, 245, 117368. [Google Scholar] [CrossRef]
- Zhang, L.; Li, F.; Guo, Q.; Duan, Y.; Wang, W.; Zhong, Y.; Yang, Y.; Yin, Y. Leucine Supplementation: A Novel Strategy for Modulating Lipid Metabolism and Energy Homeostasis. Nutrients 2020, 12, 1299. [Google Scholar] [CrossRef]
- Jiao, J.; Han, S.-F.; Zhang, W.; Xu, J.-Y.; Tong, X.; Yin, X.-B.; Yuan, L.-X.; Qin, L.-Q. Chronic Leucine Supplementation Improves Lipid Metabolism in C57BL/6J Mice Fed with a High-Fat/Cholesterol Diet. Food Nutr. Res. 2016, 60, 31304. [Google Scholar] [CrossRef]
- Xiao, F.; Huang, Z.; Li, H.; Yu, J.; Wang, C.; Chen, S.; Meng, Q.; Cheng, Y.; Gao, X.; Li, J.; et al. Leucine Deprivation Increases Hepatic Insulin Sensitivity via GCN2/mTOR/S6K1 and AMPK Pathways. Diabetes 2011, 60, 746–756. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Yin, H.; Guo, Y.; Fang, Y.; Yuan, F.; Chen, S.; Guo, F. A Fifty Percent Leucine-Restricted Diet Reduces Fat Mass and Improves Glucose Regulation. Nutr. Metab. 2021, 18, 34. [Google Scholar] [CrossRef] [PubMed]
- Kathait, A.; Puac, P.; Castillo, M. Imaging Findings in Maple Syrup Urine Disease: A Case Report. J. Pediatr. Neurosci. 2018, 13, 103. [Google Scholar] [CrossRef]
- Blackburn, P.; Gass, J.; Pinto e Vairo, F.; Farnham, K.; Atwal, H.; Macklin, S.; Klee, E.; Atwal, P. Maple Syrup Urine Disease: Mechanisms and Management. Appl. Clin. Genet. 2017, 10, 57–66. [Google Scholar] [CrossRef]
- Holecek, M.; Siman, P.; Vodenicarovova, M.; Kandar, R. Alterations in Protein and Amino Acid Metabolism in Rats Fed a Branched-Chain Amino Acid- or Leucine-Enriched Diet during Postprandial and Postabsorptive States. Nutr. Metab. 2016, 13, 12. [Google Scholar] [CrossRef] [PubMed]
- Ishiguro, H.; Katano, Y.; Nakano, I.; Ishigami, M.; Hayashi, K.; Honda, T.; Goto, H.; Bajotto, G.; Maeda, K.; Shimomura, Y. Clofibrate Treatment Promotes Branched-Chain Amino Acid Catabolism and Decreases the Phosphorylation State of mTOR, eIF4E-BP1, and S6K1 in Rat Liver. Life Sci. 2006, 79, 737–743. [Google Scholar] [CrossRef]
- Kwon, W.B.; Touchette, K.J.; Simongiovanni, A.; Syriopoulos, K.; Wessels, A.; Stein, H.H. Excess Dietary Leucine in Diets for Growing Pigs Reduces Growth Performance, Biological Value of Protein, Protein Retention, and Serotonin Synthesis1. J. Anim. Sci. 2019, 97, 4282–4292. [Google Scholar] [CrossRef]
- Wessels, A.G.; Kluge, H.; Hirche, F.; Kiowski, A.; Bartelt, J.; Corrent, E.; Stangl, G.I. High Leucine Intake Reduces the Concentration of Hypothalamic Serotonin in Piglets1. J. Anim. Sci. 2016, 94 (Suppl. S3), 26–29. [Google Scholar] [CrossRef]
- Tan, M.; Peng, C.; Anderson, K.A.; Chhoy, P.; Xie, Z.; Dai, L.; Park, J.; Chen, Y.; Huang, H.; Zhang, Y.; et al. Lysine Glutarylation Is a Protein Posttranslational Modification Regulated by SIRT5. Cell Metab. 2014, 19, 605–617. [Google Scholar] [CrossRef]
- Zhang, Z.; Tan, M.; Xie, Z.; Dai, L.; Chen, Y.; Zhao, Y. Identification of Lysine Succinylation as a New Post-Translational Modification. Nat. Chem. Biol. 2011, 7, 58–63. [Google Scholar] [CrossRef]
- Maas, M.N.; Hintzen, J.C.J.; Porzberg, M.R.B.; Mecinović, J. Trimethyllysine: From Carnitine Biosynthesis to Epigenetics. Int. J. Mol. Sci. 2020, 21, 9451. [Google Scholar] [CrossRef]
- Strijbis, K.; Vaz, F.M.; Distel, B. Enzymology of the Carnitine Biosynthesis Pathway. IUBMB Life 2010, 62, 357–362. [Google Scholar] [CrossRef]
- Xu, J.-Y.; Xu, Z.; Zhou, Y.; Ye, B.-C. Lysine Malonylome May Affect the Central Metabolism and Erythromycin Biosynthesis Pathway in Saccharopolyspora erythraea. J. Proteome Res. 2016, 15, 1685–1701. [Google Scholar] [CrossRef] [PubMed]
- Zou, L.; Yang, Y.; Wang, Z.; Fu, X.; He, X.; Song, J.; Li, T.; Ma, H.; Yu, T. Lysine Malonylation and Its Links to Metabolism and Diseases. Aging Dis. 2023, 14, 84. [Google Scholar] [CrossRef] [PubMed]
- Weinert, B.T.; Wagner, S.A.; Horn, H.; Henriksen, P.; Liu, W.R.; Olsen, J.V.; Jensen, L.J.; Choudhary, C. Proteome-Wide Mapping of the Drosophila Acetylome Demonstrates a High Degree of Conservation of Lysine Acetylation. Sci. Signal. 2011, 4, ra48. [Google Scholar] [CrossRef]
- Dambacher, S.; Hahn, M.; Schotta, G. Epigenetic Regulation of Development by Histone Lysine Methylation. Heredity 2010, 105, 24–37. [Google Scholar] [CrossRef]
- Payne, A.; Wang, X.; Ivy, M.T.; Stewart, A.; Nelson, K.; Darris, C.; Nahashon, S.N. Lysine Mediation of Neuroendocrine Food Regulation in Guinea Fowl. Poult. Sci. 2016, 95, 276–286. [Google Scholar] [CrossRef] [PubMed]
- Dar, S.A.; Srivastava, P.P.; Varghese, T.; Gupta, S.; Krishna, G.; Nuzaiba, P.M.; Leya, T. Expression of Growth and Hunger Related Genes and Physio-Biochemical Responses in Labeo rohita (Hamilton, 1822) Fed with Lysine and Betaine. Cell. Physiol. Biochem. 2019, 53, 851–864. [Google Scholar] [CrossRef]
- Yamauchi, M.; Sricholpech, M. Lysine Post-Translational Modifications of Collagen. Essays Biochem. 2012, 52, 113–133. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, R.; Bains, K. Protein, Lysine and Vitamin D: Critical Role in Muscle and Bone Health. Crit. Rev. Food Sci. Nutr. 2022, 62, 2548–2559. [Google Scholar] [CrossRef]
- Huang, D.; Maulu, S.; Ren, M.; Liang, H.; Ge, X.; Ji, K.; Yu, H. Dietary Lysine Levels Improved Antioxidant Capacity and Immunity via the TOR and P38 MAPK Signaling Pathways in Grass Carp, Ctenopharyngodon Idellus Fry. Front. Immunol. 2021, 12, 635015. [Google Scholar] [CrossRef] [PubMed]
- Tanphaichitr, V.; Broquist, H.P. Lysine Deficiency in the Rat: Concomitant Impairment in Carnitine Biosynthesis. J. Nutr. 1973, 103, 80–87. [Google Scholar] [CrossRef]
- Ruby, P.; Ahilan, B.; Antony, C.; Manikandavelu, D.; Moses, T.L.S. Effect of Dietary Lysine and Methionine Supplementation on the Growth and Physiological Responses of Pearlspot Fingerlings, Etroplus suratensis. Indian J. Anim. Res. 2022, 56, 945–958. [Google Scholar] [CrossRef]
- Han, H.; Yin, J.; Wang, B.; Huang, X.; Yao, J.; Zheng, J.; Fan, W.; Li, T.; Yin, Y. Effects of Dietary Lysine Restriction on Inflammatory Responses in Piglets. Sci. Rep. 2018, 8, 2451. [Google Scholar] [CrossRef]
- Mulyantini, N.G.A. The Antibody and Organ Immune Responses of Broiler Starter Fed Diets with Graded Levels of Digestible Lysine. Med. Pet. 2014, 37, 57–60. [Google Scholar] [CrossRef]
- Goda, Y.; Yamanaka, D.; Nishi, H.; Masuda, M.; Kamei, H.; Kumano, M.; Ito, K.; Katsumata, M.; Yamanouchi, K.; Kataoka, N.; et al. Dietary Lysine Restriction Induces Lipid Accumulation in Skeletal Muscle through an Increase in Serum Threonine Levels in Rats. J. Biol. Chem. 2021, 297, 101179. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Lee, K.S.; Kwon, D.-H.; Bong, J.J.; Jeong, J.Y.; Nam, Y.S.; Lee, M.S.; Liu, X.; Baik, M. Severe Dietary Lysine Restriction Affects Growth and Body Composition and Hepatic Gene Expression for Nitrogen Metabolism in Growing Rats. J. Anim. Physiol. Anim. Nutr. 2014, 98, 149–157. [Google Scholar] [CrossRef]
- Poplawski, J.; Radmilovic, A.; Montina, T.D.; Metz, G.A.S. Cardiorenal Metabolic Biomarkers Link Early Life Stress to Risk of Non-Communicable Diseases and Adverse Mental Health Outcomes. Sci. Rep. 2020, 10, 13295. [Google Scholar] [CrossRef] [PubMed]
- Batchu, P.; Terrill, T.H.; Kouakou, B.; Estrada-Reyes, Z.M.; Kannan, G. Plasma Metabolomic Profiles as Affected by Diet and Stress in Spanish Goats. Sci. Rep. 2021, 11, 12607. [Google Scholar] [CrossRef]
- Griffith, R.S.; DeLong, D.C.; Nelson, J.D. Relation of Arginine-Lysine Antagonism to Herpes Simplex Growth in Tissue Culture. Chemotherapy 1981, 27, 209–213. [Google Scholar] [CrossRef]
- Kumar, A.; Irani, K. Sirtuin1-Regulated Lysine Acetylation of p66Shc Governs Diabetes-Induced Vascular Oxidative Stress and Endothelial Dysfunction. Proc. Natl. Acad. Sci. USA 2017, 114, 1714–1719. [Google Scholar] [CrossRef]
- Seminotti, B.; Leipnitz, G.; Amaral, A.U.; Fernandes, C.G.; Silva, L.D.B.D.; Tonin, A.M.; Vargas, C.R.; Wajner, M. Lysine Induces Lipid and Protein Damage and Decreases Reduced Glutathione Concentrations in Brain of Young Rats. Intl. J. Dev. Neurosci. 2008, 26, 693–698. [Google Scholar] [CrossRef]
- Biczó, G.; Hegyi, P.; Dósa, S.; Shalbuyeva, N.; Berczi, S.; Sinervirta, R.; Hracskó, Z.; Siska, A.; Kukor, Z.; Jármay, K.; et al. The Crucial Role of Early Mitochondrial Injury in L-Lysine-Induced Acute Pancreatitis. Antioxid. Redox Signal. 2011, 15, 2669–2681. [Google Scholar] [CrossRef]
- Hayamizu, K.; Oshima, I.; Fukuda, Z.; Kuramochi, Y.; Nagai, Y.; Izumo, N.; Nakano, M. Safety Assessment of L-Lysine Oral Intake: A Systematic Review. Amino Acids 2019, 51, 647–659. [Google Scholar] [CrossRef]
- Wingfield, P.T. N-Terminal Methionine Processing. Curr. Protoc. Protein Sci. 2017, 88, 6–14. [Google Scholar] [CrossRef] [PubMed]
- McBreairty, L.E.; Bertolo, R.F. The Dynamics of Methionine Supply and Demand during Early Development. Appl. Physiol. Nutr. Metab. 2016, 41, 581–587. [Google Scholar] [CrossRef]
- Hesse, H. Molecular Aspects of Methionine Biosynthesis. Trends Plant Sci. 2003, 8, 259–262. [Google Scholar] [CrossRef]
- Campbell, K.; Vowinckel, J.; Keller, M.A.; Ralser, M. Methionine Metabolism Alters Oxidative Stress Resistance via the Pentose Phosphate Pathway. Antioxid. Redox Signal. 2016, 24, 543–547. [Google Scholar] [CrossRef]
- Kachungwa Lugata, J.; Ortega, A.D.S.V.; Szabó, C. The Role of Methionine Supplementation on Oxidative Stress and Antioxidant Status of Poultry-A Review. Agriculture 2022, 12, 1701. [Google Scholar] [CrossRef]
- Li, P.; Fang, X.; Hao, G.; Li, X.; Cai, Y.; Yan, Y.; Zan, L.; Yang, R.; Liu, B. Methionine Promotes Milk Protein Synthesis via the PI3K-mTOR Signaling Pathway in Human Mammary Epithelial Cells. Metabolites 2023, 13, 1149. [Google Scholar] [CrossRef]
- Métayer-Coustard, S.; Mameri, H.; Seiliez, I.; Crochet, S.; Crépieux, P.; Mercier, Y.; Geraert, P.-A.; Tesseraud, S. Methionine Deprivation Regulates the S6K1 Pathway and Protein Synthesis in Avian QM7 Myoblasts without Activating the GCN2/eIF2 Alpha Cascade. J. Nutr. 2010, 140, 1539–1545. [Google Scholar] [CrossRef]
- Felix, T.M.S.; Souza, C.S.; Santos, S.C.L.; Campos, D.B.; Aggrey, S.E.; Guerra, R.R.; Silva, J.H.V. Methionine Sources at Different Dietary Levels Alters the Growth and Expression of Genes Related to Homocysteine Remethylation in the Jejunum of Broilers. PLoS ONE 2023, 18, e0291998. [Google Scholar] [CrossRef]
- Stipanuk, M.H. Metabolism of Sulfur-Containing Amino Acids: How the Body Copes with Excess Methionine, Cysteine, and Sulfide. J. Nutr. 2020, 150, 2494S–2505S. [Google Scholar] [CrossRef] [PubMed]
- Martínez, Y.; Li, X.; Liu, G.; Bin, P.; Yan, W.; Más, D.; Valdivié, M.; Hu, C.-A.A.; Ren, W.; Yin, Y. The Role of Methionine on Metabolism, Oxidative Stress, and Diseases. Amino Acids 2017, 49, 2091–2098. [Google Scholar] [CrossRef] [PubMed]
- Pettit, A.P.; Jonsson, W.O.; Bargoud, A.R.; Mirek, E.T.; Peelor, F.F.; Wang, Y.; Gettys, T.W.; Kimball, S.R.; Miller, B.F.; Hamilton, K.L.; et al. Dietary Methionine Restriction Regulates Liver Protein Synthesis and Gene Expression Independently of Eukaryotic Initiation Factor 2 Phosphorylation in Mice. J. Nutr. 2017, 147, 1031–1040. [Google Scholar] [CrossRef] [PubMed]
- Ables, G.P.; Johnson, J.E. Pleiotropic Responses to Methionine Restriction. Exp. Gerontol. 2017, 94, 83–88. [Google Scholar] [CrossRef]
- Plaisance, E.P.; Greenway, F.L.; Boudreau, A.; Hill, K.L.; Johnson, W.D.; Krajcik, R.A.; Perrone, C.E.; Orentreich, N.; Cefalu, W.T.; Gettys, T.W. Dietary Methionine Restriction Increases Fat Oxidation in Obese Adults with Metabolic Syndrome. J. Clin. Endocrinol. Metab. 2011, 96, E836–E840. [Google Scholar] [CrossRef]
- Wang, L.; Ren, B.; Zhang, Q.; Chu, C.; Zhao, Z.; Wu, J.; Zhao, W.; Liu, Z.; Liu, X. Methionine Restriction Alleviates High-Fat Diet-Induced Obesity: Involvement of Diurnal Metabolism of Lipids and Bile Acids. Biochim. Biophys. Acta 2020, 1866, 165908. [Google Scholar] [CrossRef]
- Ables, G.P.; Ouattara, A.; Hampton, T.G.; Cooke, D.; Perodin, F.; Augie, I.; Orentreich, D.S. Dietary Methionine Restriction in Mice Elicits an Adaptive Cardiovascular Response to Hyperhomocysteinemia. Sci. Rep. 2015, 5, 8886. [Google Scholar] [CrossRef]
- Kitada, M.; Ogura, Y.; Monno, I.; Xu, J.; Koya, D. Effect of Methionine Restriction on Aging: Its Relationship to Oxidative Stress. Biomedicines 2021, 9, 130. [Google Scholar] [CrossRef] [PubMed]
- Lail, H.; Mabb, A.M.; Parent, M.B.; Pinheiro, F.; Wanders, D. Effects of Dietary Methionine Restriction on Cognition in Mice. Nutrients 2023, 15, 4950. [Google Scholar] [CrossRef]
- Souza Matos, M.; Platt, B.; Delibegović, M. Effects of Dietary Restriction on Metabolic and Cognitive Health. Proc. Nutr. Soc. 2021, 80, 126–138. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, P. Methionine Dependence of Cancer. Biomolecules 2020, 10, 568. [Google Scholar] [CrossRef]
- Yamamoto, J.; Han, Q.; Simon, M.; Thomas, D.; Hoffman, R.M. Methionine Restriction: Ready for Prime Time in the Cancer Clinic? Anticancer Res. 2022, 42, 641–644. [Google Scholar] [CrossRef]
- Brind, J.; Malloy, V.; Augie, I.; Caliendo, N.; Vogelman, J.H.; Zimmerman, J.A.; Orentreich, N. Dietary Glycine Supplementation Mimics Lifespan Extension by Dietary Methionine Restriction in Fisher 344 Rats. FASEB J. 2011, 25, 528.2. [Google Scholar] [CrossRef]
- Kim, J.; Kim, H.; Roh, H.; Kwon, Y. Causes of Hyperhomocysteinemia and Its Pathological Significance. Arch. Pharm. Res. 2018, 41, 372–383. [Google Scholar] [CrossRef]
- Navik, U.; Sheth, V.G.; Khurana, A.; Jawalekar, S.S.; Allawadhi, P.; Gaddam, R.R.; Bhatti, J.S.; Tikoo, K. Methionine as a Double-Edged Sword in Health and Disease: Current Perspective and Future Challenges. Ageing Res. Rev. 2021, 72, 101500. [Google Scholar] [CrossRef]
- Bhatia, P.; Singh, N. Homocysteine Excess: Delineating the Possible Mechanism of Neurotoxicity and Depression. Fundam. Clin. Pharmacol. 2015, 29, 522–528. [Google Scholar] [CrossRef]
- Hamad, Z.M. Role of Folic Acid in Reducing the Renal Damage Induced by Amino Acid Methionine in Male Rats. J. Wasit Sci. Med. 2022, 4, 62–70. [Google Scholar] [CrossRef]
- Ewing, L.E.; Skinner, C.M.; Pathak, R.; Yee, E.U.; Krager, K.; Gurley, P.C.; Melnyk, S.; Boerma, M.; Hauer-Jensen, M.; Koturbash, I. Dietary Methionine Supplementation Exacerbates Gastrointestinal Toxicity in a Mouse Model of Abdominal Irradiation. Int. J. Radiat. Oncol. Biol. Phys. 2021, 109, 581–593. [Google Scholar] [CrossRef]
- Kim, S.-Y.; Kim, H.; Min, H. Effects of Excessive Dietary Methionine on Oxidative Stress and Dyslipidemia in Chronic Ethanol-Treated Rats. Nutr. Res. Pract. 2015, 9, 144. [Google Scholar] [CrossRef]
- Stefanello, F.M.; Matté, C.; Pederzolli, C.D.; Kolling, J.; Mescka, C.P.; Lamers, M.L.; De Assis, A.M.; Perry, M.L.; Dos Santos, M.F.; Dutra-Filho, C.S. Hypermethioninemia Provokes Oxidative Damage and Histological Changes in Liver of Rats. Biochimie 2009, 91, 961–968. [Google Scholar] [CrossRef]
- Kano, A.K.; Hougham, D.F.; Charkey, L.W. Effects of Dietary DL-Methionine on Tissue Levels of Glutathione in Hypothyroid Chicks. J. Nutr. 1968, 94, 233–236. [Google Scholar] [CrossRef]
- Matthews, D.E. An Overview of Phenylalanine and Tyrosine Kinetics in Humans. J. Nutr. 2007, 137, 1549S–1555S. [Google Scholar] [CrossRef]
- Akram, M.; Daniyal, M.; Ali, A.; Zainab, R.; Muhammad Ali Shah, S.; Munir, N.; Mahmood Tahir, I. Role of Phenylalanine and Its Metabolites in Health and Neurological Disorders. In Synucleins—Biochemistry and Role in Diseases; Surguchov, A., Ed.; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef]
- Flydal, M.I.; Martinez, A. Phenylalanine Hydroxylase: Function, Structure, and Regulation. IUBMB Life 2013, 65, 341–349. [Google Scholar] [CrossRef]
- Feng, J.; Kang, C.; Wang, C.; Ding, L.; Zhu, W.; Hang, S. L-Phenylalanine Increased Gut Hormone Secretion through Calcium-Sensing Receptor in the Porcine Duodenum. Animals 2019, 9, 476. [Google Scholar] [CrossRef]
- Amin, A.; Frampton, J.; Liu, Z.; Franco-Becker, G.; Norton, M.; Alaa, A.; Li, J.V.; Murphy, K.G. Differential Effects of L- and D-phenylalanine on Pancreatic and Gastrointestinal Hormone Release in Humans: A Randomized Crossover Study. Diabetes Obes. Metab. 2021, 23, 147–157. [Google Scholar] [CrossRef]
- Van Vliet, D.; Van Dam, E.; Van Rijn, M.; Derks, T.G.J.; Venema-Liefaard, G.; Hitzert, M.M.; Lunsing, R.J.; Heiner-Fokkema, M.R.; Van Spronsen, F.J. Infants with Tyrosinemia Type 1: Should Phenylalanine Be Supplemented? In JIMD Reports; Zschocke, J., Baumgartner, M., Morava, E., Patterson, M., Rahman, S., Peters, V., Eds.; JIMD Reports; Springer: Berlin/Heidelberg, Germany, 2014; Volume 18, pp. 117–124. [Google Scholar] [CrossRef]
- Van Ginkel, W.G.; Van Reemst, H.E.; Kienstra, N.S.; Daly, A.; Rodenburg, I.L.; MacDonald, A.; Burgerhof, J.G.M.; De Blaauw, P.; Van De Krogt, J.; Santra, S.; et al. The Effect of Various Doses of Phenylalanine Supplementation on Blood Phenylalanine and Tyrosine Concentrations in Tyrosinemia Type 1 Patients. Nutrients 2019, 11, 2816. [Google Scholar] [CrossRef]
- Robertson, L.; Adam, S.; Ellerton, C.; Ford, S.; Hill, M.; Randles, G.; Woodall, A.; Young, C.; MacDonald, A. Dietetic Management of Adults with Phenylketonuria (PKU) in the UK: A Care Consensus Document. Nutrients 2022, 14, 576. [Google Scholar] [CrossRef]
- Van Spronsen, F.J.; Hoeksma, M.; Reijngoud, D. Brain Dysfunction in Phenylketonuria: Is Phenylalanine Toxicity the Only Possible Cause? J. Inherit. Metab. Dis. 2009, 32, 46–51. [Google Scholar] [CrossRef]
- Rovelli, V.; Longo, N. Phenylketonuria and the Brain. Mol. Genet. Metab. 2023, 139, 107583. [Google Scholar] [CrossRef] [PubMed]
- Didycz, B.; Bik-Multanowski, M. Blood Phenylalanine Instability Strongly Correlates with Anxiety in Phenylketonuria. Mol. Genet. Metab. Rep. 2018, 14, 80–82. [Google Scholar] [CrossRef] [PubMed]
- Boyer, S.W.; Barclay, L.J.; Burrage, L.C. Inherited Metabolic Disorders: Aspects of Chronic Nutrition Management. Nutr. Clin. Pract. 2015, 30, 502–510. [Google Scholar] [CrossRef] [PubMed]
- Arbesman, J.; Ravichandran, S.; Funchain, P.; Thompson, C.L. Melanoma Cases Demonstrate Increased Carrier Frequency of Phenylketonuria/Hyperphenylalanemia Mutations. Pigment Cell Melanoma Res. 2018, 31, 529–533. [Google Scholar] [CrossRef]
- Murr, C.; Grammer, T.B.; Meinitzer, A.; Kleber, M.E.; März, W.; Fuchs, D. Immune Activation and Inflammation in Patients with Cardiovascular Disease Are Associated with Higher Phenylalanine to Tyrosine Ratios: The Ludwigshafen Risk and Cardiovascular Health Study. J. Amino Acids 2014, 2014, 1–6. [Google Scholar] [CrossRef]
- Chen, W.; Wang, C.; Cheng, C.; Liu, M.; Chu, C.; Wu, H.; Huang, P.; Lin, Y.; Ko, T.; Chen, W.; et al. Elevated Plasma Phenylalanine Predicts Mortality in Critical Patients with Heart Failure. ESC Heart Fail. 2020, 7, 2884–2893. [Google Scholar] [CrossRef]
- Zhao, K.; Cheng, Z.; Guo, Q.; Yao, W.; Liu, H.; Zhou, B.; Jiang, T. Characterization of the Poplar R2R3-MYB Gene Family and Over-Expression of PsnMYB108 Confers Salt Tolerance in Transgenic Tobacco. Front. Plant Sci. 2020, 11, 571881. [Google Scholar] [CrossRef]
- Ghosh, U.K.; Islam, M.N.; Siddiqui, M.N.; Cao, X.; Khan, M.A.R. Proline, a Multifaceted Signalling Molecule in Plant Responses to Abiotic Stress: Understanding the Physiological Mechanisms. Plant Biol. J. 2022, 24, 227–239. [Google Scholar] [CrossRef]
- Krishnan, N.; Dickman, M.B.; Becker, D.F. Proline Modulates the Intracellular Redox Environment and Protects Mammalian Cells against Oxidative Stress. Free Radic. Biol. Med. 2008, 44, 671–681. [Google Scholar] [CrossRef]
- Egli, J.; Schnitzer, T.; Dietschreit, J.C.B.; Ochsenfeld, C.; Wennemers, H. Why Proline? Influence of Ring-Size on the Collagen Triple Helix. Org. Lett. 2020, 22, 348–351. [Google Scholar] [CrossRef]
- Krane, S.M. The Importance of Proline Residues in the Structure, Stability and Susceptibility to Proteolytic Degradation of Collagens. Amino Acids 2008, 35, 703–710. [Google Scholar] [CrossRef]
- Kim, E.; Chen, C.; Chu, M.J.; Hamstra, M.F.; Bentley, W.E.; Payne, G.F. Proline-Selective Electrochemiluminescence Detecting a Single Amino Acid Variation Between A1 and A2 β-Casein Containing Milks. Adv. Sci. 2025, 12, 2411956. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.-K.; Becker, D.F.; Tanner, J.J. Structure, Function, and Mechanism of Proline Utilization A (PutA). Arch. Biochem. Biophys. 2017, 632, 142–157. [Google Scholar] [CrossRef] [PubMed]
- Phang, J.M. Proline Metabolism in Cell Regulation and Cancer Biology: Recent Advances and Hypotheses. Antioxid. Redox Signal. 2019, 30, 635–649. [Google Scholar] [CrossRef] [PubMed]
- Geng, P.; Qin, W.; Xu, G. Proline Metabolism in Cancer. Amino Acids 2021, 53, 1769–1777. [Google Scholar] [CrossRef]
- Chalecka, M.; Kazberuk, A.; Palka, J.; Surazynski, A. P5C as an Interface of Proline Interconvertible Amino Acids and Its Role in Regulation of Cell Survival and Apoptosis. Int. J. Mol. Sci. 2021, 22, 11763. [Google Scholar] [CrossRef]
- Hu, C.-A.A.; Khalil, S.; Zhaorigetu, S.; Liu, Z.; Tyler, M.; Wan, G.; Valle, D. Human Δ1-Pyrroline-5-Carboxylate Synthase: Function and Regulation. Amino Acids 2008, 35, 665–672. [Google Scholar] [CrossRef]
- Savio, L.E.B.; Vuaden, F.C.; Piato, A.L.; Bonan, C.D.; Wyse, A.T.S. Behavioral Changes Induced by Long-Term Proline Exposure Are Reversed by Antipsychotics in Zebrafish. Prog. Neuro Psychopharmacol. Biol. Psychiatry 2012, 36, 258–263. [Google Scholar] [CrossRef]
- Namavar, Y.; Duineveld, D.J.; Both, G.I.A.; Fiksinski, A.M.; Vorstman, J.A.S.; Verhoeven-Duif, N.M.; Zinkstok, J.R. Psychiatric Phenotypes Associated with Hyperprolinemia: A Systematic Review. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2021, 186, 289–317. [Google Scholar] [CrossRef] [PubMed]
- Chun, S.C.; Paramasivan, M.; Chandrasekaran, M. Proline Accumulation Influenced by Osmotic Stress in Arbuscular Mycorrhizal Symbiotic Plants. Front. Microbiol. 2018, 9, 2525. [Google Scholar] [CrossRef]
- Dunn, R.; Dolianitis, C. Prolidase Deficiency: The Use of Topical Proline for Treatment of Leg Ulcers. Australas. J. Dermatol. 2008, 49, 237–238. [Google Scholar] [CrossRef] [PubMed]
- Baumgartner, M.R.; Rabier, D.; Nassogne, M.-C.; Dufier, J.-L.; Padovani, J.-P.; Kamoun, P.; Valle, D.; Saudubray, J.-M. Δ1-Pyrroline-5-Carboxylate Synthase Deficiency: Neurodegeneration, Cataracts and Connective Tissue Manifestations Combined with Hyperammonaemia and Reduced Ornithine, Citrulline, Arginine and Proline. Eur. J. Pediatr. 2005, 164, 31–36. [Google Scholar] [CrossRef]
- Derbali, I.; Derbali, W.; Gharred, J.; Manaa, A.; Slama, I.; Koyro, H.-W. Mitigating Salinity Stress in Quinoa (Chenopodium quinoa Willd.) with Biochar and Superabsorber Polymer Amendments. Plants 2023, 13, 92. [Google Scholar] [CrossRef] [PubMed]
- Mitsubuchi, H.; Nakamura, K.; Matsumoto, S.; Endo, F. Biochemical and Clinical Features of Hereditary Hyperprolinemia. Pediatr. Int. 2014, 56, 492–496. [Google Scholar] [CrossRef]
- Delwing-Dal Magro, D.; Roecker, R.; Junges, G.M.; Rodrigues, A.F.; Delwing-de Lima, D.; Da Cruz, J.G.P.; Wyse, A.T.S.; Pitz, H.S.; Zeni, A.L.B. Protective Effect of Green Tea Extract against Proline-Induced Oxidative Damage in the Rat Kidney. Biomed. Pharmacother. 2016, 83, 1422–1427. [Google Scholar] [CrossRef]
- Delwing, D.; Bavaresco, C.S.; Wannmacher, C.M.D.; Wajner, M.; Dutra-Filho, C.S.; Wyse, A.T.S. Proline Induces Oxidative Stress in Cerebral Cortex of Rats. Intl. J. Dev. Neurosci. 2003, 21, 105–110. [Google Scholar] [CrossRef]
- Zhou, X.; Tian, C.; Cao, Y.; Zhao, M.; Wang, K. The Role of Serine Metabolism in Lung Cancer: From Oncogenesis to Tumor Treatment. Front. Genet. 2023, 13, 1084609. [Google Scholar] [CrossRef]
- Reid, M.A.; Allen, A.E.; Liu, S.; Liberti, M.V.; Liu, P.; Liu, X.; Dai, Z.; Gao, X.; Wang, Q.; Liu, Y.; et al. Serine Synthesis through PHGDH Coordinates Nucleotide Levels by Maintaining Central Carbon Metabolism. Nat. Commun. 2018, 9, 5442. [Google Scholar] [CrossRef]
- Maugard, M.; Vigneron, P.-A.; Bolaños, J.P.; Bonvento, G. L-Serine Links Metabolism with Neurotransmission. Prog. Neurobiol. 2021, 197, 101896. [Google Scholar] [CrossRef]
- Gao, X.; Lee, K.; Reid, M.A.; Sanderson, S.M.; Qiu, C.; Li, S.; Liu, J.; Locasale, J.W. Serine Availability Influences Mitochondrial Dynamics and Function through Lipid Metabolism. Cell Rep. 2018, 22, 3507–3520. [Google Scholar] [CrossRef]
- Hirabayashi, Y.; Furuya, S. Roles of L-Serine and Sphingolipid Synthesis in Brain Development and Neuronal Survival. Prog. Lipid Res. 2008, 47, 188–203. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, A.E.; Ducker, G.S.; Billingham, L.K.; Martinez, C.A.; Mainolfi, N.; Suri, V.; Friedman, A.; Manfredi, M.G.; Weinberg, S.E.; Rabinowitz, J.D.; et al. Serine Metabolism Supports Macrophage IL-1β Production. Cell Metab. 2019, 29, 1003–1011.e4. [Google Scholar] [CrossRef] [PubMed]
- Kurniawan, H.; Franchina, D.G.; Guerra, L.; Bonetti, L.; Baguet, L.S.; Grusdat, M.; Schlicker, L.; Hunewald, O.; Dostert, C.; Merz, M.P.; et al. Glutathione Restricts Serine Metabolism to Preserve Regulatory T Cell Function. Cell Metab. 2020, 31, 920–936.e7. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; He, L.; Zuo, S.; Zhang, Y.; Wan, D.; Long, C.; Huang, P.; Wu, X.; Wu, C.; Liu, G.; et al. Serine Prevented High-Fat Diet-Induced Oxidative Stress by Activating AMPK and Epigenetically Modulating the Expression of Glutathione Synthesis-Related Genes. Biochim. Biophys. Acta 2018, 1864, 488–498. [Google Scholar] [CrossRef]
- Shen, Y.; Peng, Y.; Huang, P.; Zheng, Y.; Li, S.; Jiang, K.; Zhou, M.; Deng, J.; Zhu, M.; Hong, D. Juvenile-Onset PSAT1-Related Neuropathy: A Milder Phenotype of Serine Deficiency Disorder. Front. Genet. 2022, 13, 949038. [Google Scholar] [CrossRef] [PubMed]
- De Koning, T.J.; Klomp, L.W. Serine-Deficiency Syndromes. Curr. Opin. Neurol. 2004, 17, 197–204. [Google Scholar] [CrossRef]
- Mattaini, K.R.; Sullivan, M.R.; Vander Heiden, M.G. The Importance of Serine Metabolism in Cancer. J. Cell Biol. 2016, 214, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Vousden, K.H. Serine and One-Carbon Metabolism in Cancer. Nat. Rev. Cancer 2016, 16, 650–662. [Google Scholar] [CrossRef]
- Chen, X.-G.; Wang, Y.-H.; Wen, C.-C.; Chen, Y.-H. Overdose of D-Serine Induces Movement Disorder and Neuromuscular Changes of Zebrafish Larvae. J. Toxicol. Pathol. 2014, 27, 19–24. [Google Scholar] [CrossRef]
- Wolosker, H.; Balu, D.T.; Coyle, J.T. The Rise and Fall of the d-Serine-Mediated Gliotransmission Hypothesis. Trends Neurosci. 2016, 39, 712–721. [Google Scholar] [CrossRef]
- Pandey, A.V.; Miller, W.L. Regulation of 17,20 Lyase Activity by Cytochrome B5 and by Serine Phosphorylation of P450c17. J. Biol. Chem. 2005, 280, 13265–13271. [Google Scholar] [CrossRef]
- Harada, K.; Kamiya, T.; Tsuboi, T. Gliotransmitter Release from Astrocytes: Functional, Developmental, and Pathological Implications in the Brain. Front. Neurosci. 2016, 9, 499. [Google Scholar] [CrossRef]
- Mothet, J.; Le Bail, M.; Billard, J. Time and Space Profiling of NMDA Receptor Co-agonist Functions. J. Neurochem. 2015, 135, 210–225. [Google Scholar] [CrossRef] [PubMed]
- El-Hattab, A.W.; Shaheen, R.; Hertecant, J.; Galadari, H.I.; Albaqawi, B.S.; Nabil, A.; Alkuraya, F.S. On the Phenotypic Spectrum of Serine Biosynthesis Defects. J. Inherit. Metab. Dis. 2016, 39, 373–381. [Google Scholar] [CrossRef]
- Wang, F.; Zhou, H.; Deng, L.; Wang, L.; Chen, J.; Zhou, X. Serine Deficiency Exacerbates Inflammation and Oxidative Stress via Microbiota-Gut-Brain Axis in D-Galactose-Induced Aging Mice. Mediat. Inflamm. 2020, 2020, 5821428. [Google Scholar] [CrossRef]
- Kim, J.-Y.; Che, X.; Kim, S.; Choi, J.; Lee, J.H.; Lee, J.-H.; Kweon, H.; Lee, S.K.; Choi, J.-Y.; Kim, S.-G. Sericin’s Potential in Osteoporosis Management: The Roles of L-Serine and D-Serine in Bone Metabolism Regulation. Nutrients 2025, 17, 574. [Google Scholar] [CrossRef]
- Tada, Y.; Yano, N.; Takahashi, H.; Yuzawa, K.; Ando, H.; Kubo, Y.; Nagasawa, A.; Chin, K.; Kawamata, Y.; Sakai, R.; et al. A 90-Day Feeding Toxicity Study of L-Serine in Male and Female Fischer 344 Rats. J. Toxicol. Pathol. 2010, 23, 39–47. [Google Scholar] [CrossRef]
- Okada, A.; Nangaku, M.; Jao, T.-M.; Maekawa, H.; Ishimono, Y.; Kawakami, T.; Inagi, R. D-Serine, a Novel Uremic Toxin, Induces Senescence in Human Renal Tubular Cells via GCN2 Activation. Sci. Rep. 2017, 7, 11168. [Google Scholar] [CrossRef]
- Tang, Q.; Tan, P.; Ma, N.; Ma, X. Physiological Functions of Threonine in Animals: Beyond Nutrition Metabolism. Nutrients 2021, 13, 2592. [Google Scholar] [CrossRef]
- Kim, J.; Jo, Y.; Cho, D.; Ryu, D. L-Threonine Promotes Healthspan by Expediting Ferritin-Dependent Ferroptosis Inhibition in C. Elegans. Nat. Commun. 2022, 13, 6554. [Google Scholar] [CrossRef]
- Zhang, K.; Li, H.; Cho, K.M.; Liao, J.C. Expanding Metabolism for Total Biosynthesis of the Nonnatural Amino Acid L-Homoalanine. Proc. Natl. Acad. Sci. USA 2010, 107, 6234–6239. [Google Scholar] [CrossRef]
- Cheng, Z.; Guo, C.; Chen, Z.; Yang, T.; Zhang, J.; Wang, J.; Zhu, J.; Li, D.; Zhang, T.; Li, H.; et al. Glycine, Serine and Threonine Metabolism Confounds Efficacy of Complement-Mediated Killing. Nat. Commun. 2019, 10, 3325. [Google Scholar] [CrossRef]
- Zhang, M.S.; Brunner, S.F.; Huguenin-Dezot, N.; Liang, A.D.; Schmied, W.H.; Rogerson, D.T.; Chin, J.W. Biosynthesis and Genetic Encoding of Phosphothreonine through Parallel Selection and Deep Sequencing. Nat. Metab. 2017, 14, 729–736. [Google Scholar] [CrossRef]
- Platz, K.R.; Rudisel, E.J.; Paluch, K.V.; Laurin, T.R.; Dittenhafer-Reed, K.E. Assessing the Role of Post-Translational Modifications of Mitochondrial RNA Polymerase. Int. J. Mol. Sci. 2023, 24, 16050. [Google Scholar] [CrossRef]
- Sahoo, D.P.; Van Winkle, L.J.; Díaz De La Garza, R.I.; Dubrovsky, J.G. Interkingdom Comparison of Threonine Metabolism for Stem Cell Maintenance in Plants and Animals. Front. Cell Dev. Biol. 2021, 9, 672545. [Google Scholar] [CrossRef]
- Chen, G.; Wang, J. Threonine Metabolism and Embryonic Stem Cell Self-Renewal. Curr. Opin. Clin. Nutr. Metab. Care 2013, 17, 80–85. [Google Scholar] [CrossRef]
- Law, G.K.; Bertolo, R.F.; Adjiri-Awere, A.; Pencharz, P.B.; Ball, R.O. Adequate Oral Threonine Is Critical for Mucin Production and Gut Function in Neonatal Piglets. Am. J. Physiol. Gastrointest. Liver Physiol. 2007, 292, G1293–G1301. [Google Scholar] [CrossRef]
- Li, D. Specific Roles of Threonine in Intestinal Mucosal Integrity and Barrier Function. Front. Biosci. 2011, E3, 1192–1200. [Google Scholar] [CrossRef]
- Hamard, A.; Mazurais, D.; Boudry, G.; Le Huërou-Luron, I.; Sève, B.; Le Floc’h, N. A Moderate Threonine Deficiency Affects Gene Expression Profile, Paracellular Permeability and Glucose Absorption Capacity in the Ileum of Piglets. J. Nutr. Biochem. 2010, 21, 914–921. [Google Scholar] [CrossRef] [PubMed]
- Habte-Tsion, H.M.; Ren, M.; Liu, B.; Ge, X.; Xie, J.; Chen, R. Threonine modulates immune response, antioxidant status and gene expressions of antioxidant enzymes and antioxidant-immune-cytokine-related signaling molecules in juvenile blunt snout bream (Megalobrama amblycephala). Fish Shellfish Immunol. 2016, 51, 189–199. [Google Scholar] [CrossRef]
- Gao, Y.-J.; Yang, H.-J.; Liu, Y.-J.; Chen, S.-J.; Guo, D.-Q.; Yu, Y.; Tian, L.-X. Effects of Graded Levels of Threonine on Growth Performance, Biochemical Parameters and Intestine Morphology of Juvenile Grass Carp Ctenopharyngodon idella. Aquaculture 2014, 424–425, 113–119. [Google Scholar] [CrossRef]
- Wang, X.; Qiao, S.; Yin, Y.; Yue, L.; Wang, Z.; Wu, G. A Deficiency or Excess of Dietary Threonine Reduces Protein Synthesis in Jejunum and Skeletal Muscle of Young Pigs. J. Nutr. 2007, 137, 1442–1446. [Google Scholar] [CrossRef] [PubMed]
- Narita, K.; Nagao, K.; Bannai, M.; Ichimaru, T.; Nakano, S.; Murata, T.; Higuchi, T.; Takahashi, M. Dietary Deficiency of Essential Amino Acids Rapidly Induces Cessation of the Rat Estrous Cycle. PLoS ONE 2011, 6, e28136. [Google Scholar] [CrossRef]
- Kingsbury, J.M.; McCusker, J.H. Homoserine Toxicity in Saccharomyces cerevisiae and Candida albicans Homoserine Kinase (Thr1 Δ) Mutants. Eukaryot. Cell 2010, 9, 717–728. [Google Scholar] [CrossRef]
- Hadera, M.G.; Smeland, O.B.; McDonald, T.S.; Tan, K.N.; Sonnewald, U.; Borges, K. Triheptanoin Partially Restores Levels of Tricarboxylic Acid Cycle Intermediates in the Mouse Pilocarpine Model of Epilepsy. J. Neurochem. 2014, 129, 107–119. [Google Scholar] [CrossRef]
- Habte-Tsion, H.-M.; Ge, X.; Liu, B.; Xie, J.; Ren, M.; Zhou, Q.; Miao, L.; Pan, L.; Chen, R. A Deficiency or an Excess of Dietary Threonine Level Affects Weight Gain, Enzyme Activity, Immune Response and Immune-Related Gene Expression in Juvenile Blunt Snout Bream (Megalobrama amblycephala). Fish Shellfish Immunol. 2015, 42, 439–446. [Google Scholar] [CrossRef] [PubMed]
- Kałużna-Czaplińska, J.; Gątarek, P.; Chirumbolo, S.; Chartrand, M.S.; Bjørklund, G. How Important Is Tryptophan in Human Health. Crit. Rev. Food Sci. Nutr. 2017, 59, 72–88. [Google Scholar] [CrossRef]
- Friedman, M. Analysis, Nutrition, and Health Benefits of Tryptophan. Int. J. Tryptophan Res. 2018, 11, 1178646918802282. [Google Scholar] [CrossRef] [PubMed]
- Davis, I.; Liu, A. What Is the Tryptophan Kynurenine Pathway and Why Is It Important to Neurotherapeutics? Expert Rev. Neurother. 2015, 15, 719–721. [Google Scholar] [CrossRef]
- Lukić, I.; Ivković, S.; Mitić, M.; Adžić, M. Tryptophan Metabolites in Depression: Modulation by Gut Microbiota. Front. Behav. Neurosci. 2022, 16, 987697. [Google Scholar] [CrossRef]
- Gao, K.; Mu, C.; Farzi, A.; Zhu, W. Tryptophan Metabolism: A Link Between the Gut Microbiota and Brain. Adv. Nutr. 2020, 11, 709–723. [Google Scholar] [CrossRef] [PubMed]
- Sutanto, C.N.; Loh, W.W.; Kim, J.E. The Impact of Tryptophan Supplementation on Sleep Quality: A Systematic Review, Meta-Analysis, and Meta-Regression. Nutr. Rev. 2022, 80, 306–316. [Google Scholar] [CrossRef]
- Yusufu, I.; Ding, K.; Smith, K.; Wankhade, U.D.; Sahay, B.; Patterson, G.T.; Pacholczyk, R.; Adusumilli, S.; Hamrick, M.W.; Hill, W.D.; et al. A Tryptophan-Deficient Diet Induces Gut Microbiota Dysbiosis and Increases Systemic Inflammation in Aged Mice. Int. J. Mol. Sci. 2021, 22, 5005. [Google Scholar] [CrossRef]
- Yousef, P.; Rosen, J.; Shapiro, C. Tryptophan and Its Role in Sleep and Mood. In Studies in Natural Products Chemistry; Rahman, A., Ed.; Elsevier: Amsterdam, The Netherlands, 2024; Volume 80, pp. 1–14. [Google Scholar] [CrossRef]
- Jenkins, T.; Nguyen, J.; Polglaze, K.; Bertrand, P. Influence of Tryptophan and Serotonin on Mood and Cognition with a Possible Role of the Gut-Brain Axis. Nutrients 2016, 8, 56. [Google Scholar] [CrossRef]
- Ninomiya, S.; Nakamura, N.; Nakamura, H.; Mizutani, T.; Kaneda, Y.; Yamaguchi, K.; Matsumoto, T.; Kitagawa, J.; Kanemura, N.; Shiraki, M.; et al. Low Levels of Serum Tryptophan Underlie Skeletal Muscle Atrophy. Nutrients 2020, 12, 978. [Google Scholar] [CrossRef] [PubMed]
- Machado, M.; Azeredo, R.; Domingues, A.; Fernandez-Boo, S.; Dias, J.; Conceição, L.E.C.; Costas, B. Dietary Tryptophan Deficiency and Its Supplementation Compromises Inflammatory Mechanisms and Disease Resistance in a Teleost Fish. Sci. Rep. 2019, 9, 7689. [Google Scholar] [CrossRef]
- Newsholme, E.A.; Blomstrand, E. Branched-Chain Amino Acids and Central Fatigue. J. Nutr. 2006, 136, 274S–276S. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, C.; Rodrigues, P.; Serrão, P.; Figueira, L.; Guimarães, L.; Teles, L.O.; Peres, H.; Carvalho, A.P. Dietary Tryptophan Supplementation Does Not Affect Growth but Increases Brain Serotonin Level and Modulates the Expression of Some Liver Genes in Zebrafish (Danio rerio). Fish Physiol. Biochem. 2021, 47, 1541–1558. [Google Scholar] [CrossRef]
- Koopmans, S.J.; Guzik, A.C.; Van Der Meulen, J.; Dekker, R.; Kogut, J.; Kerr, B.J.; Southern, L.L. Effects of Supplemental L-Tryptophan on Serotonin, Cortisol, Intestinal Integrity, and Behavior in Weanling Piglets1,2. J. Anim. Sci. 2006, 84, 963–971. [Google Scholar] [CrossRef]
- Isbister, G.K.; Buckley, N.A.; Whyte, I.M. Serotonin Toxicity: A Practical Approach to Diagnosis and Treatment. Med. J. Aust. 2007, 187, 361–365. [Google Scholar] [CrossRef]
- Oxenkrug, G.F. Metabolic Syndrome, Age-associated Neuroendocrine Disorders, and Dysregulation of Tryptophan—Kynurenine Metabolism. Ann. N. Y. Acad. Sci. 2010, 1199, 1–14. [Google Scholar] [CrossRef]
- Hu, D.; Liu, J.; Yu, W.; Li, C.; Huang, L.; Mao, W.; Lu, Z. Tryptophan Intake, Not Always the More the Better. Front. Nutr. 2023, 10, 1140054. [Google Scholar] [CrossRef]
- Fernstrom, J.D.; Fernstrom, M.H. Tyrosine, Phenylalanine, and Catecholamine Synthesis and Function in the Brain2. J. Nutr. 2007, 137, 1539S–1547S. [Google Scholar] [CrossRef]
- Gnegy, M.E. Catecholamines. In Basic Neurochemistry, 8th ed.; Brady, S., Siegel, G., Albers, R., Price, D., Eds.; Elsevier: Amsterdam, The Netherlands, 2012; pp. 283–299. [Google Scholar] [CrossRef]
- Riley, P.A. Melanin. Int. J. Biochem. Cell Biol. 1997, 29, 1235–1239. [Google Scholar] [CrossRef] [PubMed]
- Hearing, V.J. Determination of Melanin Synthetic Pathways. J. Investig. Dermatol. 2011, 131, E8–E11. [Google Scholar] [CrossRef]
- Huttlin, E.L.; Jedrychowski, M.P.; Elias, J.E.; Goswami, T.; Rad, R.; Beausoleil, S.A.; Villén, J.; Haas, W.; Sowa, M.E.; Gygi, S.P. A Tissue-Specific Atlas of Mouse Protein Phosphorylation and Expression. Cell 2010, 143, 1174–1189. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Sedwick, D.; Wang, Z. Genetic Alterations of Protein Tyrosine Phosphatases in Human Cancers. Oncogene 2015, 34, 3885–3894. [Google Scholar] [CrossRef]
- Hou, M.; Yang, C.; Hu, J.; Guo, Y.; Liu, P.; Liu, Y.; Song, J.; Wei, W.; Chen, Z. Levodopa Is Effective in the Treatment of Three Chinese Tyrosine Hydroxylase (TH) Deficiency Children. Intl. J. Dev. Neurosci. 2019, 78, 28–32. [Google Scholar] [CrossRef]
- Pons, R.; Syrengelas, D.; Youroukos, S.; Orfanou, I.; Dinopoulos, A.; Cormand, B.; Ormazabal, A.; Garzía-Cazorla, A.; Serrano, M.; Artuch, R. Levodopa-induced Dyskinesias in Tyrosine Hydroxylase Deficiency. Mov. Disord. 2013, 28, 1058–1063. [Google Scholar] [CrossRef]
- Xie, J.; Wang, Y.; Zhong, Q.; Bai, S.; Zhou, C.; Tian, T.; Chen, J. Associations Between Disordered Microbial Metabolites and Changes of Neurotransmitters in Depressed Mice. Front. Cell. Infect. Microbiol. 2022, 12, 906303. [Google Scholar] [CrossRef]
- Li, J.; Mei, P.-C.; An, N.; Fan, X.-X.; Liu, Y.-Q.; Zhu, Q.-F.; Feng, Y.-Q. Unraveling the Metabolic and Microbiome Signatures in Fecal Samples of Pregnant Women with Prenatal Depression. Metabolites 2025, 15, 179. [Google Scholar] [CrossRef]
- Jhanji, M.; Rao, C.N.; Massey, J.C.; Hope, M.C.; Zhou, X.; Keene, C.D.; Ma, T.; Wyatt, M.D.; Stewart, J.A.; Sajish, M. Cis- and Trans-Resveratrol Have Opposite Effects on Histone Serine-ADP-Ribosylation and Tyrosine Induced Neurodegeneration. Nat. Commun. 2022, 13, 3244. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, J.; Farias, H.R.; Streck, E.L. Experimental Evidence of Tyrosine Neurotoxicity: Focus on Mitochondrial Dysfunction. Metab. Brain Dis. 2021, 36, 1673–1685. [Google Scholar] [CrossRef]
- Muresan, A.A.; Rusu, A.; Pop, R.M.; Vonica, C.L.; Hancu, N.; Bocsan, C.; Socaciu, C.; Bala, C.G.; Roman, G. Circulating Amino Acids as Fingerprints of Visceral Adipose Tissue Independent of Insulin Resistance: A Targeted Metabolomic Research in Women. Rev. Rom. Med. Lab. 2021, 29, 439–451. [Google Scholar] [CrossRef]
- Passadore, M.D.; Azinheira Nobrega Cruz, N.; Bocato, M.Z.; Ferreira, L.D.A.; Icimoto, M.Y.; Molina, M.D.C.B.; Mill, J.G.; Barbosa Junior, F.; Casarini, D.E.; Oliveira, L.C.G.D. Urinary Amino Acid Metabolomic Profiling and Its Association with Childhood Obesity in Prepubescent Individuals. Front. Physiol. 2025, 16, 1524939. [Google Scholar] [CrossRef]
- Russo, P.A.; Mitchell, G.A.; Tanguay, R.M. Tyrosinemia: A Review. Pediatr. Dev. Pathol. 2001, 4, 212–221. [Google Scholar] [CrossRef]
- Pasternack, S.M.; Betz, R.C.; Brandrup, F.; Gade, E.F.; Clemmensen, O.; Lund, A.M.; Christensen, E.; Bygum, A. Identification of Two New Mutations in the TAT Gene in a Danish Family with Tyrosinaemia Type II. Br. J. Dermatol. 2009, 160, 704–706. [Google Scholar] [CrossRef]
- Peña-Quintana, L.; Scherer, G.; Curbelo-Estévez, M.L.; Jiménez-Acosta, F.; Hartmann, B.; La Roche, F.; Meavilla-Olivas, S.; Pérez-Cerdá, C.; García-Segarra, N.; Giguère, Y.; et al. Tyrosinemia Type II: Mutation Update, 11 Novel Mutations and Description of 5 Independent Subjects with a Novel Founder Mutation. Clin. Genet. 2017, 92, 306–317. [Google Scholar] [CrossRef]
- Najafi, R.; Mostofizadeh, N.; Hashemipour, M. A Case of Tyrosinemia Type III with Status Epilepticus and Mental Retardation. Adv. Biomed. Res. 2018, 7, 7. [Google Scholar] [CrossRef]
- Barroso, F.; Correia, J.; Bandeira, A.; Carmona, C.; Vilarinho, L.; Almeida, M.; Rocha, J.C.; Martins, E. Tyrosinemia Type III: A Case Report of Siblings and Literature Review. Rev. Paul. Pediatr. 2020, 38, e2018158. [Google Scholar] [CrossRef]
- Sharma, S.; Azhar, G.; Zhang, X.; Wei, J. L-Valine Treatment Improves Cellular Mitochondrial Function. Innov. Aging 2023, 7 (Suppl. S1), 933–934. [Google Scholar] [CrossRef]
- Gart, E.; Van Duyvenvoorde, W.; Caspers, M.P.M.; Van Trigt, N.; Snabel, J.; Menke, A.; Keijer, J.; Salic, K.; Morrison, M.C.; Kleemann, R. Intervention with Isoleucine or Valine Corrects Hyperinsulinemia and Reduces Intrahepatic Diacylglycerols, Liver Steatosis, and Inflammation in Ldlr−/−. Leiden Mice with Manifest Obesity-associated NASH. FASEB J. 2022, 36, e22435. [Google Scholar] [CrossRef] [PubMed]
- Xiao, F.; Yu, J.; Guo, Y.; Deng, J.; Li, K.; Du, Y.; Chen, S.; Zhu, J.; Sheng, H.; Guo, F. Effects of Individual Branched-Chain Amino Acids Deprivation on Insulin Sensitivity and Glucose Metabolism in Mice. Metabolism 2014, 63, 841–850. [Google Scholar] [CrossRef] [PubMed]
- Horiuchi, M.; Takeda, T.; Takanashi, H.; Ozaki-Masuzawa, Y.; Taguchi, Y.; Toyoshima, Y.; Otani, L.; Kato, H.; Sone-Yonezawa, M.; Hakuno, F.; et al. Branched-Chain Restores Reduced Insulinotropic Activity of a Low-Protein Diet through the Vagus Nerve in Rats. Nutr. Metab. 2017, 14, 59. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Che, L.; Niu, L.; Wang, L.; Li, M.; Jiang, D.; Deng, H.; Chen, W.; Jiang, Z. Molecular Mechanism of Valine and Its Metabolite in Improving Triglyceride Synthesis of Porcine Intestinal Epithelial Cells. Sci. Rep. 2023, 13, 2933. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Sun, K.; Qi, Y.; Tang, J.; Zhu, H.; Wang, Z. L-valine derived from the gut microbiota protects sepsis-induced intestinal injury and negatively correlates with the severity of sepsis. Front. Immunol. 2024, 15, 1424332. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Zeng, X.; Ren, M.; Mao, X.; Qiao, S. Novel Metabolic and Physiological Functions of Branched Chain Amino Acids: A Review. J. Anim. Sci. Biotechnol. 2017, 8, 10. [Google Scholar] [CrossRef]
- Holeček, M. Branched-Chain Amino Acids in Health and Disease: Metabolism, Alterations in Blood Plasma, and as Supplements. Nutr. Metab. 2018, 15, 33. [Google Scholar] [CrossRef]
- Huepa, L.M.D.; Castilha, L.D.; Ferreira, S.L.; Monteiro, A.N.T.R.; Costa, A.E.R.D.; Giraldo, J.A.B.; Furlan, A.C.; Pozza, P.C. The Requirement of Valine for Gilts in the Initial Phase Is Not Influenced by Moderate Levels of Leucine. Rev. Bras. Zootec. 2018, 47, e20170111. [Google Scholar] [CrossRef]
- Geng, C.; Cui, C.; Wang, C.; Lu, S.; Zhang, M.; Chen, D.; Jiang, P. Systematic Evaluations of Doxorubicin-Induced Toxicity in Rats Based on Metabolomics. ACS Omega 2021, 6, 358–366. [Google Scholar] [CrossRef]
- Fedoruk, R.P.; Lee, C.H.; Banoei, M.M.; Winston, B.W. Metabolomics in Severe Traumatic Brain Injury: A Scoping Review. BMC Neurosci. 2023, 24, 54. [Google Scholar] [CrossRef]
- Tobias, D.K.; Lawler, P.R.; Harada, P.H.; Demler, O.V.; Ridker, P.M.; Manson, J.E.; Cheng, S.; Mora, S. Circulating Branched-Chain Amino Acids and Incident Cardiovascular Disease in a Prospective Cohort of US Women. Circ. Genom. Precis. Med. 2018, 11, e002157. [Google Scholar] [CrossRef]
- Xie, D.; Guo, J.; Dang, R.; Li, Y.; Si, Q.; Han, W.; Wang, S.; Wei, N.; Meng, J.; Wu, L. The Effect of Tacrolimus-Induced Toxicity on Metabolic Profiling in Target Tissues of Mice. BMC Pharmacol. Toxicol. 2022, 23, 87. [Google Scholar] [CrossRef]
- Xiong, Y.; Jiang, L.; Li, T. Aberrant Branched-Chain Amino Acid Catabolism in Cardiovascular Diseases. Front. Cardiovasc. Med. 2022, 9, 965899. [Google Scholar] [CrossRef] [PubMed]
- Jian, H.; Xu, Q.; Wang, X.; Liu, Y.; Miao, S.; Li, Y.; Mou, T.; Dong, X.; Zou, X. Amino Acid and Fatty Acid Metabolism Disorders Trigger Oxidative Stress and Inflammatory Response in Excessive Dietary Valine-Induced NAFLD of Laying Hens. Front. Nutr. 2022, 9, 849767. [Google Scholar] [CrossRef] [PubMed]
- Gaggini, M.; Carli, F.; Rosso, C.; Buzzigoli, E.; Marietti, M.; Della Latta, V.; Ciociaro, D.; Abate, M.L.; Gambino, R.; Cassader, M.; et al. Altered Amino Acid Concentrations in NAFLD: Impact of Obesity and Insulin Resistance. Hepatology 2018, 67, 145–158. [Google Scholar] [CrossRef] [PubMed]
- Iacone, R.; Scanzano, C.; Santarpia, L.; Alfonsi, L.; Marra, M.; Pagano, M.C.; D’Isanto, A.; Frangipane, I.; Vitalone, A.; D’Angeli, M.; et al. Essential Amino Acid Profile in Parenteral Nutrition Mixtures: Does It Meet Needs? Nutrients 2018, 10, 1937. [Google Scholar] [CrossRef]
- Paoletti, A.; Courtney-Martin, G.; Elango, R. Determining Amino Acid Requirements in Humans. Front. Nutr. 2024, 11, 1400719. [Google Scholar] [CrossRef]
- World Health Organization. Protein and Amino Acid Requirements in Human Nutrition; WHO Technical Report Series; WHO: Geneva, Switzerland, 2007; Volume 935, pp. 1–265.
- Guo, S.; Shaoni, G.L.L.; Stuart-Smith, W.A.; Davies, A.J.; Gifford, J.A. Dietary Intake of Masters Athletes: A Systematic Review. Nutrients 2023, 15, 4973. [Google Scholar] [CrossRef]
- Vitale, K.; Getzin, A. Nutrition and Supplement Update for the Endurance Athlete: Review and Recommendations. Nutrients 2019, 11, 1289. [Google Scholar] [CrossRef]
- Leitão, A.E.; Esteves, G.P.; Mazzolani, B.C.; Smaira, F.I.; Santini, M.H.; Santo André, H.C.; Gualano, B.; Roschel, H. Protein and Amino Acid Adequacy and Food Consumption by Processing Level in Vegans in Brazil. JAMA Netw. Open 2024, 7, e2418226. [Google Scholar] [CrossRef]
- Schmidt, J.A.; Rinaldi, S.; Scalbert, A.; Ferrari, P.; Achaintre, D.; Gunter, M.J.; Appleby, P.N.; Key, T.J.; Travis, R.C. Plasma Concentrations and Intakes of Amino Acids in Male Meat-Eaters, Fish-Eaters, Vegetarians and Vegans: A Cross-Sectional Analysis in the EPIC-Oxford Cohort. Eur. J. Clin. Nutr. 2016, 70, 306–312. [Google Scholar] [CrossRef] [PubMed]
- Elango, R.; Humayun, M.A.; Ball, R.O.; Pencharz, P.B. Protein Requirement of Healthy School-Age Children Determined by the Indicator Amino Acid Oxidation Method. Am. J. Clin. Nutr. 2011, 94, 1545–1552. [Google Scholar] [CrossRef]
- Hovinen, T.; Korkalo, L.; Freese, R.; Skaffari, E.; Isohanni, P.; Niemi, M.; Nevalainen, J.; Gylling, H.; Zamboni, N.; Erkkola, M.; et al. Vegan Diet in Young Children Remodels Metabolism and Challenges the Statuses of Essential Nutrients. EMBO Mol. Med. 2021, 13, e13492. [Google Scholar] [CrossRef]
- Ambroszkiewicz, J.; Gajewska, J.; Mazur, J.; Kuśmierska, K.; Klemarczyk, W.; Rowicka, G.; Strucińska, M.; Chełchowska, M. Dietary Intake and Circulating Amino Acid Concentrations in Relation with Bone Metabolism Markers in Children Following Vegetarian and Omnivorous Diets. Nutrients 2023, 15, 1376. [Google Scholar] [CrossRef]
- Argyropoulou, D.; Nomikos, T.; Terzis, G.; Karakosta, M.; Aphamis, G.; Geladas, N.D.; Paschalis, V. The Effect of Chronic Dietary Protein Manipulation on Amino Acids’ Profile and Position Sense in the Elderly Suffering from Type 2 Diabetes Mellitus. J. Funct. Morphol. Kinesiol. 2024, 9, 62. [Google Scholar] [CrossRef]
- Breen, L.; Phillips, S.M. Skeletal Muscle Protein Metabolism in the Elderly: Interventions to Counteract the “anabolic Resistance” of Ageing. Nutr. Metab. 2011, 8, 68. [Google Scholar] [CrossRef] [PubMed]
- Nowson, C.; O’Connell, S. Protein Requirements and Recommendations for Older People: A Review. Nutrients 2015, 7, 6874–6899. [Google Scholar] [CrossRef] [PubMed]
- Genaro, P.D.S.; Pinheiro, M.D.M.; Szejnfeld, V.L.; Martini, L.A. Dietary Protein Intake in Elderly Women: Association With Muscle and Bone Mass. Nutr. Clin. Pract. 2015, 30, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Massimino, E.; Izzo, A.; Castaldo, C.; Amoroso, A.P.; Rivellese, A.A.; Capaldo, B.; Della Pepa, G. Protein and Leucine Intake at Main Meals in Elderly People with Type 2 Diabetes. Nutrients 2023, 15, 1345. [Google Scholar] [CrossRef]
- Timmerman, K.L.; Volpi, E. Amino Acid Metabolism and Regulatory Effects in Aging. Curr. Opin. Clin. Nutr. Metab. Care 2008, 11, 45–49. [Google Scholar] [CrossRef]
- Friedman, M. Nutritional Value of Proteins from Different Food Sources. A Review. J. Agric. Food Chem. 1996, 44, 6–29. [Google Scholar] [CrossRef]
- Hoffman, J.R.; Falvo, M.J. Protein—Which is Best? J. Sports Sci. Med. 2004, 3, 118–130. [Google Scholar]
- Cherian, K.S.; Gavaravarapu, S.M.; Sainoji, A.; Yagnambhatt, V.R. Coaches’ Perceptions about Food, Appetite, and Nutrition of Adolescent Indian Athletes—A Qualitative Study. Heliyon 2020, 6, e03354. [Google Scholar] [CrossRef]
- Sheeshka, J.; Murkin, E. Nutritional Aspects of Fish Compared with Other Protein Sources. Comments Toxicol. 2002, 8, 375–397. [Google Scholar] [CrossRef]
- Fasolin, L.H.; Pereira, R.N.; Pinheiro, A.C.; Martins, J.T.; Andrade, C.C.P.; Ramos, O.L.; Vicente, A.A. Emergent Food Proteins —Towards Sustainability, Health and Innovation. Food Res. Int. 2019, 125, 108586. [Google Scholar] [CrossRef]
- Melina, V.; Craig, W.; Levin, S. Position of the Academy of Nutrition and Dietetics: Vegetarian Diets. J. Acad. Nutr. Diet. 2016, 116, 1970–1980. [Google Scholar] [CrossRef]
- Ashvini, A.L.; Ajay, S.Z.; Shrikant, B.M. Growth and Yield Performance of Pleurotus Florida (Oyster Mushroom) On Different Agriculture Substrates. Int. J. Sci. Res. Sci. Technol. 2024, 11, 272–279. [Google Scholar] [CrossRef]
- Nambafu, R.; Waudo, J.; Nyambaka, H. Proteins and Mineral Content of Cultivated Oyster Mushrooms Grown in Kenya. Chem. Sci. Int. J. 2022, 31, 47–54. [Google Scholar] [CrossRef]
- Davila, M.; Routray, J.; Beatty, J.; Du, X. Flavor Compounds, Free Amino Acids, and Proteins in Agaricus Bisporus Mushroom Powder. J. Food Bioact. 2022, 20, 17–28. [Google Scholar] [CrossRef]
- Valverde, M.E.; Hernández-Pérez, T.; Paredes-López, O. Edible Mushrooms: Improving Human Health and Promoting Quality Life. Int. J. Microbiol. 2015, 2015, 376387. [Google Scholar] [CrossRef]
- Xipsiti, M. Protein Quality Evaluation: FAO Perspective. Front. Nutr. 2024, 11, 1446879. [Google Scholar] [CrossRef] [PubMed]
- Im, J.; Park, H.; Park, K. Dietary Essential Amino Acid Intake Is Associated with High Muscle Strength in Korean Older Adults. Nutrients 2022, 14, 3104. [Google Scholar] [CrossRef] [PubMed]
- Kato, H.; Suzuki, H.; Mimura, M.; Inoue, Y.; Sugita, M.; Suzuki, K.; Kobayashi, H. Leucine-Enriched Essential Amino Acids Attenuate Muscle Soreness and Improve Muscle Protein Synthesis after Eccentric Contractions in Rats. Amino Acids 2015, 47, 1193–1201. [Google Scholar] [CrossRef]
- Bertoni, L.; Valentini, R.; Zattarin, A.; Belligoli, A.; Bettini, S.; Vettor, R.; Foletto, M.; Spinella, P.; Busetto, L. Assessment of Protein Intake in the First Three Months after Sleeve Gastrectomy in Patients with Severe Obesity. Nutrients 2021, 13, 771. [Google Scholar] [CrossRef]
- Kim, I.-Y.; Park, S.; Smeets, E.T.H.C.; Schutzler, S.; Azhar, G.; Wei, J.Y.; Ferrando, A.A.; Wolfe, R.R. Consumption of a Specially-Formulated Mixture of Essential Amino Acids Promotes Gain in Whole-Body Protein to a Greater Extent than a Complete Meal Replacement in Older Women with Heart Failure. Nutrients 2019, 11, 1360. [Google Scholar] [CrossRef]
- Cano, N.J.; Fouque, D.; Leverve, X.M. Application of Branched-Chain Amino Acids in Human Pathological States: Renal Failure. J. Nutr. 2006, 136, 299S–307S. [Google Scholar] [CrossRef]
- Chen, L.; Chen, Y.; Wang, X.; Li, H.; Zhang, H.; Gong, J.; Shen, S.; Yin, W.; Hu, H. Efficacy and Safety of Oral Branched-Chain Amino Acid Supplementation in Patients Undergoing Interventions for Hepatocellular Carcinoma: A Meta-Analysis. Nutr. J. 2015, 14, 67. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhan, L.; Zhang, L.; Shi, Q.; Li, L. Branched-Chain Amino Acids in Liver Diseases: Complexity and Controversy. Nutrients 2024, 16, 1875. [Google Scholar] [CrossRef]
- Aquilani, R.; Zuccarelli, G.C.; Maestri, R.; Boselli, M.; Dossena, M.; Baldissarro, E.; Boschi, F.; Buonocore, D.; Verri, M. Essential Amino Acid Supplementation Is Associated with Reduced Serum C-Reactive Protein Levels and Improved Circulating Lymphocytes in Post-Acute Inflamed Elderly Patients. Int. J. Immunopathol. Pharmacol. 2021, 35, 20587384211036823. [Google Scholar] [CrossRef]
- Aquilani, R.; Zuccarelli, G.C.; Dioguardi, F.S.; Baiardi, P.; Frustaglia, A.; Rutili, C.; Comi, E.; Catani, M.; Iadarola, P.; Viglio, S.; et al. Effects of Oral Amino Acid Supplementation on Long-Term-Care-Acquired Infections in Elderly Patients. Arch. Gerontol. Geriatr. 2011, 52, e123–e128. [Google Scholar] [CrossRef]
- Pillai, S.M.; Herzog, B.; Seebeck, P.; Pellegrini, G.; Roth, E.; Verrey, F. Differential Impact of Dietary Branched Chain and Aromatic Amino Acids on Chronic Kidney Disease Progression in Rats. Front. Physiol. 2019, 10, 1460. [Google Scholar] [CrossRef]
- Nishi, H.; Goda, Y.; Okino, R.; Iwai, R.; Maezawa, R.; Ito, K.; Takahashi, S.-I.; Yamanaka, D.; Hakuno, F. Metabolic Effects of Short-Term High-Fat Intake Vary Depending on Dietary Amino Acid Composition. Curr. Dev. Nutr. 2024, 8, 103768. [Google Scholar] [CrossRef]
- Wen, J.; Hu, C.; Fan, S. Chemical Composition and Nutritional Quality of Sea Cucumbers. J. Sci. Food Agric. 2010, 90, 2469–2474. [Google Scholar] [CrossRef]
- Katsanos, C.S.; Kobayashi, H.; Sheffield-Moore, M.; Aarsland, A.; Wolfe, R.R. A High Proportion of Leucine Is Required for Optimal Stimulation of the Rate of Muscle Protein Synthesis by Essential Amino Acids in the Elderly. Am. J. Physiol. Endocrinol. Metabol. 2006, 291, E381–E387. [Google Scholar] [CrossRef]
- Li, Q.; Weiss, K.; Niwa, F.; Riemer, J.; Hoppe, T. Leucine Inhibits Degradation of Outer Mitochondrial Membrane Proteins to Adapt Mitochondrial Respiration. Nat. Cell Biol. 2025, 27, 1889–1901. [Google Scholar] [CrossRef]
- Aletor, O. Vitamins, Amino Acids, Lipids and Sterols of Eggs from Three Different Birds Genotypes. IOSR J. Environ. Sci. Toxicol. Food Technol. 2017, 11, 41–47. [Google Scholar] [CrossRef]
- Gorissen, S.H.M.; Crombag, J.J.R.; Senden, J.M.G.; Waterval, W.A.H.; Bierau, J.; Verdijk, L.B.; Van Loon, L.J.C. Protein Content and Amino Acid Composition of Commercially Available Plant-Based Protein Isolates. Amino Acids 2018, 50, 1685–1695. [Google Scholar] [CrossRef]
- Alekseeva, E.; Kolchina, V. Amino Acid Composition of Beef Obtained Fromthe Specialized Meat Cattle. IOP Conf. Ser. Earth Environ. Sci. 2019, 341, 012136. [Google Scholar] [CrossRef]
- Romano, C.; Corsetti, G.; Flati, V.; Pasini, E.; Picca, A.; Calvani, R.; Marzetti, E.; Dioguardi, F.S. Influence of Diets with Varying Essential/Nonessential Amino Acid Ratios on Mouse Lifespan. Nutrients 2019, 11, 1367. [Google Scholar] [CrossRef]
- Park, C.-H.; Jeong, Y.-H.; Jeong, Y.-I.; Kwon, J.-W.; Shin, T.; Hyun, S.-H.; Jeung, E.-B.; Kim, N.-H.; Seo, S.-K.; Lee, C.-K.; et al. Amino Acid Supplementation Affects Imprinted Gene Transcription Patterns in Parthenogenetic Porcine Blastocysts. PLoS ONE 2014, 9, e106549. [Google Scholar] [CrossRef]
- Binman, L.; Ben-Zeev, T.; Harris, A.; Levi, C.; Weissman, I.; Church, D.D.; Ferrando, A.A.; Hoffman, J.R. The Effects of Essential Amino Acid Supplementation on Hippocampal Neurotrophin, Dopaminergic and Serotonergic Changes in an Overtraining Mouse Model. Nutrients 2025, 17, 2957. [Google Scholar] [CrossRef]
- Ruiz-Canela, M.; Toledo, E.; Clish, C.B.; Hruby, A.; Liang, L.; Salas-Salvadó, J.; Razquin, C.; Corella, D.; Estruch, R.; Ros, E.; et al. Plasma Branched-Chain Amino Acids and Incident Cardiovascular Disease in the PREDIMED Trial. Clin. Chem. 2016, 62, 582–592. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petkova, D.; Stoyanova, S.; Dinkov, G.; Bogdanov, M.G. Beyond Protein Building Blocks: A Review of Biological Roles and Therapeutic Potential of Free Amino Acids. Int. J. Mol. Sci. 2025, 26, 11264. https://doi.org/10.3390/ijms262311264
Petkova D, Stoyanova S, Dinkov G, Bogdanov MG. Beyond Protein Building Blocks: A Review of Biological Roles and Therapeutic Potential of Free Amino Acids. International Journal of Molecular Sciences. 2025; 26(23):11264. https://doi.org/10.3390/ijms262311264
Chicago/Turabian StylePetkova, Denitsa, Savina Stoyanova, Georgi Dinkov, and Milen G. Bogdanov. 2025. "Beyond Protein Building Blocks: A Review of Biological Roles and Therapeutic Potential of Free Amino Acids" International Journal of Molecular Sciences 26, no. 23: 11264. https://doi.org/10.3390/ijms262311264
APA StylePetkova, D., Stoyanova, S., Dinkov, G., & Bogdanov, M. G. (2025). Beyond Protein Building Blocks: A Review of Biological Roles and Therapeutic Potential of Free Amino Acids. International Journal of Molecular Sciences, 26(23), 11264. https://doi.org/10.3390/ijms262311264

