Dissecting the Non-Immune Tumor Microenvironment in Triple-Negative Breast Cancer: Molecular Subtype-Specific Patterns and Prognostic Implications
Abstract
1. Introduction
2. Results
2.1. Cancer-Associated Fibroblasts (CAFs)
2.2. ECM Remodeling and EMT Pathway
2.3. Vascular Remodeling
2.4. Metabolic & Hypoxic Reprogramming
2.5. Cancer-Associated Adipocytes
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| AR | Androgen receptor |
| CAF | Cancer-associated fibroblast |
| ECM | Extracellular matrix |
| EMT | Epithelial–mesenchymal transition |
| ER | Estrogen receptor |
| HIF | Hypoxia-inducible factor |
| IBC, NST | Invasive breast carcinoma of no special type |
| iCAF | Inflammatory cancer-associated fibroblast |
| IM | Immunomodulatory subtype |
| LAR | Luminal androgen receptor subtype |
| M | Mesenchymal subtype |
| MMP | Matrix metalloproteinase |
| MSL | Mesenchymal stem-like subtype |
| myCAF | Myofibroblast-like cancer-associated fibroblast |
| NAC | Neoadjuvant chemotherapy |
| pCR | Pathological complete response |
| PR | Progesterone receptor |
| TGF-β | Transforming growth factor beta |
| TME | Tumor microenvironment |
| TNBC | Triple-negative breast cancer |
| VDR | Vitamin D receptor |
References
- Xiong, N.; Wu, H.; Yu, Z. Advancements and Challenges in Triple-Negative Breast Cancer: A Comprehensive Review of Therapeutic and Diagnostic Strategies. Front. Oncol. 2024, 14, 1405491. [Google Scholar] [CrossRef]
- Grosse, C.; Noack, P.; Grosse, A.; Preuss, C.I.; Schwarz, H.K.; Gitter, T.; Schrenk, P.; Frauchiger-Heuer, H.; Papassotiropoulos, B.; Tausch, C.; et al. Prognostic Impact of Histological Subtyping in Triple-Negative Breast Cancer. Hum. Pathol. 2024, 152, 105640. [Google Scholar] [CrossRef]
- Hahnen, E.; Hauke, J.; Engel, C.; Neidhardt, G.; Rhiem, K.; Schmutzler, R.K. Germline Mutations in Triple-Negative Breast Cancer. Breast Care 2017, 12, 15–19. [Google Scholar] [CrossRef] [PubMed]
- Choi, E.; Mun, G.; Lee, J.; Lee, H.; Cho, J.; Lee, Y.-S. BRCA1 Deficiency in Triple-Negative Breast Cancer: Protein Stability as a Basis for Therapy. Biomed. Pharmacother. 2023, 158, 114090. [Google Scholar] [CrossRef]
- Mitri, Z.I.; Abuhadra, N.; Goodyear, S.M.; Hobbs, E.A.; Kaempf, A.; Thompson, A.M.; Moulder, S.L. Impact of TP53 Mutations in Triple Negative Breast Cancer. npj Precis. Onc. 2022, 6, 64. [Google Scholar] [CrossRef]
- Lehmann, B.D.; Bauer, J.A.; Chen, X.; Sanders, M.E.; Chakravarthy, A.B.; Shyr, Y.; Pietenpol, J.A. Identification of Human Triple-Negative Breast Cancer Subtypes and Preclinical Models for Selection of Targeted Therapies. J. Clin. Invest. 2011, 121, 2750–2767. [Google Scholar] [CrossRef]
- Burstein, M.D.; Tsimelzon, A.; Poage, G.M.; Covington, K.R.; Contreras, A.; Fuqua, S.A.W.; Savage, M.I.; Osborne, C.K.; Hilsenbeck, S.G.; Chang, J.C.; et al. Comprehensive Genomic Analysis Identifies Novel Subtypes and Targets of Triple-Negative Breast Cancer. Clin. Cancer Res. 2015, 21, 1688–1698. [Google Scholar] [CrossRef]
- Liu, Y.-R.; Jiang, Y.-Z.; Xu, X.-E.; Yu, K.-D.; Jin, X.; Hu, X.; Zuo, W.-J.; Hao, S.; Wu, J.; Liu, G.-Y.; et al. Comprehensive Transcriptome Analysis Identifies Novel Molecular Subtypes and Subtype-Specific RNAs of Triple-Negative Breast Cancer. Breast Cancer Res. 2016, 18, 33. [Google Scholar] [CrossRef]
- Lehmann, B.D.; Pietenpol, J.A. Identification and Use of Biomarkers in Treatment Strategies for Triple-Negative Breast Cancer Subtypes. J. Pathol. 2014, 232, 142–150. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.-M.; Oh, M.H.; Go, J.-H.; Han, K.; Choi, S.-Y. Molecular Subtypes of Triple-Negative Breast Cancer: Understanding of Subtype Categories and Clinical Implication. Genes Genom. 2020, 42, 1381–1387. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Moon, B.-I.; Lim, W.; Park, S.; Cho, M.S.; Sung, S.H. Feasibility of Classification of Triple Negative Breast Cancer by Immunohistochemical Surrogate Markers. Clin. Breast Cancer 2018, 18, e1123–e1132. [Google Scholar] [CrossRef]
- Yam, C.; Mani, S.A.; Moulder, S.L. Targeting the Molecular Subtypes of Triple Negative Breast Cancer: Understanding the Diversity to Progress the Field. Oncologist 2017, 22, 1086–1093. [Google Scholar] [CrossRef]
- Lehmann, B.D.; Jovanović, B.; Chen, X.; Estrada, M.V.; Johnson, K.N.; Shyr, Y.; Moses, H.L.; Sanders, M.E.; Pietenpol, J.A. Refinement of Triple-Negative Breast Cancer Molecular Subtypes: Implications for Neoadjuvant Chemotherapy Selection. PLoS ONE 2016, 11, e0157368. [Google Scholar] [CrossRef]
- Anestis, A.; Zoi, I.; Papavassiliou, A.G.; Karamouzis, M.V. Androgen Receptor in Breast Cancer-Clinical and Preclinical Research Insights. Molecules 2020, 25, 358. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Zuo, W.-J.; Shao, Z.-M.; Jiang, Y.-Z. Molecular Subtypes and Precision Treatment of Triple-Negative Breast Cancer. Ann. Transl. Med. 2020, 8, 499. [Google Scholar] [CrossRef] [PubMed]
- Syrnioti, A.; Petousis, S.; Newman, L.A.; Margioula-Siarkou, C.; Papamitsou, T.; Dinas, K.; Koletsa, T. Triple Negative Breast Cancer: Molecular Subtype-Specific Immune Landscapes with Therapeutic Implications. Cancers 2024, 16, 2094. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, X.-H.; Zhao, Y.-X.; Chen, C.; Xu, X.-Y.; Sun, Q.; Wu, H.-Y.; Chen, M.; Sang, J.-F.; Su, L.; et al. Cancer-Associated Fibroblasts Correlate with Tumor-Associated Macrophages Infiltration and Lymphatic Metastasis in Triple Negative Breast Cancer Patients. J. Cancer 2018, 9, 4635–4641. [Google Scholar] [CrossRef]
- Zhao, B.X.; Wang, F.; Liu, P.; Han, R.B.H. Relationship of Vascular Endothelial Growth Factor Expression and Microvessel Density of Clinicopathological Features of Triple Negative-Breast Cancer. Chin. J. Clin. Res. 2024, 37. [Google Scholar]
- Lee, C.M.; Fang, S. Fat Biology in Triple-Negative Breast Cancer: Immune Regulation, Fibrosis, and Senescence. J. Obes. Metab. Syndr. 2023, 32, 312–321. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Jiang, Q.; Dong, C. Metabolic Reprogramming in Triple-Negative Breast Cancer. Cancer Biol. Med. 2020, 17, 44–59. [Google Scholar] [CrossRef]
- Bareche, Y.; Buisseret, L.; Gruosso, T.; Girard, E.; Venet, D.; Dupont, F.; Desmedt, C.; Larsimont, D.; Park, M.; Rothé, F.; et al. Unraveling Triple-Negative Breast Cancer Tumor Microenvironment Heterogeneity: Towards an Optimized Treatment Approach. J. Natl. Cancer Inst. 2020, 112, 708–719. [Google Scholar] [CrossRef] [PubMed]
- Su, S.; Chen, J.; Yao, H.; Liu, J.; Yu, S.; Lao, L.; Wang, M.; Luo, M.; Xing, Y.; Chen, F.; et al. CD10+GPR77+ Cancer-Associated Fibroblasts Promote Cancer Formation and Chemoresistance by Sustaining Cancer Stemness. Cell 2018, 172, 841–856. [Google Scholar] [CrossRef]
- Thompson, K.J.; Leon-Ferre, R.A.; Sinnwell, J.P.; Zahrieh, D.M.; Suman, V.J.; Metzger, F.O.; Asad, S.; Stover, D.G.; Carey, L.; Sikov, W.M.; et al. Luminal Androgen Receptor Breast Cancer Subtype and Investigation of the Microenvironment and Neoadjuvant Chemotherapy Response. NAR Cancer 2022, 4, zcac018. [Google Scholar] [CrossRef]
- Suntiparpluacha, M.; Chanthercrob, J.; Sa-Nguanraksa, D.; Sitthikornpaiboon, J.; Chaiboonchoe, A.; Kueanjinda, P.; Jinawath, N.; Sampattavanich, S. Retrospective Study of Transcriptomic Profiling Identifies Thai Triple-Negative Breast Cancer Patients Who May Benefit from Immune Checkpoint and PARP Inhibitors. PeerJ 2023, 11, e15350. [Google Scholar] [CrossRef]
- Kim, J.; Yu, D.; Kwon, Y.; Lee, K.S.; Sim, S.H.; Kong, S.-Y.; Lee, E.S.; Park, I.H.; Park, C. Genomic Characteristics of Triple-Negative Breast Cancer Nominate Molecular Subtypes That Predict Chemotherapy Response. Mol. Cancer Res. 2020, 18, 253–263. [Google Scholar] [CrossRef]
- Rodríguez-Bautista, R.; Caro-Sánchez, C.H.; Cabrera-Galeana, P.; Alanis-Funes, G.J.; Gutierrez-Millán, E.; Ávila-Ríos, S.; Matías-Florentino, M.; Reyes-Terán, G.; Díaz-Chávez, J.; Villarreal-Garza, C.; et al. Immune Milieu and Genomic Alterations Set the Triple-Negative Breast Cancer Immunomodulatory Subtype Tumor Behavior. Cancers 2021, 13, 6256. [Google Scholar] [CrossRef] [PubMed]
- Cichon, M.A.; Radisky, D.C. Extracellular Matrix as a Contextual Determinant of Transforming Growth Factor-β Signaling in Epithelial-Mesenchymal Transition and in Cancer. Cell Adh. Migr. 2014, 8, 588–594. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Li, F.; Luo, M.; Wei, J.; Liu, X. Distinct Roles of Wnt/β-Catenin Signaling in the Pathogenesis of Chronic Obstructive Pulmonary Disease and Idiopathic Pulmonary Fibrosis. Mediat. Inflamm. 2017, 2017, 3520581. [Google Scholar] [CrossRef]
- Xu, W.; Yang, Z.; Lu, N. A New Role for the PI3K/Akt Signaling Pathway in the Epithelial-Mesenchymal Transition. Cell Adh. Migr. 2015, 9, 317–324. [Google Scholar] [CrossRef]
- Panneerpandian, P.; Ganesan, K. PI3K/AKT/mTOR Inhibitors as Potential Extracellular Matrix Modulators for Targeting EMT Subtype Gastric Tumors. Med. Oncol. 2023, 40, 120. [Google Scholar] [CrossRef]
- Costa, A.; Kieffer, Y.; Scholer-Dahirel, A.; Pelon, F.; Bourachot, B.; Cardon, M.; Sirven, P.; Magagna, I.; Fuhrmann, L.; Bernard, C.; et al. Fibroblast Heterogeneity and Immunosuppressive Environment in Human Breast Cancer. Cancer Cell 2018, 33, 463–479. [Google Scholar] [CrossRef]
- Pelon, F.; Bourachot, B.; Kieffer, Y.; Magagna, I.; Mermet-Meillon, F.; Bonnet, I.; Costa, A.; Givel, A.-M.; Attieh, Y.; Barbazan, J.; et al. Cancer-Associated Fibroblast Heterogeneity in Axillary Lymph Nodes Drives Metastases in Breast Cancer through Complementary Mechanisms. Nat. Commun. 2020, 11, 404. [Google Scholar] [CrossRef]
- Masuda, H. Cancer-Associated Fibroblasts in Cancer Drug Resistance and Cancer Progression: A Review. Cell Death Discov. 2025, 11, 341. [Google Scholar] [CrossRef] [PubMed]
- Nia, H.T.; Munn, L.L.; Jain, R.K. Physical Traits of Cancer. Science 2020, 370, eaaz0868. [Google Scholar] [CrossRef]
- Schmittnaegel, M.; Rigamonti, N.; Kadioglu, E.; Cassará, A.; Wyser Rmili, C.; Kiialainen, A.; Kienast, Y.; Mueller, H.-J.; Ooi, C.-H.; Laoui, D.; et al. Dual Angiopoietin-2 and VEGFA Inhibition Elicits Antitumor Immunity That Is Enhanced by PD-1 Checkpoint Blockade. Sci. Transl. Med. 2017, 9, eaak9670. [Google Scholar] [CrossRef]
- Chang, C.-H.; Qiu, J.; O’Sullivan, D.; Buck, M.D.; Noguchi, T.; Curtis, J.D.; Chen, Q.; Gindin, M.; Gubin, M.M.; van der Windt, G.J.W.; et al. Metabolic Competition in the Tumor Microenvironment Is a Driver of Cancer Progression. Cell 2015, 162, 1229–1241. [Google Scholar] [CrossRef] [PubMed]
- Fankhauser, M.; Broggi, M.A.S.; Potin, L.; Bordry, N.; Jeanbart, L.; Lund, A.W.; Da Costa, E.; Hauert, S.; Rincon-Restrepo, M.; Tremblay, C.; et al. Tumor Lymphangiogenesis Promotes T Cell Infiltration and Potentiates Immunotherapy in Melanoma. Sci. Transl. Med. 2017, 9, eaal4712. [Google Scholar] [CrossRef] [PubMed]
- Gkountidi, A.O.; Garnier, L.; Dubrot, J.; Angelillo, J.; Harlé, G.; Brighouse, D.; Wrobel, L.J.; Pick, R.; Scheiermann, C.; Swartz, M.A.; et al. MHC Class II Antigen Presentation by Lymphatic Endothelial Cells in Tumors Promotes Intratumoral Regulatory T Cell-Suppressive Functions. Cancer Immunol. Res. 2021, 9, 748–764. [Google Scholar] [CrossRef]
- Swartz, M.A. Immunomodulatory Roles of Lymphatic Vessels in Cancer Progression. Cancer Immunol. Res. 2014, 2, 701–707. [Google Scholar] [CrossRef]
- Brogna, M.R.; Varone, V.; DelSesto, M.; Ferrara, G. The Role of CAFs in Therapeutic Resistance in Triple Negative Breast Cancer: An Emerging Challenge. Front. Mol. Biosci. 2025, 12. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, W.; Liu, C.; Wang, L.; Wu, J.; Sun, C.; Wu, Q. Reprogramming of Lipid Metabolism Mediates Crosstalk, Remodeling, and Intervention of Microenvironment Components in Breast Cancer. Int. J. Biol. Sci. 2024, 20, 1884–1904. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y. Adipocyte and Lipid Metabolism in Cancer Drug Resistance. J Clin. Invest. 2019, 129, 3006–3017. [Google Scholar] [CrossRef]
- Lee, Y.; Jung, W.H.; Koo, J.S. Adipocytes Can Induce Epithelial-Mesenchymal Transition in Breast Cancer Cells. Breast Cancer Res. Treat. 2015, 153, 323–335. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Semenza, G.L.; Zhang, H. Hypoxia-Inducible Factor 1 and Breast Cancer Metastasis. J. Zhejiang Univ. Sci. B 2015, 16, 32–43. [Google Scholar] [CrossRef]
- Rankin, E.B.; Nam, J.-M.; Giaccia, A.J. Hypoxia: Signaling the Metastatic Cascade. Trends Cancer 2016, 2, 295–304. [Google Scholar] [CrossRef]
- Chouaib, S.; Noman, M.Z.; Kosmatopoulos, K.; Curran, M.A. Hypoxic Stress: Obstacles and Opportunities for Innovative Immunotherapy of Cancer. Oncogene 2017, 36, 439–445. [Google Scholar] [CrossRef] [PubMed]
- Mariathasan, S.; Turley, S.J.; Nickles, D.; Castiglioni, A.; Yuen, K.; Wang, Y.; Kadel, E.E., III; Koeppen, H.; Astarita, J.L.; Cubas, R.; et al. TGFβ Attenuates Tumour Response to PD-L1 Blockade by Contributing to Exclusion of T Cells. Nature 2018, 554, 544–548. [Google Scholar] [CrossRef]
- Kraman, M.; Bambrough, P.J.; Arnold, J.N.; Roberts, E.W.; Magiera, L.; Jones, J.O.; Gopinathan, A.; Tuveson, D.A.; Fearon, D.T. Suppression of Antitumor Immunity by Stromal Cells Expressing Fibroblast Activation Protein-Alpha. Science 2010, 330, 827–830. [Google Scholar] [CrossRef]
- Fukumura, D.; Kloepper, J.; Amoozgar, Z.; Duda, D.G.; Jain, R.K. Enhancing Cancer Immunotherapy Using Antiangiogenics: Opportunities and Challenges. Nat. Rev. Clin. Oncol. 2018, 15, 325–340. [Google Scholar] [CrossRef]
- Wright, K.; Ly, T.; Kriet, M.; Czirok, A.; Thomas, S.M. Cancer-Associated Fibroblasts: Master Tumor Microenvironment Modifiers. Cancers 2023, 15, 1899. [Google Scholar] [CrossRef]
- Schiliro, C.; Firestein, B.L. Mechanisms of Metabolic Reprogramming in Cancer Cells Supporting Enhanced Growth and Proliferation. Cells 2021, 10, 1056. [Google Scholar] [CrossRef]
- Zhao, Y.-X.; Wang, H.; Zhang, S.-W.; Zhang, W.-X.; Jiang, Y.-Z.; Shao, Z.-M. Enhancing Therapeutic Efficacy in Luminal Androgen Receptor Triple-Negative Breast Cancer: Exploring Chidamide and Enzalutamide as a Promising Combination Strategy. Cancer Cell Int. 2024, 24, 131. [Google Scholar] [CrossRef]
- Omar, M.; Harrell, J.C.; Tamimi, R.; Marchionni, L.; Erdogan, C.; Nakshatri, H.; Ince, T.A. A Triple Hormone Receptor ER, AR, and VDR Signature Is a Robust Prognosis Predictor in Breast Cancer. Breast Cancer Res. 2024, 26, 132. [Google Scholar] [CrossRef] [PubMed]
- Wan, M.; Pan, S.; Shan, B.; Diao, H.; Jin, H.; Wang, Z.; Wang, W.; Han, S.; Liu, W.; He, J.; et al. Lipid Metabolic Reprograming: The Unsung Hero in Breast Cancer Progression and Tumor Microenvironment. Mol. Cancer 2025, 24, 61. [Google Scholar] [CrossRef] [PubMed]
- Sui, Y.; Liu, Z.; Yao, Y.; Zhang, S.; Wang, Y.; Wang, Y.; Kong, B. Estrogen Receptor β Inhibits Breast Cancer Migration and Promotes Its Apoptosis through NF-κB/IL-8 Signaling. Transl. Cancer Res. 2025, 14, 1824–1835. [Google Scholar] [CrossRef]
- Rosado-Sanz, M.; Martínez-Alarcón, N.; Abellán-Soriano, A.; Golfe, R.; Trinidad, E.M.; Font de Mora, J. Cytokine Networks in Triple-Negative Breast Cancer: Mechanisms, Therapeutic Targets, and Emerging Strategies. Biomedicines 2025, 13, 1945. [Google Scholar] [CrossRef] [PubMed]
- Christenson, J.L.; Butterfield, K.T.; Spoelstra, N.S.; Norris, J.D.; Josan, J.S.; Pollock, J.A.; McDonnell, D.P.; Katzenellenbogen, B.S.; Katzenellenbogen, J.A.; Richer, J.K. MMTV-PyMT and Derived Met-1 Mouse Mammary Tumor Cells as Models for Studying the Role of the Androgen Receptor in Triple-Negative Breast Cancer Progression. Horm. Cancer 2017, 8, 69–77. [Google Scholar] [CrossRef]
- Lee, R.; Lee, H.-B.; Paeng, J.C.; Choi, H.; Whi, W.; Han, W.; Seok, J.W.; Kang, K.W.; Cheon, G.J. Association of Androgen Receptor Expression with Glucose Metabolic Features in Triple-Negative Breast Cancer. PLoS ONE 2022, 17, e0275279. [Google Scholar] [CrossRef]
- Jiang, Z.; Zhou, J.; Li, L.; Liao, S.; He, J.; Zhou, S.; Zhou, Y. Pericytes in the Tumor Microenvironment. Cancer Lett. 2023, 556, 216074. [Google Scholar] [CrossRef]
- Zhao, J.; Cheng, L.; Yang, J.; Xu, F.; Qi, W.; Liao, K.; Zhou, L.; Cao, L.; Chen, J.; Lin, Y. Tumor-Nerve Interactions in Cancer Regulation and Progression. Cancer Lett. 2025, 612, 217483. [Google Scholar] [CrossRef]
- He, J.-Z.; Chen, Y.; Zeng, F.-M.; Huang, Q.-F.; Zhang, H.-F.; Wang, S.-H.; Yu, S.-X.; Pang, X.-X.; Liu, Y.; Xu, X.-E.; et al. Spatial Analysis of Stromal Signatures Identifies Invasive Front Carcinoma-Associated Fibroblasts as Suppressors of Anti-Tumor Immune Response in Esophageal Cancer. J. Exp. Clin. Cancer Res. 2023, 42, 136. [Google Scholar] [CrossRef] [PubMed]
- Carlson, P.; Dasgupta, A.; Grzelak, C.A.; Kim, J.; Barrett, A.; Coleman, I.M.; Shor, R.E.; Goddard, E.T.; Dai, J.; Schweitzer, E.M.; et al. Targeting the Perivascular Niche Sensitizes Disseminated Tumour Cells to Chemotherapy. Nat. Cell Biol. 2019, 21, 238–250. [Google Scholar] [CrossRef] [PubMed]
- Jahin, I.; Phillips, T.; Marcotti, S.; Gorey, M.-A.; Cox, S.; Parsons, M. Extracellular Matrix Stiffness Activates Mechanosensitive Signals but Limits Breast Cancer Cell Spheroid Proliferation and Invasion. Front. Cell Dev. Biol. 2023, 11, 1292775. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D.; Weinberg, R.A. Hallmarks of Cancer: The next Generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef]

| Subtype | CAFs | Vascular Features | ECM/EMT Features | Metabolic Profile | Hypoxia |
|---|---|---|---|---|---|
| BL1/2 | Stroma-low in bulk studies, though single-cell analyses suggest higher CAF abundance in BL2-like tumors | Increased endothelial cell content; Low levels of lymphangiogenesis | No consistent ECM/EMT enrichment | Metabolically active | Low hypoxia signatures |
| IM | Minimal CAF enrichment | Elevated lymphangiogenesis; Negative association with angiogenesis | No consistent ECM/EMT enrichment | Lowest metabolic activity; negative association with glycolysis, lipid metabolism, and PPP | Low hypoxia signatures |
| M | High CAF abundance | Increased endothelial cell content; Low levels of lymphangiogenesis | Pronounced ECM and EMT activation | Not directly reported | Enrichment in hypoxia-related gene expression |
| MSL | High CAF abundance | Elevated lymphangiogenesis | Pronounced ECM and EMT activation | High metabolic activity (esp. fatty acid metabolism and adipogenesis) | Not directly reported |
| LAR | High myCAFs and iCAFs (but lower than M or BL2); dynamic remodeling post-therapy | Low baseline endothelial cell content; increase with pCR | No consistent ECM/EMT enrichment, but CAF-driven remodeling possible | High metabolic activity (esp. fatty acid metabolism and adipogenesis); glycolysis decreases post-pCR | Enrichment in hypoxia-related gene expression |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Syrnioti, A.; Timotheadou, E.; Papadopoulos, V.; Syrnioti, G.; Koletsa, T. Dissecting the Non-Immune Tumor Microenvironment in Triple-Negative Breast Cancer: Molecular Subtype-Specific Patterns and Prognostic Implications. Int. J. Mol. Sci. 2025, 26, 11211. https://doi.org/10.3390/ijms262211211
Syrnioti A, Timotheadou E, Papadopoulos V, Syrnioti G, Koletsa T. Dissecting the Non-Immune Tumor Microenvironment in Triple-Negative Breast Cancer: Molecular Subtype-Specific Patterns and Prognostic Implications. International Journal of Molecular Sciences. 2025; 26(22):11211. https://doi.org/10.3390/ijms262211211
Chicago/Turabian StyleSyrnioti, Antonia, Eleni Timotheadou, Vasileios Papadopoulos, Georgia Syrnioti, and Triantafyllia Koletsa. 2025. "Dissecting the Non-Immune Tumor Microenvironment in Triple-Negative Breast Cancer: Molecular Subtype-Specific Patterns and Prognostic Implications" International Journal of Molecular Sciences 26, no. 22: 11211. https://doi.org/10.3390/ijms262211211
APA StyleSyrnioti, A., Timotheadou, E., Papadopoulos, V., Syrnioti, G., & Koletsa, T. (2025). Dissecting the Non-Immune Tumor Microenvironment in Triple-Negative Breast Cancer: Molecular Subtype-Specific Patterns and Prognostic Implications. International Journal of Molecular Sciences, 26(22), 11211. https://doi.org/10.3390/ijms262211211

