Neurodegeneration as Ecosystem Failure: A New Paradigm for Prevention and Treatment
Abstract
1. Introduction: From Brain-Centric Models to Ecosystem Failure
| Term | Definition | Relevance |
| Perfect storm | Convergence of microbial, viral, metabolic, circadian, immune, and toxic stressors that overwhelm resilience, leading to systemic collapse. | Explains why neurodegeneration requires a multifactorial convergence of factors rather than a single cause, providing the theoretical foundation for multimodal therapeutic approaches and highlighting why isolated interventions typically fail. |
| Molecular scars | Umbrella term for long-lasting imprints at epigenetic, proteostatic, mitochondrial, or microbial levels that sustain pathology even after triggers are removed. | Captures why disease persists even when triggers are removed. |
| Epiglial scars | Maladaptive reprogramming of glial cells (astrocytes, microglia, oligodendrocytes) that persists beyond the initial insult. | Explain the persistence of neurodegeneration across an individual’s lifetime. |
| Epigamilial Susceptibility | Intergenerational inheritance of pathogen- and environment-driven epigenetic marks reinforced by shared exposures. | Explains familial clustering without clear genetic mutations. |
| Proteinopenia | Umbrella term for functional depletion of essential proteins (α-synuclein, tau, TDP-43) below thresholds needed for cellular homeostasis, representing the actual tipping point across neurodegenerative diseases. | Unifies the concept that disease emerges from loss-of-function rather than just toxic aggregation, generalizing across all major neurodegenerative disorders. |
| Synucleinopenia | Depletion of functional α-synuclein below the threshold needed for vesicle cycling, mitochondrial stability, and barrier integrity. | Defines the tipping point of Parkinsonian spectrum disorders. |
| Tauopenia/TDP-43 depletion | Loss of physiological functions of tau, or TDP-43 due to sequestration into aggregates, highlighting that disease is not only toxic gain-of-function but also loss-of-function. | Generalizes the concept of functional collapse across diseases. |
| Strain Selection | Process by which ecological pressures favor specific conformational variants of misfolded proteins, determining disease phenotype and progression rate through "molecular Darwinism." | Explains why similar protein aggregates produce different clinical syndromes (e.g., PD vs. MSA). |
| Organ–brain Axes | Bidirectional communication pathways between peripheral organs and the brain that maintain homeostasis and can propagate pathology when disrupted. | Central organizing concept for how systemic dysfunction spreads to neurodegeneration. |
| Vexosomes | Extracellular vesicles carrying viral and other pathogen components, blurring the line between host communication and pathogen exploitation, representing hybrid host–pathogen messengers that propagate misfolding. | Illustrate how pathogens hijack vesicle traffic to amplify misfolding. |
| Trained Immunity | Maladaptive epigenetic reprogramming of immune and glial cells that maintains hyper-reactive inflammatory states long after initial pathogen clearance. | Mechanistic basis for epiglial scarring and explains why neuroinflammation persists despite apparent pathogen elimination. |
| Cascade Dynamics | Self-reinforcing feedback loops where interventions in one domain (epigenetic, microbiome, proteostatic, mitochondrial) propagate improvements across interconnected systems. | Explains why strategic interventions may trigger disproportionate recovery effects through positive feedback mechanisms. |
| Ecosystem Restoration/Precision Ecosystem Medicine | Therapeutic approach targeting multiple organ–brain axes and pathogenic factors simultaneously to restore systemic resilience rather than treating isolated symptoms. | Represents the clinical translation of the ecosystem failure paradigm into precision medicine strategies for the prevention and treatment of neurodegeneration. |
2. Clinical Overlap as a Window into Systemic Convergence
3. Prion-like Misfolding and Functional Depletion
| Category | Details |
|---|---|
| α-Syn Production and Role | Produced primarily by neuronal cells, and to a lesser extent, by oligodendrocytes, neuroendocrine, and enteroendocrine cells. Its physiological role involves the regulation of neurotransmitter release at synapses and vesicle trafficking. |
| Role of Exosomes in Spreading | Exosomes, small vesicles released by cells, can carry α-syn, including its misfolded forms, between cells. This is believed to contribute to the propagation of pathology across different parts of the brain and potentially the peripheral nervous system. |
| Misfolded vs. Regular α-Syn | Regular α-syn is soluble and typically found in a non-aggregated state. Misfolded α-syn forms insoluble aggregates known as Lewy bodies (in neurons) or GCIs (in oligodendrocytes). Misfolded α-syn is prone to forming beta-sheet-rich structures that promote further aggregation. |
| Impact of α-Syn Aggregates on the Neural System | α-syn aggregates lead to cellular dysfunction and death via mechanisms such as mitochondrial disruption, impaired protein degradation pathways, and activation of inflammatory pathways, ultimately resulting in neurodegeneration. |
| Mechanisms of Cellular Damage | α-syn aggregates impair mitochondrial function, leading to reduced ATP production and increased oxidative stress. They also disrupt the ubiquitin-proteasome and autophagy-lysosomal pathways, crucial for protein degradation, and provoke endoplasmic reticulum stress, contributing to cell death. |
| Cellular Defense Failure | Threshold-dependent overload of protein quality-control systems. Inflammation impairs autophagy and proteasome function, while energy depletion reduces chaperone capacity. Synergistic co-stressors create vulnerability windows. |
| Therapeutic Targets | Therapies focus on reducing α-syn production (e.g., gene silencing), enhancing misfolded α-syn clearance (e.g., immunotherapy), potentially followed by healthy or therapeutic EV delivery, inhibiting its aggregation (e.g., small molecule inhibitors), and neuroprotective strategies to shield neurons from α-syn toxicity (e.g., antioxidants). However, challenges such as the blood–brain barrier, which limits the efficacy of drug delivery, remain significant obstacles to the development of effective treatments. |
| Diagnostic Relevance | Elevated levels of α-syn in CSF and blood, or its radiological markers, are being researched as potential diagnostic and prognostic biomarkers for synucleinopathies. Efforts to correlate these levels with disease severity and progression are ongoing. Variability in α-syn levels due to technical and biological factors poses challenges for biomarker development, making it difficult to correlate these levels consistently with disease severity and progression. Future work should systematically characterize defense thresholds and co-stressor effects on protein clearance. |
4. Transmission Routes
4.1. Extracellular Vesicles as Double-Edged Messengers
Cellular Defense Against Pathogenic Vesicle Cargo
4.2. Neural, Endocrine, and Immune Pathways
4.3. Emerging Transmission Mechanisms
4.4. Bidirectional Loops and Network Failure
5. Pathogen Synergy and the Perfect Storm
5.1. Microbial Amyloids and Cross-Seeding of Host Proteins
5.2. Biofilms as Chronic Ignition Zones
5.3. Spatial Layering and Co-Infections in Bacterial and Viral Niches
5.4. Commensal-Pathogen Transitions as Ecological Collapse
Fungal and Parasitic Amplifiers in Multi-Pathogen Synergy
5.5. Viruses, Demyelination, and Oligodendroglial Vulnerability
5.6. Mast Cells and Microglia as Amplifiers of Co-Infection
5.7. Mitochondria as Signal Hubs, Not Just Victims
5.8. Strain Selection and Prion Biology
5.9. Molecular Scars and Trained Immunity
5.10. Environmental and Geographic Modulators
5.11. Metabolic Cofactors and Circadian Disruption as Amplifiers of the Perfect Storm
5.12. Synthesis: The “Perfect Storm” as Systemic Buffer Exhaustion
6. Organ–Brain Axes: Entry Points and Bidirectional Loops
6.1. The Immune–Organ–Brain Axis (Meta-Axis)
6.2. Converging Inflammatory Pathways: The Heart–Oral–Vascular–Brain Axis
6.2.1. Oral Infections as Upstream Triggers
6.2.2. Vascular Pathology as a Converging Mechanism
6.2.3. Cardiac Autonomic Dysfunction as Amplifier
6.2.4. Ecosystem Failure Across Interconnected Systems
6.3. Integration: Multi-Axis, Asynchronous Failures → Systemic Collapse
7. Persistence and Inheritance: Molecular Scars, Epiglial Scars, and Epigamilial Susceptibility
7.1. Molecular Scars: Recording the History of Insults
- Epigenetic reprogramming (DNA methylation, histone acetylation/methylation, long noncoding RNAs) that fix immune and glial cells into hyper-reactive states.
- Proteostatic templates, where misfolded intermediates seeded during earlier stress persist and act as nuclei for prion-like propagation.
- Mitochondrial and metabolic remodeling, where altered redox states and bio-energetics persist beyond the initiating insult, continually bias cells toward oxidative stress and energy deficits.
7.2. Epiglial Scars: The Persistence of Maladaptive Glial States
7.3. Epigamilial Susceptibility: Intergenerational Inheritance of Scars
7.4. Memory Across Scales: Embedding Irreversibility
7.5. Can Molecular Scars Be Reversed?
Potential Cascade Dynamics in Scar Reversal
8. Neurodegeneration as Ecosystem Failure: A New Paradigm
8.1. From Protein Misfolding to Network Collapse
8.2. The Perfect Storm and the Failure of Buffering
8.3. Memory Layers: Scars That Embed Irreversibility
8.4. Ecosystem Restoration: From Inevitability to Intervention
- Pathogen control: manage viral latency, dismantle biofilms, rebalance microbial consortia.
- Epigenetic reprogramming: reverse maladaptive marks via selective drugs, editing tools, and lifestyle change.
- Proteostasis restoration: enhance chaperones, activate autophagy, dismantle aggregates.
- Mitochondrial renewal: revive bioenergetics through NAD+ boosters and mitophagy inducers.
- Ecological resets: shift diet, microbiome, and toxin load to resynchronize axes.
- Family-wide measures: address epigamilial risk and personalize therapy via pharmacogenetics [173].
8.5. A New Paradigm
9. Shared Mechanisms: Convergence Across Neurodegenerative Diseases–Ecosystem Failure Beyond Aggregates
10. Toward Precision Ecosystem Medicine
10.1. Biomarkers for Ecosystem Monitoring
Clinical Applications: Illustrative Cases
10.2. Prevention and Interception in the Prodrome
10.3. Regenerative Strategies: Restoring Resilience
10.4. Precision Through Stratification and Artificial Intelligence Integration
10.5. Roadmap to Ecosystem Restoration
10.6. Limitations and Future Directions
11. From Ecosystem Failure to Precision Ecosystem Medicine
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chevalier, S.; Decourt, M.; Francheteau, M.; Nicol, F.; Balbous, A.; Fernagut, P. Alpha-synuclein-induced nigrostriatal degeneration and pramipexole treatment disrupt frontostriatal plasticity. npj Park. Dis. 2024, 10, 169. [Google Scholar] [CrossRef]
- Dixon, T.C.; Strandquist, G.; Zeng, A.; Frączek, T.; Bechtold, R.; Lawrence, D.; Ravi, S.; Starr, P.A.; Gallant, J.L.; Herron, J.A.; et al. Movement-responsive deep brain stimulation for Parkinson’s disease using a remotely optimized neural decoder. Nat. Biomed. Eng. 2025, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Ye, P.; Bi, L.; Qiu, Y.; Yang, M.; Liu, Y.; Hou, Y.; Zheng, P.; Cao, X.; Su, J.; Jin, H. Resynchronization of microglial activity in the brain is associated with restoration of motor function in Parkinson’s disease. Commun. Biol. 2025, 8, 1188. [Google Scholar] [CrossRef]
- Farrow, S.L.; Cooper, A.A.; O’Sullivan, J.M. Redefining the hypotheses driving Parkinson’s diseases research. npj Park. Dis. 2022, 8, 45. [Google Scholar] [CrossRef]
- Zhang, W.; Xiao, D.; Mao, Q.; Xia, H. Role of neuroinflammation in neurodegeneration development. Signal Transduct. Target. Ther. 2023, 8, 267. [Google Scholar] [CrossRef] [PubMed]
- Menon, S.; Armstrong, S.; Hamzeh, A.; Visanji, N.P.; Sardi, S.P.; Tandon, A. Alpha-Synuclein Targeting Therapeutics for Parkinson’s Disease and Related Synucleinopathies. Front. Neurol. 2022, 13, 852003. [Google Scholar] [CrossRef]
- Ou, R.; Hou, Y.; Wei, Q.; Lin, J.; Liu, K.; Zhang, L.; Jiang, Z.; Cao, B.; Zhao, B.; Song, W.; et al. Longitudinal evolution of non-motor symptoms in early Parkinson’s disease: A 3-year prospective cohort study. npj Park. Dis. 2021, 7, 58. [Google Scholar] [CrossRef] [PubMed]
- Khoo, T.K.; Yarnall, A.J.; Duncan, G.W.; Coleman, S.; O’Brien, J.T.; Brooks, D.J.; Barker, R.A.; Burn, D.J. The spectrum of nonmotor symptoms in early Parkinson disease. Neurology 2013, 80, 276–281. [Google Scholar] [CrossRef]
- Armstrong, M.J.; Okun, M.S. Diagnosis and Treatment of Parkinson Disease: A Review. JAMA 2020, 323, 548–560. [Google Scholar] [CrossRef]
- Tan, A.H.; Lim, S.Y.; Lang, A.E. The microbiome–gut–brain axis in Parkinson disease—From basic research to the clinic. Nat. Rev. Neurol. 2022, 18, 476–495. [Google Scholar] [CrossRef]
- Tam, S.; Wear, D.; Morrone, C.D.; Yu, W.H. The complexity of extracellular vesicles: Bridging the gap between cellular communication and neuropathology. J. Neurochem. 2024, 168, 2391–2422. [Google Scholar] [CrossRef]
- Espay, A.J.; Lees, A.J. Loss of monomeric alpha-synuclein (synucleinopenia) and the origin of Parkinson’s disease. Park. Relat. Disord. 2024, 122, 106077. [Google Scholar] [CrossRef]
- Kim, H.-J.; Stamelou, M.; Jeon, B. Multiple system atrophy-mimicking conditions: Diagnostic challenges. Park. Relat. Disord. 2016, 22, S12–S15. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Kuo, S. Ataxias: Hereditary, Acquired, and Reversible Etiologies. Semin. Neurol. 2023, 43, 48–64. [Google Scholar] [CrossRef] [PubMed]
- Politis, M.; Wu, K.; Molloy, S.; Bain, P.; Chaudhukuri, K.; Piccini, P. Parkinson’s disease symptoms: The patient’s perspective. Mov. Disord. 2010, 25, 1646–1651. [Google Scholar] [CrossRef]
- Pitz, V.; Malek, N.; Tobias, E.; Grosset, K.; Gentleman, S.; Grosset, D. The Levodopa Response Varies in Pathologically Confirmed Parkinson’s Disease: A Systematic Review. Mo.v Disord. Clin. Pract. 2020, 7, 218–222. [Google Scholar] [CrossRef]
- Yshii, L.; Bost, C.; Liblau, R. Immunological Bases of Paraneoplastic Cerebellar Degeneration and Therapeutic Implications. Front. Immunol. 2020, 11, 991. [Google Scholar] [CrossRef]
- Lazarev, V.F.; Alhasan, B.A.; Guzhova, I.V.; Margulis, B.A. “Proteinjury”: A universal pathological mechanism mediated by cerebrospinal fluid in neurodegeneration and trauma. Front. Cell Dev. Biol. 2025, 13, 1593122. [Google Scholar] [CrossRef] [PubMed]
- Prusiner, S.B.; Woerman, A.L.; Mordes, D.A.; Watts, J.C.; Rampersaud, R.; Berry, D.B.; Patel, S.; Oehler, A.; Lowe, J.K.; Kravitz, S.N.; et al. Evidence for α-synuclein prions causing multiple system atrophy in humans with parkinsonism. Proc. Natl. Acad. Sci. USA 2015, 112, E5308–E5317, Erratum in Proc. Natl. Acad. Sci. USA, 2024, 121, e2408899121. [Google Scholar] [CrossRef]
- McAlary, L.; Plotkin, S.S.; Yerbury, J.J.; Cashman, N.R. Prion-Like Propagation of Protein Misfolding and Aggregation in Amyotrophic Lateral Sclerosis. Front. Mol. Neurosci. 2019, 12, 262, Erratum in Front. Mol. Neurosci. 2020, 12, 311. https://doi.org/10.3389/fnmol.2019.00311. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lee, S.; Kim, H.J. Prion-like Mechanism in Amyotrophic Lateral Sclerosis: Are Protein Aggregates the Key? Exp. Neurobiol. 2015, 24, 1–7. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Münch, C.; O’Brien, J.; Bertolotti, A. Prion-like propagation of mutant superoxide dismutase-1 misfolding in neuronal cells. Proc. Natl. Acad. Sci. USA 2011, 108, 3548–3553. [Google Scholar] [CrossRef] [PubMed]
- Ayers, J.I.; Fromholt, S.E.; O’Neal, V.M.; Diamond, J.H.; Borchelt, D.R. Prion-like propagation of mutant SOD1 misfolding and motor neuron disease spread along neuroanatomical pathways. Acta Neuropathol. 2016, 131, 103–114. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hock, E.M.; Polymenidou, M. Prion-like propagation as a pathogenic principle in frontotemporal dementia. J. Neurochem. 2016, 138 (Suppl. S1), 163–183. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Woerman, A.L. Strain diversity in neurodegenerative disease: An argument for a personalized medicine approach to diagnosis and treatment. Acta Neuropathol. 2021, 142, 1–3. [Google Scholar] [CrossRef]
- Pearce, M.M.; Kopito, R.R. Prion-Like Characteristics of Polyglutamine-Containing Proteins. Cold Spring Harb. Perspect. Med. 2018, 8, a024257. [Google Scholar] [CrossRef] [PubMed]
- Lim, K.H. Diverse Misfolded Conformational Strains and Cross-seeding of Misfolded Proteins Implicated in Neurodegenerative Diseases. Front. Mol. Neurosci. 2019, 12, 464251. [Google Scholar] [CrossRef]
- Davis, A.A.; Leyns, C.E.G.; Holtzman, D.M. Intercellular Spread of Protein Aggregates in Neurodegenerative Disease. Annu. Rev. Cell Dev. Biol. 2018, 34, 545–568. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Marotta, N.; Ara, J.; Uemura, N.; Lougee, M.G.; Meymand, E.S.; Zhang, B.; Petersson, E.J.; Trojanowski, J.Q.; Lee, V.M.-Y. Alpha-synuclein from patient Lewy bodies exhibits distinct pathological activity that can be propagated in vitro. Acta Neuropathol. Commun. 2021, 9, 188. [Google Scholar] [CrossRef]
- Guo, M.; Wang, J.; Zhao, Y.; Feng, Y.; Han, S.; Dong, Q.; Cui, M.; Tieu, K. Microglial exosomes facilitate α-synuclein transmission in Parkinson’s disease. Brain 2020, 143, 1476–1497. [Google Scholar] [CrossRef]
- Jeong, J.; Moon, M.; Lee, Y.; Seol, J.; Park, S. Autophagy induced by the class III histone deacetylase Sirt1 prevents prion peptide neurotoxicity. Neurobiol. Aging 2013, 34, 146–156. [Google Scholar] [CrossRef] [PubMed]
- Esteves, A.R.; Arduíno, D.M.; Silva, D.F.; Viana, S.D.; Pereira, F.C.; Cardoso, S.M. Mitochondrial metabolism regulates microtubule acetylome and autophagy trough Sirtuin-2: Impact for Parkinson’s disease. Mol. Neurobiol. 2018, 55, 1440–1462. [Google Scholar] [CrossRef] [PubMed]
- Fussi, N.; Höllerhage, M.; Chakroun, T.; Nykänen, N.P.; Rösler, T.W.; Koeglsperger, T.; Wurst, W.; Behrends, C.; Höglinger, G.U. Exosomal secretion of α-synuclein as protective mechanism after upstream blockage of macroautophagy. Cell Death Dis. 2018, 9, 757. [Google Scholar] [CrossRef] [PubMed]
- Bengoa-Vergniory, N.; Roberts, R.F.; Wade-Martins, R.; Alegre-Abarrategui, J. Alpha-synuclein oligomers: A new hope. Acta Neuropathol 2017, 134, 819–838. [Google Scholar] [CrossRef] [PubMed]
- Wan, O.W.; Chung, K.K.K. The Role of Alpha-Synuclein Oligomerization and Aggregation in Cellular and Animal Models of Parkinson’s Disease. PLoS ONE 2012, 7, e38545. [Google Scholar] [CrossRef]
- Onishi, N.; Mazzaferro, N.; Kunstelj, Š.; Alvarado, D.A.; Muller, A.M.; Vázquez, F.X. Molecular Dynamics Study of α-Synuclein Domain Deletion Mutant Monomers. Biomolecules 2025, 15, 1577. [Google Scholar] [CrossRef]
- Lee, H.-J.; Khoshaghideh, F.; Patel, S.; Lee, S.-J. Clearance of α-Synuclein Oligomeric Intermediates via the Lysosomal Degradation Pathway. J. Neurosci. 2004, 24, 1888–1896. [Google Scholar] [CrossRef]
- Ohira, J.; Sawamura, M.; Kawano, K.; Sato, R.; Taguchi, T.; Ishimoto, T.; Ueda, J.; Ikuno, M.; Matsuzawa, S.; Matsuzaki, K.; et al. Impact of α-synuclein fibril structure on seeding activity in experimental models of Parkinson’s disease. npj Park. Dis. 2025, 11, 224. [Google Scholar] [CrossRef]
- Gustafsson, G.; Lööv, C.; Persson, E.; Lázaro, D.F.; Takeda, S.; Bergström, J.; Erlandsson, A.; Sehlin, D.; Balaj, L.; György, B.; et al. Secretion and Uptake of α-Synuclein Via Extracellular Vesicles in Cultured Cells. Cell Mol. Neurobiol. 2018, 38, 1539–1550. [Google Scholar] [CrossRef]
- Kent, S.A.; Spires-Jones, T.L.; Durrant, C.S. The physiological roles of tau and Aβ: Implications for Alzheimer’s disease pathology and therapeutics. Acta Neuropathol. 2020, 140, 417–447. [Google Scholar] [CrossRef]
- Kopeikina, K.J.; Hyman, B.T.; Spires-Jones, T.L. Soluble forms of tau are toxic in Alzheimer’s disease. Transl. Neurosci. 2012, 3, 223–233. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fang, M.; Deibler, S.K.; Nana, A.L.; Vatsavayai, S.C.; Banday, S.; Zhou, Y.; Almeida, S.; Weiss, A.; Brown, R.H.; Seeley, W.W.; et al. Loss of TDP-43 function contributes to genomic instability in amyotrophic lateral sclerosis. Front. Neurosci. 2023, 17, 1251228. [Google Scholar] [CrossRef]
- Zeng, Y.; Lovchykova, A.; Akiyama, T.; Liu, C.; Guo, C.; Jawahar, V.M.; Sianto, O.; Calliari, A.; Prudencio, M.; Dickson, D.W.; et al. TDP-43 nuclear loss in FTD/ALS causes widespread alternative polyadenylation changes. biorXiv 2024. biorXiv:2024.01.22.575730 Update in Nat. Neurosci. 2025, 28, 2180–2189. https://doi.org/10.1038/s41593-025-02049-3. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mielcarek, M. Huntington’s disease is a multi-system disorder. Rare Dis. 2015, 3, e1058464. [Google Scholar] [CrossRef]
- Critchley, B.J.; Isalan, M.; Mielcarek, M. Neuro-Cardio Mechanisms in Huntington’s Disease and Other Neurodegenerative Disorders. Front. Physiol. 2018, 9, 337975. [Google Scholar] [CrossRef]
- Bozzi, M.; Sciandra, F. Molecular Mechanisms Underlying Muscle Wasting in Huntington’s Disease. Int. J. Mol. Sci. 2020, 21, 8314. [Google Scholar] [CrossRef]
- Huang, J.; Chen, W.; Zhang, X. Huntington’s disease: Molecular basis of pathology and status of current therapeutic approaches. Exp. Ther. Med. 2016, 12, 1951. [Google Scholar] [CrossRef]
- Berth, S.H.; Lloyd, T.E. Disruption of axonal transport in neurodegeneration. J. Clin. Investig. 2023, 133, e168554. [Google Scholar] [CrossRef] [PubMed]
- Calabresi, P.; Lazzaro, G.D.; Marino, G.; Campanelli, F.; Ghiglieri, V. Advances in understanding the function of alpha-synuclein: Implications for Parkinson’s disease. Brain 2023, 146, 3587. [Google Scholar] [CrossRef] [PubMed]
- Calabresi, P.; Mechelli, A.; Natale, G.; Di Lazzaro, G.; Ghiglieri, V. Alpha-synuclein in Parkinson’s disease and other synucleinopathies: From overt neurodegeneration back to early synaptic dysfunction. Cell Death Dis. 2023, 14, 176. [Google Scholar] [CrossRef] [PubMed]
- Shippey, L.E.; Campbell, S.G.; Hill, A.F.; Smith, D.P. Propagation of Parkinson’s disease by extracellular vesicle production and secretion. Biochem. Soc. Trans. 2022, 50, 1303–1314. [Google Scholar] [CrossRef]
- Mulcahy, L.A.; Pink, R.C.; Francisco Carter, D.R. Routes and mechanisms of extracellular vesicle uptake. J. Extracell. Vesicles 2014, 3, 24641. [Google Scholar] [CrossRef]
- Pedrioli, G.; Paganetti, P. Hijacking Endocytosis and Autophagy in Extracellular Vesicle Communication: Where the Inside Meets the Outside. Front. Cell Dev. Biol. 2021, 8, 595515. [Google Scholar] [CrossRef]
- Andreu, Z. Tetraspanins in Extracellular Vesicle Formation and Function. Front. Immunol. 2014, 5, 109543. [Google Scholar] [CrossRef]
- Cardeñes, B.; Cabañas, C. Molecular Determinants Involved in the Docking and Uptake of Tumor-Derived Extracellular Vesicles: Implications in Cancer. Int. J. Mol. Sci. 2024, 25, 3449. [Google Scholar] [CrossRef]
- Asao, T.; Tobias, G.C.; Lucotti, S.; Jones, D.R.; Matei, I.; Lyden, D. Extracellular Vesicles as Mediators of Neuroinflammation in Intercellular and Inter-Organ Crosstalk. Int. J. Mol. Sci. 2023, 25, 7041. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, X.; Yang, Z.; Wang, B.; Gong, H.; Zhang, K.; Lin, Y.; Sun, M. Extracellular vesicles: Biological mechanisms and emerging therapeutic opportunities in neurodegenerative diseases. Transl. Neurodegener. 2024, 13, 60. [Google Scholar] [CrossRef] [PubMed]
- Kuipers, M.E.; Hokke, C.H.; Smits, H.H. Pathogen-Derived Extracellular Vesicle-Associated Molecules That Affect the Host Immune System: An Overview. Front. Microbiol. 2018, 9, 2182. [Google Scholar] [CrossRef]
- Braak, H.; Rub, U.; Gai, W.P.; Del Tredici, K. Idiopathic Parkinson’s disease: Possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. J. Neural. Transm. 2003, 110, 517–536. [Google Scholar] [CrossRef] [PubMed]
- Borghammer, P.; Van Den Berge, N. Brain-First versus Gut-First Parkinson’s Disease: A Hypothesis. J. Park. Dis. 2019, 9 (Suppl. S2), S281–S295. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ligocki, A.P.; Vinson, A.V.; Yachnis, A.T.; Dunn, W.A., Jr.; Smith, D.E.; Scott, E.A.; Alvarez-Castanon, J.V.; Baez Montalvo, D.E.; Frisone, O.G.; Brown, J.; et al. Cerebrospinal fluid flow extends to peripheral nerves further unifying the nervous system. Sci. Adv. 2024, 10, eadn3259. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Dai, Y.; Hu, C.; Lin, Z.; Wang, S.; Yang, J.; Zeng, L.; Li, S.; Li, W. Cellular and molecular mechanisms of the blood–brain barrier dysfunction in neurodegenerative diseases. Fluids Barriers CNS 2024, 21, 60. [Google Scholar] [CrossRef]
- Zul Ramli, S.M.A.; HamidH, A.; Che Mohd Nassir, C.M.N.; Rahaman, S.N.A.; Mehat, M.Z.; Kumar, J.; Lee, S.Y.; Mustapha, M. Aberrant blood-brain barrier dynamics in cerebral small vessel disease—A review of associations, pathomechanisms and therapeutic potentials. Vessel. Plus. 2024, 8, 30. [Google Scholar] [CrossRef]
- Procaccini, C.; Pucino, V.; De Rosa, V.; Marone, G.; Matarese, G. Neuro-Endocrine Networks Controlling Immune System in Health and Disease. Front. Immunol. 2014, 5, 83300. [Google Scholar] [CrossRef]
- Camandola, S.; Mattson, M.P. Brain metabolism in health, aging, and neurodegeneration. EMBO J. 2017, 36, 1474. [Google Scholar] [CrossRef]
- Prinz, M.; Priller, J. The role of peripheral immune cells in the CNS in steady state and disease. Nat. Neurosci. 2017, 20, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Reardon, C.; Murray, K.; Lomax, A.E. Neuroimmune Communication in Health and Disease. Physiol. Rev. 2018, 98, 2287. [Google Scholar] [CrossRef]
- Schirrmacher, V. Brain and Immune System: Intercellular Communication During Homeostasis and Neuroimmunomodulation upon Dysfunction. Int. J. Mol. Sci. 2025, 26, 6552. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Yang, X.; Zheng, H.; Chen, C.; Yuan, J. Role of tunneling nanotubes in neuroglia. Neural Regen. Res. 2025, 21, 1023. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Lv, Q.; Liu, J.; Wang, F.; Liu, C. New perspectives on the glymphatic system and the relationship between glymphatic system and neurodegenerative diseases. Neurobiol. Dis. 2025, 205, 106791. [Google Scholar] [CrossRef]
- Wojewska, M.J.; Otero-Jimenez, M.; Guijarro-Nuez, J.; Alegre-Abarrategui, J. Beyond Strains: Molecular Diversity in Alpha-Synuclein at the Center of Disease Heterogeneity. Int. J. Mol. Sci. 2023, 24, 13199. [Google Scholar] [CrossRef] [PubMed]
- Lau, K.; Kotzur, R.; Richter, F. Blood–brain barrier alterations and their impact on Parkinson’s disease pathogenesis and therapy. Transl. Neurodegener. 2024, 13, 37. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Zhao, L.; Mao, Z.; Wang, Z.; Zhang, Z.; Li, M. Bidirectional Communication Between the Brain and Other Organs: The Role of Extracellular Vesicles. Cell. Mol. Neurobiol. 2023, 43, 2675. [Google Scholar] [CrossRef]
- Mercado, G.; Kaeufer, C.; Richter, F.; Peelaerts, W. Infections in the Etiology of Parkinson’s Disease and Synucleinopathies: A Renewed Perspective, Mechanistic Insights, and Therapeutic Implications. J. Park. Dis. 2024, 14, 1301. [Google Scholar] [CrossRef]
- Elkins, M.; Jain, N.; Tükel, Ç. The menace within: Bacterial amyloids as a trigger for autoimmune and neurodegenerative diseases. Curr. Opin. Microbiol. 2024, 79, 102473. [Google Scholar] [CrossRef]
- Seo, D.; Holtzman, D.M. Current understanding of the Alzheimer’s disease-associated microbiome and therapeutic strategies. Exp. Mol. Med. 2023, 56, 86–94. [Google Scholar] [CrossRef]
- Woods, J.J.; Skelding, K.A.; Martin, K.L.; Aryal, R.; Sontag, E.; Johnstone, D.M.; Horvat, J.C.; Hansbro, P.M.; Milward, E.A. Assessment of evidence for or against contributions of Chlamydia pneumoniae infections to Alzheimer’s disease etiology. Brain Behav. Immun. 2020, 83, 22–32. [Google Scholar] [CrossRef]
- Subedi, L.; Gaire, B.P.; Koronyo, Y.; Koronyo-Hamaoui, M.; Crother, T.R. Chlamydia pneumoniae in Alzheimer’s disease pathology. Front. Neurosci. 2024, 18, 1393293. [Google Scholar] [CrossRef]
- Besir Akpinar, M. A Hidden Organism, Chlamydia in the Age of Atherosclerosis. In Chlamydia-Secret Enemy from Past to Present; IntechOpen: London, UK, 2023. [Google Scholar] [CrossRef]
- Çamcı, G.; Oğuz, S. Association between Parkinson’s Disease and Helicobacter Pylori. J. Clin. Neurol. 2016, 12, 147. [Google Scholar] [CrossRef] [PubMed]
- Messina, B.M.; Grippaudo, C.; Polizzi, A.; Blasi, A.; Isola, G. The Key Role of Porphyromonas gingivalis in the Pathogenesis of Periodontitis Linked with Systemic Diseases. Appl. Sci. 2025, 15, 6847. [Google Scholar] [CrossRef]
- Huang, Z.; Hao, M.; Shi, N.; Wang, X.; Yuan, L.; Yuan, H.; Wang, X. Porphyromonas gingivalis: A potential trigger of neurodegenerative disease. Front. Immunol. 2025, 16, 1482033. [Google Scholar] [CrossRef]
- Mao, L.; Chen, Y.; Gu, J.; Zhao, Y.; Chen, Q. Roles and mechanisms of exosomal microRNAs in viral infections. Arch. Virol. 2023, 168, 121. [Google Scholar] [CrossRef]
- Dass, D.; Dhotre, K.; Chakraborty, M.; Nath, A.; Banerjee, A.; Bagchi, P.; Mukherjee, A. MiRNAs in Herpesvirus Infection: Powerful Regulators in Small Packages. Viruses 2023, 15, 429. [Google Scholar] [CrossRef] [PubMed]
- Bello-Morales, R.; Ripa, I.; López-Guerrero, J.A. Extracellular Vesicles in Viral Spread and Antiviral Response. Viruses 2020, 12, 623. [Google Scholar] [CrossRef] [PubMed]
- Deschamps, T.; Kalamvoki, M. Extracellular Vesicles Released by Herpes Simplex Virus 1-Infected Cells Block Virus Replication in Recipient Cells in a STING-Dependent Manner. J Virol. 2018, 92, e01102-18. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Suzuki, N.; Yoneda, M.; Hirofuji, T. Mixed Red-Complex Bacterial Infection in Periodontitis. Int. J. Dent. 2013, 2013, 587279. [Google Scholar] [CrossRef]
- Sedghi, L.M.; Bacino, M.; Kapila, Y.L.; Sedghi Lea, M.; Margot, B.; Lorraine, K.Y. Periodontal Disease: The GoThe Bad, and The Unknown. Front. Cell. Infect. Microbiol. 2021, 11, 766944. [Google Scholar] [CrossRef]
- Lei, S.; Li, J.; Yu, J.; Li, F.; Pan, Y.; Chen, X.; Ma, C.; Zhao, W.; Tang, X. Porphyromonas gingivalis bacteremia increases the permeability of the blood-brain barrier via the Mfsd2a/Caveolin-1 mediated transcytosis pathway. Int. J. Oral Sci. 2023, 15, 3. [Google Scholar] [CrossRef]
- Golan, N.; Landau, M.; Lipke, P.N. Structure and Conservation of Amyloid Spines from the Candida albicans Als5 Adhesin. Front. Mol. Biosci. 2022, 9, 926959. [Google Scholar] [CrossRef]
- Otoo, H.N.; Lee, K.G.; Qiu, W.; Lipke, P.N. Candida albicans Als Adhesins Have Conserved Amyloid-Forming Sequences. Eukaryot Cell 2008, 7, 776–782. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Du, S.; Bimler, L.H.; Mauk, K.E.; Lortal, L.; Kichik, N.; Griffiths, J.S.; Osicka, R.; Song, L.; Polsky, K.; et al. Toll-like receptor 4 and CD11b expressed on microglia coordinate eradication of Candida albicans cerebral mycosis. Cell Rep. 2023, 42, 113240. [Google Scholar] [CrossRef] [PubMed]
- Syn, G.; Anderson, D.; Blackwell, J.M.; Jamieson, S.E. Toxoplasma gondii Infection Is Associated with Mitochondrial Dysfunction in-Vitro. Front. Cell. Infect. Microbiol. 2017, 7, 512. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wood, H. Additive effects of EBV and HHV-6A on MS risk. Nat. Rev. Neurol. 2024, 20, 456. [Google Scholar] [CrossRef]
- Salehi, Z.; Beheshti, M.; Nomanpour, B.; Khosravani, P.; Naseri, M.; Sahraian, M.A.; Izad, M. The Association of EBV and HHV-6 Viral Load with Different NK and CD8+ T Cell Subsets in The Acute Phase of Relapsing-Remitting Multiple Sclerosis. Cell J. 2021, 23, 626–632. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, X.; Li, H.; Wu, C.; Zhang, Y. Epstein–Barr virus and human herpesvirus 6 infection in patients with systemic lupus erythematosus. Virol. J. 2023, 20, 29. [Google Scholar] [CrossRef] [PubMed]
- Duarte, L.F.; Gatica, S.; Castillo, A.; Kalergis, A.M.; Bueno, S.M.; Riedel, C.A.; González, P.A. Is there a role for herpes simplex virus type 1 in multiple sclerosis? Microbes Infect. 2023, 25, 105084. [Google Scholar] [CrossRef]
- Elesela, S.; Lukacs, N.W. Role of Mitochondria in Viral Infections. Life 2021, 11, 232. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, Y.; Jin, X.; Li, S.; Qiu, H.-J. Crosstalk between Dysfunctional Mitochondria and Proinflammatory Responses during Viral Infections. Int. J. Mol. Sci. 2024, 25, 9206. [Google Scholar] [CrossRef]
- Jiang, J.H.; Tong, J.; Gabriel, K. Hijacking mitochondria: Bacterial toxins that modulate mitochondrial function. IUBMB Life 2012, 64, 397–401. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Pan, Y. Reactive oxygen species mediate TNF-α-induced inflammatory response in bone marrow mesenchymal cells. Iran. J. Basic Med. Sci. 2019, 22, 1296–1301. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Monzio Compagnoni, G.; Kleiner, G.; Bordoni, A.; Fortunato, F.; Ronchi, D.; Salani, S.; Guida, M.; Corti, C.; Pichler, I.; Bergamini, C.; et al. Mitochondrial dysfunction in fibroblasts of Multiple System Atrophy. Biochim. Et Biophys. Acta (BBA)-Mol. Basis Dis. 2018, 1864, 3588–3597. [Google Scholar] [CrossRef]
- Chen, S.; Li, Q.; Shi, H.; Li, F.; Duan, Y.; Guo, Q. New insights into the role of mitochondrial dynamics in oxidative stress-induced diseases. Biomed. Pharmacother. 2024, 178, 117084. [Google Scholar] [CrossRef]
- Bhatti, J.S.; Bhatti, G.K.; Reddy, P.H. Mitochondrial dysfunction and oxidative stress in metabolic disorders—A step towards mitochondria based therapeutic strategies. Biochim. Et Biophys. Acta (BBA)—Mol. Basis Dis. 2017, 1863, 1066–1077. [Google Scholar] [CrossRef] [PubMed]
- Damman, C.J. Perspective: Nutrition’s Next Chapter—Bioactive Gaps and the Microbiome–Mitochondria Axis. Adv. Nutr. 2023, 14, 420–425. [Google Scholar] [CrossRef] [PubMed]
- Moda, F.; Ciullini, A.; Dellarole, I.L.; Lombardo, A.; Campanella, N.; Bufano, G.; Cazzaniga, F.A.; Giaccone, G. Secondary Protein Aggregates in Neurodegenerative Diseases: Almost the Rule Rather than the Exception. Front. Biosci. (Landmark Ed.) 2023, 28, 255. [Google Scholar] [CrossRef] [PubMed]
- Walker, L.C.; Jucker, M. Neurodegenerative diseases: Expanding the prion concept. Annu. Rev. Neurosci. 2015, 38, 87–103. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zabel, M.D.; Reid, C. A brief history of prions. Pathog. Dis. 2015, 73, ftv087. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Netea, M.G.; Domínguez-Andrés, J.; Barreiro, L.B.; Chavakis, T.; Divangahi, M.; Fuchs, E.; Joosten, L.A.B.; van der Meer, J.W.M.; Mhlanga, M.M.; Mulder, W.J.M.; et al. Defining trained immunity and its role in health and disease. Nat. Rev. Immunol. 2020, 20, 375–388. [Google Scholar] [CrossRef]
- Nabi, M.; Tabassum, N. Role of Environmental Toxicants on Neurodegenerative Disorders. Front. Toxicol. 2022, 4, 837579. [Google Scholar] [CrossRef] [PubMed]
- Olloquequi, J.; Díaz-Peña, R.; Verdaguer, E.; Ettcheto, M.; Auladell, C.; Camins, A. From Inhalation to Neurodegeneration: Air Pollution as a Modifiable Risk Factor for Alzheimer’s Disease. Int. J. Mol. Sci. 2024, 25, 6928. [Google Scholar] [CrossRef]
- Pamphlett, R.; Bishop, D.P. The toxic metal hypothesis for neurological disorders. Front. Neurol. 2023, 14, 1173779. [Google Scholar] [CrossRef]
- Han, R.; Liang, J.; Zhou, B. Glucose Metabolic Dysfunction in Neurodegenerative Diseases—New Mechanistic Insights and the Potential of Hypoxia as a Prospective Therapy Targeting Metabolic Reprogramming. Int. J. Mol. Sci. 2021, 22, 5887. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Phillips, M.C.L.; Picard, M. Neurodegenerative disorders, metabolic icebergs, and mitohormesis. Transl. Neurodegener. 2024, 13, 46. [Google Scholar] [CrossRef]
- Musiek, E.S. Circadian clock disruption in neurodegenerative diseases: Cause and effect? Front. Pharmacol. 2015, 6, 29. [Google Scholar] [CrossRef]
- Baser, K.H.; Haskologlu, I.C.; Erdag, E. Molecular Links Between Circadian Rhythm Disruption, Melatonin, and Neurodegenerative Diseases: An Updated Review. Molecules 2025, 30, 1888. [Google Scholar] [CrossRef]
- Yalçin, M.; Grande, V.; Outeiro, T.F.; Relógio, A. Circadian clock dysfunction in Parkinson’s disease: Mechanisms, consequences, and therapeutic strategy. npj Park. Dis. 2025, 11, 213. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Wu, H.; Wei, J. Beyond the Brain: Exploring the multi-organ axes in Parkinson’s disease pathogenesis. J. Adv. Research. 2025; Online ahead of print. [Google Scholar] [CrossRef]
- Marek, K.; Chowdhury, S.; Siderowf, A.; Lasch, S.; Coffey, C.S.; Caspell-Garcia, C.; Simuni, T.; Jennings, D.; Tanner, C.M.; Trojanowski, J.Q.; et al. The Parkinson’s progression markers initiative (PPMI)—Establishing a PD biomarker cohort. Ann. Clin. Transl. Neurol. 2018, 5, 1460–1477. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shin, C.; Kim, S.; Park, S.; Kim, J.; Lee, J.; Chung, S.J.; Kim, J.W.; Ahn, T.; Park, K.W.; Shin, J.H.; et al. Diagnostic accuracy and predictors of alpha-synuclein accumulation in the gastrointestinal tract of Parkinson’s disease. npj Park. Dis. 2024, 10, 155. [Google Scholar] [CrossRef] [PubMed]
- Oliver, P.J.; Civitelli, L.; Hu, M.T. The gut–brain axis in early Parkinson’s disease: From prodrome to prevention. J. Neurol. 2025, 272, 413. [Google Scholar] [CrossRef]
- Xu, Z.; Hu, T.; Xu, C.; Liang, X.; Li, S.; Sun, Y.; Liu, F.; Wang, J.; Tang, Y. Disease progression in proposed brain-first and body-first Parkinson’s disease subtypes. npj Park. Dis. 2024, 10, 111. [Google Scholar] [CrossRef]
- Chahine, L.M.; Beach, T.G.; Seedorff, N.; Caspell-Garcia, C.; Coffey, C.S.; Brumm, M.; Adler, C.H.; Serrano, G.E.; Linder, C.; Mosovsky, S.; et al. Systemic Synuclein Sampling study. Feasibility and Safety of Multicenter Tissue and Biofluid Sampling for α-Synuclein in Parkinson’s Disease: The Systemic Synuclein Sampling Study (S4). J. Park. Dis. 2018, 8, 517–527. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Passaretti, M.; Veréb, D.; Mijalkov, M.; Chang, Y.-W.; Zhao, H.; Zufiria-Gerbolés, B.; Sun, J.; Volpe, G.; Rivera, N.; Bologna, M.; et al. Clinical progression and genetic pathways in body-first and brain-first Parkinson’s disease. Mol. Neurodegener. 2025, 20, 74. [Google Scholar] [CrossRef]
- Horsager, J.; Andersen, K.B.; Knudsen, K.; Skjærbæk, C.; Fedorova, T.D.; Okkels, N.; Schaeffer, E.; Bonkat, S.K.; Geday, J.; Otto, M.; et al. Brain-first versus body-first Parkinson’s disease: A multimodal imaging case-control study. Brain 2020, 143, 3077–3088. [Google Scholar] [CrossRef] [PubMed]
- Belelli, D.; Lambert, J.J.; Wan, M.L.; Monteiro, A.R.; Nutt, D.J.; Swinny, J.D. From bugs to brain: Unravelling the GABA signalling networks in the brain–gut–microbiome axis. Brain 2025, 148, 1479–1506. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, W.; Zhao, S.; Lv, X.; Hu, J.; Han, C.; Wang, G.; Wang, S.; Bo, P.; Zhang, J.; et al. Increased Accumulation of α-Synuclein in Inflamed Appendices of Parkinson’s Disease Patients. Mov. Disord. 2021, 36, 1911–1918. [Google Scholar] [CrossRef] [PubMed]
- Killinger, B.; Labrie, V. The Appendix in Parkinson’s Disease: From Vestigial Remnant to Vital Organ? J. Park. Dis. 2019, 9 (Suppl. S2), S345–S358. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, B.; Fang, F.; Ye, W.; Wirdefeldt, K. Appendectomy, Tonsillectomy and Parkinson’s Disease Risk: A Swedish Register-Based Study. Front. Neurol. 2020, 11, 539525. [Google Scholar] [CrossRef]
- Zheng, Y.; Cai, H.; Zhao, J.; Yu, Z.; Feng, T. Alpha-Synuclein species in oral mucosa as potential biomarkers for multiple system atrophy. Front. Aging Neurosci. 2022, 14, 1010064. [Google Scholar] [CrossRef] [PubMed]
- Zürcher, C.; Defrancesco, M.; Humpel, C. Phospho-tau 181 is enhanced in saliva and plasma of edentulous patients: A first sign of dementia? Front. Oral Health 2025, 6, 1627681. [Google Scholar] [CrossRef]
- Yuan, X.; Nie, S.; Yang, Y.; Liu, C.; Xia, D.; Meng, L.; Xia, Y.; Su, H.; Zhang, C.; Bu, L.; et al. Propagation of pathologic α-synuclein from kidney to brain may contribute to Parkinson’s disease. Nat. Neurosci. 2025, 28, 577–588. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, S.; Okusa, M.D. Crosstalk between the nervous system and the kidney. Kidney Int. 2020, 97, 466–476. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mo, W.; Peng, Y.; Zheng, Y.; Zhao, S.; Deng, L.; Fan, X. Extracellular vesicle-mediated bidirectional communication between the liver and other organs: Mechanistic exploration and prospects for clinical applications. J. Nanobiotechnol. 2025, 23, 190. [Google Scholar] [CrossRef] [PubMed]
- Vegas-Suárez, S.; Simón, J.; Martínez-Chantar, M.L.; Moratalla, R. Metabolic Diffusion in Neuropathologies: The Relevance of Brain-Liver Axis. Front. Physiol. 2022, 13, 864263. [Google Scholar] [CrossRef]
- Reyes, J.F.; Ekmark-Léwen, S.; Perdiki, M.; Klingstedt, T.; Hoffmann, A.; Wiechec, E.; Nilsson, P.; Nilsson, K.P.R.; Alafuzoff, I.; Ingelsson, M.; et al. Accumulation of alpha-synuclein within the liver, potential role in the clearance of brain pathology associated with Parkinson’s disease. Acta Neuropathol. Commun. 2021, 9, 46. [Google Scholar] [CrossRef] [PubMed]
- Kurzawa-Akanbi, M.; Tammireddy, S.; Fabrik, I.; Gliaudelytė, L.; Doherty, M.K.; Heap, R.; Matečko-Burmann, I.; Burmann, B.M.; Trost, M.; Lucocq, J.M.; et al. Altered ceramide metabolism is a feature in the extracellular vesicle-mediated spread of alpha-synuclein in Lewy body disorders. Acta Neuropathol. 2021, 142, 961–984. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hu, J.R.; Abdullah, A.; Nanna, M.G.; Soufer, R. The Brain–Heart Axis: Neuroinflammatory Interactions in Cardiovascular Disease. Curr. Cardiol. Rep. 2023, 25, 1745–1758. [Google Scholar] [CrossRef]
- Yamamoto, T.; Pellecchia, M.T.; Sakakibara, R. Editorial: Autonomic dysfunction in multiple system atrophy. Front. Neurol. 2022, 13, 1048895. [Google Scholar] [CrossRef]
- Kitae, S.; Murata, Y.; Tachiki, N.; Okazaki, M.; Harada, T.; Nakamura, S. Assessment of cardiovascular autonomic dysfunction in multiple system atrophy. Clin. Auton. Res. 2001, 11, 39–44. [Google Scholar] [CrossRef]
- Javanshiri, K.; Drakenberg, T.; Haglund, M.; Englund, E. Cardiac Alpha-Synuclein Is Present in Alpha-Synucleinopathies. J Parkinsons Dis. 2022, 12, 1125–1131. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Courbon, F.; Brefel-Courbon, C.; Thalamas, C.; Alibelli, M.J.; Berry, I.; Montastruc, J.L.; Rascol, O.; Senard, J.M. Cardiac MIBG scintigraphy is a sensitive tool for detecting cardiac sympathetic denervation in Parkinson’s disease. Mov. Disord. 2003, 18, 890–897. [Google Scholar] [CrossRef] [PubMed]
- Hong, T.; Chan, L.; Wu, D.; Chen, T.; Chien, N. Association Between Parkinson’s Disease and Atrial Fibrillation: A Population-Based Study. Front. Neurol. 2019, 10, 22. [Google Scholar] [CrossRef]
- Joviano-Santos, J.V.; Santos-Miranda, A.; Roman-Campos, D. Cardiac electrical remodeling and neurodegenerative diseases association. Life Sci. 2021, 267, 118976. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Becker, K.; Donadio, V.; Siedlak, S.; Yuan, J.; Rezaee, M.; Incensi, A.; Kuzkina, A.; Orrú, C.D.; Tatsuoka, C.; et al. Skin α-Synuclein Aggregation Seeding Activity as a Novel Biomarker for Parkinson Disease. JAMA Neurol. 2021, 78, 30–40, Erratum in JAMA Neurol. 2021, 78, 120. https://doi.org/10.1001/jamaneurol.2020.4087. [Google Scholar] [CrossRef] [PubMed]
- Benarroch, E.E.; Schmeichel, A.M.; Sandroni, P.; Low, P.A.; Parisi, J.E. Involvement of vagal autonomic nuclei in multiple system atrophy and Lewy body disease. Neurology 2006, 66, 378–383. [Google Scholar] [CrossRef] [PubMed]
- Campese, N.; Fanciulli, A.; Stefanova, N.; Haybaeck, J.; Kiechl, S.; Wenning, G.K. Neuropathology of multiple system atrophy: Kurt Jellinger`s legacy. J. Neural. Transm. 2021, 128, 1481–1494. [Google Scholar] [CrossRef]
- Sian-Hulsmann, J.; Riederer, P. The ‘α-synucleinopathy syndicate’: Multiple system atrophy and Parkinson’s disease. J. Neural. Transm. 2024, 131, 585–595. [Google Scholar] [CrossRef]
- Bonaz, B.; Bazin, T.; Pellissier, S. The Vagus Nerve at the Interface of the Microbiota-Gut-Brain Axis. Front. Neurosci. 2018, 12, 49. [Google Scholar] [CrossRef]
- Wan, L.; Zhou, X.; Wang, C.; Chen, Z.; Peng, H.; Hou, X.; Peng, Y.; Wang, P.; Li, T.; Yuan, H.; et al. Alterations of the Gut Microbiota in Multiple System Atrophy Patients. Front. Neurosci. 2019, 13, 1102, Erratum in Front. Neurosci. 2020, 14, 19. https://doi.org/10.3389/fnins.2020.00019. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- de Aguilar, J.-L.G.; René, F.; Dupuis, L.; Loeffler, J.-P. Neuroendocrinology of Neurodegenerative Diseases: Insights from Transgenic Mouse Models. Neuroendocrinology 2003, 78, 244–252. [Google Scholar] [CrossRef]
- Villa, A.; Vegeto, E.; Poletti, A.; Maggi, A. Estrogens, Neuroinflammation, and Neurodegeneration. Endocr. Rev. 2016, 37, 372–402. [Google Scholar] [CrossRef]
- Kovacevic, D.; Velikic, G.; Maric, D.M.; Maric, D.L.; Puletic, M.; Gvozdenovic, L.; Vojvodic, D.; Supic, G. Parkinson’s Spectrum Mechanisms in Pregnancy: Exploring Hypothetical Scenarios for MSA in the Era of ART. Int. J. Mol. Sci. 2025, 26, 3348. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Ji, L.; Liu, Y.; Wang, X.; Wang, J.; Liu, C. Bone-brain interaction: Mechanisms and potential intervention strategies of biomaterials. Bone Res. 2025, 13, 38. [Google Scholar] [CrossRef] [PubMed]
- Hoeritzauer, I. 11 The bladder and the brain: Exploring functional urological symptoms. J. Neurol. Neurosurg. Psychiatry 2019, 90, A5–A6. [Google Scholar] [CrossRef]
- Ciolli, L.; Krismer, F.; Nicoletti, F.; Wenning, G.K. An update on the cerebellar subtype of multiple system atrophy. Cerebellum Ataxias 2014, 1, 14. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, Z. α-Synuclein pathology from the body to the brain: So many seeds so close to the central soil. Neural. Regen. Res. 2024, 19, 1463–1472. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Glass, C.K.; Saijo, K.; Winner, B.; Marchetto, M.C.; Gage, F.H. Mechanisms Underlying Inflammation in Neurodegeneration. Cell 2010, 140, 918. [Google Scholar] [CrossRef]
- Caldarelli, M.; Franza, L.; Rio, P.; Gasbarrini, A.; Gambassi, G.; Cianci, R. Gut–Kidney–Heart: A Novel Trilogy. Biomedicines 2023, 11, 3063. [Google Scholar] [CrossRef]
- Sinha, S.; Lin, G.; Ferenczi, K. The skin microbiome and the gut-skin axis. Clin. Dermatol. 2021, 39, 829–839. [Google Scholar] [CrossRef] [PubMed]
- Deng, W.; Liu, J.; Tang, C.; Li, Z.; Qiu, Y.; Zhou, H.; Yang, L.; Li, T. Critical Role of Skin in Pathogenesis: Bidirectional Crosstalk Between Skin and Multiple Organs. MedCom-Future Med. 2025, 4, e70020. [Google Scholar] [CrossRef]
- Kunath, B.J.; De Rudder, C.; Laczny, C.C.; Letellier, E.; Wilmes, P. The oral–gut microbiome axis in health and disease. Nat. Rev. Microbiol. 2024, 22, 791–805. [Google Scholar] [CrossRef]
- Bradley, C.P.; Berry, C. Microvascular arterial disease of the brain and the heart: A shared pathogenesis. QJM Int. J. Med. 2023, 116, 829–834. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y. CD2AP in Alzheimer’s disease: Key mechanisms and therapeutic potential. Brain Med. 2025, 1, 38–45. [Google Scholar] [CrossRef]
- Vandal, M.; Institoris, A.; Korin, B.; Gunn, C.; Lee, S.; Lee, J.; Bourassa, P.; Mishra, R.C.; Peringod, G.; Jiang, Y.; et al. CD2AP impacts Alzheimer’s disease through brain vascular function. Alzheimer’s Dement. 2023, 19, e071986. [Google Scholar] [CrossRef]
- Grossauer, A.; Sidoroff, V.; Heim, B.; Seppi, K. Symptomatic Care in Multiple System Atrophy: State of the Art. Cerebellum 2023, 22, 433–446. [Google Scholar]
- Compagnoni, G.M.; Di Fonzo, A. Understanding the pathogenesis of multiple system atrophy: State of the art and future perspectives. Acta Neuropathol. Commun. 2019, 7, 113. [Google Scholar] [CrossRef] [PubMed]
- Giordano, L.; Mihaila, S.M.; Eslami Amirabadi, H.; Masereeuw, R. Microphysiological Systems to Recapitulate the Gut–Kidney Axis. Trends Biotechnol. 2021, 39, 811–823. [Google Scholar] [CrossRef] [PubMed]
- Thomou, T.; Mori, M.A.; Dreyfuss, J.M.; Konishi, M.; Sakaguchi, M.; Wolfrum, C.; Rao, T.N.; Winnay, J.N.; Garcia-Martin, R.; Grinspoon, S.K.; et al. Adipose-derived circulating miRNAs regulate gene expression in other tissues. Nature 2017, 542, 450–455. [Google Scholar] [CrossRef]
- Su, R.; Zhou, T. Alpha-Synuclein Induced Immune Cells Activation and Associated Therapy in Parkinson’s Disease. Front. Aging Neurosci. 2021, 13, 769506. [Google Scholar] [CrossRef] [PubMed]
- Rõlova, T.; Lehtonen, Š.; Goldsteins, G.; Kettunen, P.; Koistinaho, J. Metabolic and immune dysfunction of glia in neurodegenerative disorders: Focus on iPSC models. Stem Cells 2021, 39, 256–265. [Google Scholar] [CrossRef]
- Hong, S.-W.; Piao, L.; Cho, E.-H.; Seo, E.-H.; Kim, S.-H. Effect of Microglial Activity on Gut Microbiota in Rats with Neuropathic Pain. Int. J. Mol. Sci. 2025, 26, 5181. [Google Scholar] [CrossRef]
- Sidoryk-Węgrzynowicz, M.; Strużyńska, L. Dysfunctional glia: Contributors to neurodegenerative disorders. Neural Regen. Res. 2020, 16, 218. [Google Scholar] [CrossRef]
- Hara, K. Multiplex families with multiple system atrophy. Arch Neurol. 2007, 34, 603–615. [Google Scholar]
- Fitz-James, M.H.; Cavalli, G. Molecular mechanisms of transgenerational epigenetic inheritance. Nat. Rev. Genet. 2022, 23, 325–341. [Google Scholar] [CrossRef] [PubMed]
- Horsthemke, B. A critical view on transgenerational epigenetic inheritance in humans. Nat. Commun. 2018, 9, 2973. [Google Scholar] [CrossRef] [PubMed]
- Weber-Stadlbauer, U. Epigenetic and transgenerational mechanisms in infection-mediated neurodevelopmental disorders. Transl. Psychiatry 2017, 7, e1113. [Google Scholar] [CrossRef]
- Ma, Z.; Zuo, T.; Frey, N.; Rangrez, A.Y. A systematic framework for understanding the microbiome in human health and disease: From basic principles to clinical translation. Signal Transduct. Target. Ther. 2024, 9, 237. [Google Scholar] [CrossRef]
- Stoccoro, A.; Coppedè, F. Exposure to Metals, Pesticides, and Air Pollutants: Focus on Resulting DNA Methylation Changes in Neurodegenerative Diseases. Biomolecules 2024, 14, 1366. [Google Scholar] [CrossRef] [PubMed]
- Sen, A.; Heredia, N.; Senut, M.; Land, S.; Hollocher, K.; Lu, X.; Dereski, M.O.; Ruden, D.M. Multigenerational epigenetic inheritance in humans: DNA methylation changes associated with maternal exposure to lead can be transmitted to the grandchildren. Sci. Rep. 2015, 5, 14466. [Google Scholar] [CrossRef]
- Versmissen, J.; Roeters van Lennep, J.; Sijbrands, E.J. Clinical Aspects of Transgenerational Epigenetics. Transgenerational Epigenetics 2013, 13, 357–367. [Google Scholar] [CrossRef]
- Jin, N.; George, T.L.; Otterson, G.A.; Verschraegen, C.; Wen, H.; Carbone, D.; Herman, J.; Bertino, E.M.; He, K. Advances in epigenetic therapeutics with focus on solid tumors. Clin. Epigenet. 2021, 13, 83. [Google Scholar] [CrossRef]
- Zhang, R.; Yao, T.; Fan, M.; Jiang, X.; Wang, K.; Cui, M.; Bing, K.; Xia, X. Precision scalpels for the epigenome: Next-gen editing tools in targeted therapies. Front. Med. 2025, 12, 1613722. [Google Scholar] [CrossRef]
- Kronfol, M.M.; Dozmorov, M.G.; Huang, R.; Slattum, P.W.; McClay, J.L. The role of epigenomics in personalized medicine. Expert Rev. Precis. Med. Drug Dev. 2017, 2, 33. [Google Scholar] [CrossRef]
- Kitahara, M.; Inoue, T.; Mani, H.; Takamatsu, Y.; Ikegami, R.; Tohyama, H.; Maejima, H. Exercise and pharmacological inhibition of histone deacetylase improves cognitive function accompanied by an increase of gene expressions crucial for neuronal plasticity in the hippocampus. Neurosci. Lett. 2021, 749, 135749. [Google Scholar] [CrossRef]
- Borsoi, F.T.; Neri-Numa, I.A.; Pastore, G.M. Dietary polyphenols and their relationship to the modulation of non-communicable chronic diseases and epigenetic mechanisms: A mini-review. Food Chem. Mol. Sci. 2022, 6, 100155. [Google Scholar] [CrossRef] [PubMed]
- Froy, O.; Chapnik, N.; Miskin, R. Effect of intermittent fasting on circadian rhythms in mice depends on feeding time. Mech. Ageing Dev. 2009, 130, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Soto, C.; Pritzkow, S. Protein misfolding, aggregation, and conformational strains in neurodegenerative diseases. Nat. Neurosci. 2018, 21, 1332. [Google Scholar] [CrossRef]
- Broome, S.C.; Woodhead, J.S.T.; Merry, T.L. Mitochondria-Targeted Antioxidants and Skeletal Muscle Function. Antioxidants 2018, 7, 107. [Google Scholar] [CrossRef]
- Huang, X.; Zeng, Z.; Li, S.; Xie, Y.; Tong, X. The Therapeutic Strategies Targeting Mitochondrial Metabolism in Cardiovascular Disease. Pharmaceutics 2022, 14, 2760. [Google Scholar] [CrossRef]
- Chew, E.; Teh, P.C.; Er, C.K.; Ng, T.K.; Abdul Wahab, Z.; Bazin, S. A Rare Case of Reversible Acute Parkinsonism in Fulminant HIV Encephalopathy. Mov. Disord. 2021, 36 (Suppl. S1), 599. Available online: https://www.mdsabstracts.org/abstract/a-rare-case-of-reversible-acute-parkinsonism-in-fulminant-hiv-encephalopathy/ (accessed on 4 November 2025).
- Cheng, Y.-W.; Lin, C.-H.; Wu, R.-M. HIV-associated parkinsonism reversed with antiretroviral therapy. Neurol. Asia 2014, 19, 199–203. [Google Scholar]
- Zhu, L.; Guo, M.; Qin, B.; Zhou, J.; Cao, J.; Wu, M.; Pu, L. Reversible Parkinsonism caused by Influenza B-associated encephalitis affecting bilateral basal ganglia: A case report. CNS Neurosci. Ther. 2019, 26, 396. [Google Scholar] [CrossRef]
- Aliakbar, R.; Manouvakhova, O.; Wong, C.; Htut, M.; Janakiram, M.; Rosenzweig, M.; Goldsmith, S.R.; Mason, X.L. Case report: Treatment of parkinsonism secondary to ciltacabtagene autoleucel using a combination dopaminergic regimen. Front. Immunol. 2024, 15, 1444010. [Google Scholar] [CrossRef] [PubMed]
- Qian, H.; Kang, X.; Hu, J.; Zhang, D.; Liang, Z.; Meng, F.; Zhang, X.; Xue, Y.; Maimon, R.; Dowdy, S.F.; et al. Reversing a model of Parkinson’s disease with in situ converted nigral neurons. Nature 2020, 582, 550–556. [Google Scholar] [CrossRef] [PubMed]
- De Laat, B.; Hoye, J.; Stanley, G.; Hespeler, M.; Ligi, J.; Mohan, V.; Wooten, D.W.; Zhang, X.; Nguyen, T.D.; Key, J.; et al. Intense exercise increases dopamine transporter and neuromelanin concentrations in the substantia nigra in Parkinson’s disease. npj Park. Dis. 2024, 10, 34. [Google Scholar] [CrossRef]
- Susman, E. Chemo-induced Parkinsonism Controlled with Levodopa. Oncol. Times 2001, 23, 59. [Google Scholar] [CrossRef]
- Hopkins, H.K.; Traverse, E.M.; Barr, K.L. Viral Parkinsonism: An underdiagnosed neurological complication of Dengue virus infection. PLoS Negl. Trop. Dis. 2022, 16, e0010118. [Google Scholar] [CrossRef] [PubMed]
- Sampson, T.R.; Debelius, J.W.; Thron, T.; Janssen, S.; Shastri, G.G.; Ilhan, Z.E.; Challis, C.; Schretter, C.E.; Rocha, S.; Gradinaru, V.; et al. Gut Microbiota Regulate Motor Deficits and Neuroinflammation in a Model of Parkinson’s Disease. Cell 2016, 167, 1469–1480.e12. [Google Scholar] [CrossRef]
- Gordon, R.; Albornoz, E.A.; Christie, D.C.; Langley, M.R.; Kumar, V.; Manotovani, S.; Robertson, A.A.B.; Butler, M.S.; Rowe, D.B.; Kanthasamy, A.G.; et al. Inflammasome inhibition prevents α-synuclein pathology and dopaminergic neurodegeneration in mice. Sci. Transl. Med. 2018, 10, eaah4066. [Google Scholar] [CrossRef]
- Gorecki, A.M.; Preskey, L.; Bakeberg, M.C.; Kenna, J.E.; Gildenhuys, C.; MacDougall, G.; Dunlop, S.A.; Mastaglia, F.L.; Akkari, P.A.; Koengten, F.; et al. Altered Gut Microbiome in Parkinson’s Disease and the Influence of Lipopolysaccharide in a Human α-Synuclein Over-Expressing Mouse Model. Front. Neurosci. 2019, 13, 473589. [Google Scholar] [CrossRef]
- Leta, V.; Urso, D.; Batzu, L.; Lau, Y.H.; Mathew, D.; Boura, I.; Raeder, V.; Falup-Pecurariu, C.; Chaudhuri, K.R. Viruses, parkinsonism and Parkinson’s disease: The past, present and future. J. Neural Transm. 2022, 129, 1119. [Google Scholar] [CrossRef]
- Lee, E.; Hwang, I.; Park, S.; Hong, S.; Hwang, B.; Cho, Y.; Son, J.; Yu, W. MPTP-driven NLRP3 inflammasome activation in microglia plays a central role in dopaminergic neurodegeneration. Cell Death Differ. 2018, 26, 213. [Google Scholar] [CrossRef]
- Brakedal, B.; Dölle, C.; Riemer, F.; Ma, Y.; Nido, G.S.; Skeie, G.O.; Craven, A.R.; Schwarzlmüller, T.; Brekke, N.; Diab, J.; et al. The NADPARK study: A randomized phase I trial of nicotinamide riboside supplementation in Parkinson’s disease. Cell Metab. 2022, 34, 396–407.e6. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Momma, S.; Delfani, K.; Carlen, M.; Cassidy, R.M.; Johansson, C.B.; Brismar, H.; Shupliakov, O.; Frisen, J.; Janson, A.M. Evidence for neurogenesis in the adult mammalian substantia nigra. Proc. Natl. Acad. Sci. USA 2003, 100, 7925–7930. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Salmina, A.B.; Kapkaeva, M.R.; Vetchinova, A.S.; Illarioshkin, S.N. Novel Approaches Used to Examine and Control Neurogenesis in Parkinson′s Disease. Int. J. Mol. Sci. 2021, 22, 9608. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.Y.; Wang, T.F.; Yu, L.; Jen, C.J.; Chuang, J.I.; Wu, F.S.; Wu, C.W.; Kuo, Y.M. Running exercise protects the substantia nigra dopaminergic neurons against inflammation-induced degeneration via the activation of BDNF signaling pathway. Brain Behav. Immun. 2011, 25, 135–146. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, H.S. Adult Neurogenesis and the Promise of Adult Neural Stem Cells. J. Exp. Neurosci. 2019, 13, 1179069519856876. [Google Scholar] [CrossRef]
- Hirsch, M.A.; van Wegen, E.E.H.; Newman, M.A.; Heyn, P.C. Exercise-induced increase in brain-derived neurotrophic factor in human Parkinson’s disease: A systematic review and meta-analysis. Transl. Neurodegener. 2018, 7, 7. [Google Scholar] [CrossRef] [PubMed]
- Frazzitta, G.; Maestri, R.; Ghilardi, M.F.; Riboldazzi, G.; Perini, M.; Bertotti, G.; Boveri, N.; Buttini, S.; Lombino, F.L.; Uccellini, D.; et al. Intensive rehabilitation increases BDNF serum levels in parkinsonian patients: A randomized study. Neurorehabil. Neural Repair 2014, 28, 163–168. [Google Scholar] [CrossRef]
- Sajatovic, M.; Ridgel, A.L.; Walter, E.M.; Tatsuoka, C.M.; Colon-Zimmermann, K.; Ramsey, R.K.; Welter, E.; Gunzler, S.A.; Whitney, C.M.; Walter, B.L. A randomized trial of individual versus group-format exercise and self-management in individuals with Parkinson’s disease and comorbid depression. Patient Prefer. Adherence 2017, 11, 965–973. [Google Scholar] [CrossRef]
- Rotondo, R.; Proietti, S.; Perluigi, M.; Padua, E.; Stocchi, F.; Fini, M.; Stocchi, V.; Volpe, D.; De Pandis, M.F. Physical activity and neurotrophic factors as potential drivers of neuroplasticity in Parkinson’s Disease: A systematic review and meta-analysis. Ageing Res. Rev. 2023, 92, 102089. [Google Scholar] [CrossRef]
- Hargarten, J.C.; Williamson, P.R. Epigenetic Regulation of Autophagy: A Path to the Control of Autoimmunity. Front. Immunol. 2018, 9, 1864. [Google Scholar] [CrossRef]
- Wan, W.; Hua, F.; Fang, P.; Li, C.; Deng, F.; Chen, S.; Ying, J.; Wang, X. Regulation of Mitophagy by Sirtuin Family Proteins: A Vital Role in Aging and Age-Related Diseases. Front. Aging Neurosci. 2022, 14, 845330. [Google Scholar] [CrossRef]
- Lagunas-Rangel, F.A. Sirtuins in mitophagy: Key gatekeepers of mitochondrial quality. Mol. Cell Biochem. 2025, 480, 5877–5896. [Google Scholar] [CrossRef] [PubMed]
- Anshory, M.; Effendi, R.M.; Kalim, H.; Dwiyana, R.F.; Suwarsa, O.; Nijsten, T.E.; Nouwen, J.L.; Thio, H.B. Butyrate Properties in Immune-Related Diseases: Friend or Foe? Fermentation 2023, 9, 205. [Google Scholar] [CrossRef]
- Kim, C.H. Complex regulatory effects of gut microbial short-chain fatty acids on immune tolerance and autoimmunity. Cell. Mol. Immunol. 2023, 20, 341–350. [Google Scholar] [CrossRef]
- Di Vincenzo, F.; Del Gaudio, A.; Petito, V.; Lopetuso, L.R.; Scaldaferri, F. Gut microbiota, intestinal permeability, and systemic inflammation: A narrative review. Intern. Emerg. Med. 2024, 19, 275–293. [Google Scholar] [CrossRef]
- Wells, C.; Brennan, S.E.; Keon, M.; Saksena, N.K. Prionoid Proteins in the Pathogenesis of Neurodegenerative Diseases. Front. Mol. Neurosci. 2019, 12, 492523. [Google Scholar] [CrossRef]
- Ohmichi, T.; Mitsuhashi, M.; Tatebe, H.; Kasai, T.; Ali El-Agnaf, O.M.; Tokuda, T. Quantification of brain-derived extracellular vesicles in plasma as a biomarker to diagnose Parkinson’s and related diseases. Park. Relat. Disord. 2019, 61, 82–87. [Google Scholar] [CrossRef]
- Jiang, C.; Hopfner, F.; Berg, D.; Hu, M.T.; Pilotto, A.; Borroni, B.; Davis, J.J.; Tofaris, G.K. Validation of α-Synuclein in L1CAM-Immunocaptured Exosomes as a Biomarker for the Stratification of Parkinsonian Syndromes. Mov. Disord. 2021, 36, 2663–2669. [Google Scholar] [CrossRef] [PubMed]
- Menéndez González, M. Mechanical filtration of the cerebrospinal fluid: Procedures, systems, and applications. Expert Rev. Med. Devices 2023, 20, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Schreiner, T.G.; Menéndez-González, M.; Adam, M.; Popescu, B.O.; Szilagyi, A.; Stanciu, G.D.; Tamba, B.I.; Ciobanu, R.C. A Nanostructured Protein Filtration Device for Possible Use in the Treatment of Alzheimer’s Disease—Concept and Feasibility after In Vivo Tests. Bioengineering 2023, 10, 1303. [Google Scholar] [CrossRef]
- Wollinsky, K.H.; Saefkow, M.W.K. Filter for the Filtration of Human Cerebrospinal Fluid. Patent Number EP0478842A1, 8 April 1992. [Google Scholar]
- Schreiner, T.G.; Menéndez-González, M.; Popescu, B.O. The “Cerebrospinal Fluid Sink Therapeutic Strategy” in Alzheimer’s Disease—From Theory to Design of Applied Systems. Biomedicines 2022, 10, 1509. [Google Scholar] [CrossRef]
- Ahmad, S.R.; Zeyaullah, M.; Khan, M.S.; AlShahrani, A.M.; Altijani, A.A.; Ali, H.; Dawria, A.; Mohieldin, A.; Alam, M.S.; Mohamed, A.O. Pharmacogenomics for neurodegenerative disorders—A focused review. Front. Pharmacol. 2024, 15, 1478964. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, R. Visual signs and symptoms of multiple system atrophy. Clin. Exp. Optom. 2014, 97, 483–491. [Google Scholar] [CrossRef] [PubMed]
- Chelban, V.; Catereniuc, D.; Aftene, D.; Vichayanrant, E.; Iodice, V.; Groppa, S.; Houlden, H. An update on MSA: Premotor and non-motor features open a window of opportunities for early diagnosis and intervention. J. Neurol. 2020, 267, 2754–2770. [Google Scholar] [CrossRef]
- McKay, J.; Cheshire, W. First symptoms in multiple system atrophy. Clin. Auton. Res. 2018, 28, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Sveinbjornsdottir, S. The clinical symptoms of Parkinson’s disease. J. Neurochem. 2016, 139, 318–324. [Google Scholar] [CrossRef]
- Painous, C.; Martí, M.; Simonet, C.; Garrido, A.; Valldeoriola, F.; Munoz, E.; Camara, A.; Compta, Y. Prediagnostic motor and non-motor symptoms in progressive supranuclear palsy: The step-back PSP study. Park. Relat. Disord. 2020, 1, 67–73. [Google Scholar] [CrossRef]
- Ou, R.; Song, W.; Wei, Q.; Chen, K.; Cao, B.; Hou, Y.; Zhao, B.; Shang, H. Characteristics of nonmotor symptoms in progressive supranuclear palsy. Park. Dis. 2016, 2016, 9730319. [Google Scholar] [CrossRef]
- Graff-Radford, J.; Aakre, J.; Savica, R.; Boeve, B.; Kremes, W.; Ferman, T.; Jones, D.; Kantarci, K.; Knopman, D.; Dickson, D.; et al. Duration and pathologic correlates of Lewy body disease. JAMA Neurol. 2017, 74, 310–315. [Google Scholar] [CrossRef]
- Sanford, A. Lewy body dementia. Clin. Geriatr. Med. 2018, 34, 603–615. [Google Scholar] [CrossRef]
- Liu, M.; Wang, Z.; Shang, H. Multiple system atrophy: An update and emerging directions of biomarkers and clinical trials. J. Neurol. 2024, 271, 2324–2344. [Google Scholar] [CrossRef] [PubMed]
- Singer, W. Recent advances in establishing fluid biomarkers for the diagnosis and differentiation of alpha-synucleinopathies—A mini review. Clin. Auton. Res. 2022, 32, 291–297. [Google Scholar] [CrossRef]
- Goolla, M.; Cheshire, W.; Ross, O.; Kondru, N. Diagnosing multiple system atrophy: Current clinical guidance and emerging molecular biomarkers. Front. Neurol. 2023, 14, 1210220. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, H.; Shima, S.; Mizutani, Y.; Ueda, A.; Ito, M. Multiple System Atrophy: Advances in Diagnosis and Therapy. J. Mov. Disord. 2023, 16, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Stankovic, I.; Fanciulli, A.; Sidoroff, V.; Wenning, G.K. A Review on the Clinical Diagnosis of Multiple System Atrophy. Cerebellum 2023, 22, 825–839. [Google Scholar] [CrossRef]
- Day, J.; Mullin, S. The Genetics of Parkinson’s Disease and Implications for Clinical Practice. Genes 2021, 12, 1006. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, J.; Zhang, Z.; Ye, K. Tau in neurodegenerative diseases: Molecular mechanisms, biomarkers, and therapeutic strategies. Transl. Neurodegener. 2024, 13, 40. [Google Scholar] [CrossRef]




| Axis | Primary Stressors/Pathogens | Communication Routes | Misfolding Connections | Candidate Biomarkers | Memory Layer |
|---|---|---|---|---|---|
| Gut–Brain | Dysbiosis, curli-producing E. coli, Candida albicans, pesticides | Vagus nerve, microbial EVs, immune cytokines | α-Syn seeding in ENS; vagal spread; microbial amyloids cross-seeding host proteins | Stool microbial EVs, gut α-syn, vagal autonomic markers | Epiglial scars (trained microglia); Epigamilial (ancestral microbiome/lifestyle transmission) |
| Oral–Brain | P. gingivalis, gingipains, HSV/EBV latency | Cranial nerves (trigeminal), bloodstream, OMVs | Gingipain-mediated tau cleavage; α-syn misfolding; viral PTM effects | Salivary α-syn/tau; gingival EVs; oral microbiome shifts | Epiglial reprogramming from chronic inflammation; epigamilial from family-shared oral pathogens |
| Kidney–Brain | Uremic toxins, heavy metals (Pb, Hg, Cd, As), renal infections | Circulation, renal EVs, sympathetic renal nerves | α-Syn misfolding in renal tissue; proteostasis disruption via toxins | Plasma uremic toxins; renal EVs with misfolded α-syn | Epiglial scars from chronic toxin exposure; epigamilial via germline heavy-metal/epigenetic marks |
| Liver–Brain | Viral hepatitis, metabolic/lipid dysregulation, pollutants | Circulation, hepatocyte EVs, bile acid signaling | Tau hyperphosphorylation; α-syn aggregation from metabolic stress | Serum bile acids, hepatocyte EV cargo | Epiglial reprogramming of astrocytes; epigamilial via germline transmission of metabolic epigenetic marks |
| Heart–Brain | Autonomic dysfunction, cardiac infection, perfusion stress | Sympathetic nerves, systemic circulation | α-Syn inclusions in cardiac nerves; proteostasis stress via ischemia | MIBG scans, atrial biopsies, ECG markers | Epiglial scars (autonomic neuronal/glial reprogramming); minimal epigamilial component |
| Skin–Brain | Cutaneous microbes, fungal biofilms, toxins | Peripheral nerves, microbial EVs, bloodstream | α-Syn/tau aggregates in skin nerves and fibroblasts | Skin biopsy α-syn/tau; sweat gland markers | Epiglial scars (local nerve reprogramming); limited epigamilial unless familial exposures persist |
| Vagus–Brain | Enteric α-syn, microbial amyloids, toxins | Ascending/descending vagal tracts; immune signaling | Direct neuronal α-syn transport; propagation of misfolding up/down vagus | Vagal α-syn deposits; ENS α-syn | Epiglial scars (ENS + brainstem neurons); epigamilial only indirectly (shared exposures shaping vagal entry) |
| Immune–Organ–Brain (meta-axis) | Chronic infections, trained immunity, mast cell activation, systemic inflammation | Cytokines, infiltrating immune cells, immune EVs | Epiglial priming of microglia; systemic bias toward aggregation | Circulating cytokines; immune EV proteome | Central node-epiglial scars dominate (trained immunity, maladaptive glial states); epigamilial susceptibility integrates ancestral immune exposures |
| Scar Type | Trigger of Reversal | Feedback/Amplification Loop | Supporting Evidence |
|---|---|---|---|
| Epigenetic scars | Reduction in pathogen burden; activation of SIRT1 | Demethylation → improved autophagy → lower inflammation → restored mitochondrial homeostasis | Fasting/exercise improves autophagy, mitochondrial biomarkers |
| Microbiome scars | Biofilm disruption; recolonization with commensals | Butyrate/SCFAs → improved barrier → reduced cytokines → stable immunity | Probiotics/antibiotics normalize inflammatory markers in weeks |
| Proteostatic scars | Lowering the toxic protein burden below the threshold | Restored chaperones → clearance of aggregates → proteostasis recovery | Chaperone induction improves clearance in preclinical PD models |
| Mitochondrial scars | Reduced oxidative stress; biogenesis triggers | More ATP → supports proteostasis, autophagy, repair → systemic energy renewal | Exercise and NAD+ boosters show multi-system benefits |
| Disease/Spectrum | Core Proteins | Physiological Functions | Pathogenic Shift (“Proteinopenia”) | Systemic Consequences/Axes Affected |
|---|---|---|---|---|
| PSDs (PD, MSA, PSP, LBD) | α-Syn | Synaptic vesicle cycling, dopamine regulation, neuronal plasticity | Synucleinopenia: loss of soluble α-syn due to sequestration in Lewy bodies | Network instability, dopaminergic depletion, gut–brain propagation |
| AD | Tau, Amyloid-β | Microtubule stabilization, axonal transport, synaptic maintenance | Tauopenia: loss of functional tau; Aβ-mediated stress amplifies seeding | Axonal transport defects, vascular and immune dysregulation, gut–brain link |
| ALS/FTD | TDP-43, SOD1, FUS | RNA processing, oxidative defense, DNA/RNA repair | TDP-43 depletion: nuclear loss from cytoplasmic aggregation; SOD1/FUS loss impairs redox homeostasis and RNA trafficking | Transcriptome instability, oxidative stress, skeletal and visceral organ involvement |
| Question | Primary Mechanisms | Supporting Evidence | Clinical Implications |
|---|---|---|---|
| How do peripheral aggregates cross the BBB? | EVs (exosomes, microvesicles) traverse endothelial barriers; misfolded proteins packaged in vesicles bypass BBB selectivity; inflammatory conditions increase BBB permeability | EVs from PD patient plasma induce α-syn aggregation in mice; CNS-derived EVs detectable in peripheral blood; microglia-derived EVs carry pathological cargo | EV-based biomarkers for early detection; therapeutic targeting of vesicle trafficking; BBB modulation strategies |
| What determines brain-first vs. periphery-first pathology? | Individual susceptibility factors: genetic variants affecting barrier integrity; local pathogen burden (oral, gut, renal); environmental exposures; stochastic seeding events | Vagotomy reduces PD risk; genetic forms often brain-first; sporadic cases show varied entry points; family clustering without clear mutations | Personalized risk assessment based on axis vulnerability; targeted prevention strategies; early intervention at failing axes |
| How does strain selection occur? | Ecological conditions favor specific conformational variants: inflammatory cytokines promote β-sheet strains; oxidative stress selects metal-binding variants; microbial amyloids template specific misfolding patterns | MSA vs. PD strains show distinct seeding properties; prion strain diversity determines clinical phenotype; environmental factors correlate with disease subtypes | Strain-specific therapies; environmental modification to prevent aggressive strains; biomarker-guided treatment selection |
| Why do some interventions fail while others succeed? | Timing relative to tipping point; completeness of multi-axis targeting; individual scar burden and reversibility; intervention synchronization across domains | Early interventions more effective; single-target approaches often fail; case reports of multi-modal success; scar plasticity varies by stage | Multi-axis intervention protocols; biomarker-guided timing; personalized intervention intensity based on scar assessment |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Velikic, G.; Supic, G.; Maric, D.L.; Puletic, M.; Ovcak Kos, M.; Vojvodic, D.; Maric, D.M. Neurodegeneration as Ecosystem Failure: A New Paradigm for Prevention and Treatment. Int. J. Mol. Sci. 2025, 26, 11207. https://doi.org/10.3390/ijms262211207
Velikic G, Supic G, Maric DL, Puletic M, Ovcak Kos M, Vojvodic D, Maric DM. Neurodegeneration as Ecosystem Failure: A New Paradigm for Prevention and Treatment. International Journal of Molecular Sciences. 2025; 26(22):11207. https://doi.org/10.3390/ijms262211207
Chicago/Turabian StyleVelikic, Gordana, Gordana Supic, Dusica L. Maric, Miljan Puletic, Maja Ovcak Kos, Danilo Vojvodic, and Dusan M. Maric. 2025. "Neurodegeneration as Ecosystem Failure: A New Paradigm for Prevention and Treatment" International Journal of Molecular Sciences 26, no. 22: 11207. https://doi.org/10.3390/ijms262211207
APA StyleVelikic, G., Supic, G., Maric, D. L., Puletic, M., Ovcak Kos, M., Vojvodic, D., & Maric, D. M. (2025). Neurodegeneration as Ecosystem Failure: A New Paradigm for Prevention and Treatment. International Journal of Molecular Sciences, 26(22), 11207. https://doi.org/10.3390/ijms262211207

