Leveraging Dental Biotechnology for Population Oral Health: Innovations in Prevention, Diagnosis, and Treatment
Abstract
1. Introduction
2. Results
2.1. Population Diagnostics and Surveillance
2.2. Regenerative and Conservative Repair
2.3. Genomic Targeting and Risk Stratification
2.4. Antimicrobial and Preventive Biomaterials
2.5. Vaccinology and Microbiome Engineering
3. Discussion
Translating Biotechnological Interventions into Population-Level Health Gains
- (1)
- Is the problem suitable for programmatic action? Initiation of a population program requires evidence of substantial disease burden and a plausible, modifiable pathway to improved outcomes through primary prevention, early management, or treatment. Adoption should be supported by effectiveness data from comparable settings, a favorable benefit-to-harm balance, and feasibility within existing workforce, infrastructure, and supply chains. Equity and affordability must be specified in advance, including strategies to reach priority groups and to prevent exclusion. The operational pathway should be defined end to end, covering eligibility, consent, delivery, follow up, adverse event management, and routine data capture, so that enrolment reliably translates into measurable health gain [56,57,58].
- (2)
- What does a public-health–ready product look like? Population use requires a target product profile that covers both the intervention and its delivery. Specify intended use, target population, performance thresholds, safety requirements, contraindications, and the minimum evidence for adoption. For diagnostics and triage tools, benchmarks can draw on WHO ASSURED that include connectivity and simple specimen collection. For preventive and therapeutic products, define expected effect size or noninferiority, dosing, durability of benefit, and acceptable adverse event rates, with clear linkage to existing care pathways [59].
- (3)
- Is the technology mature enough to leave the lab? Technology readiness frameworks adapted for health products offer a staged taxonomy from concept through analytical validation, design verification, clinical evaluation, and early use in practice. Applying these stages as explicit decision gates helps align scientists, regulators, and funders on what evidence is required before field work, reduces premature piloting, and clarifies the next study needed to advance maturity. For diagnostics, this typically entails sequential demonstration of analytical performance, clinical validity, and clinical utility. For devices, it includes verification and validation against standards, usability testing in intended settings, and initial safety and performance data prior to wider implementation [60].
- (4)
- How can evidence be designed for real-world delivery and effective implementation? Development and evaluation should follow guidance for complex interventions that foregrounds program theory, context, and iterative refinement, with study designs calibrated toward routine care using tools that position trials on the pragmatic to explanatory spectrum so that eligibility, endpoints, and follow up reflect actual services. In parallel, implementation determinants should be assessed systematically to anticipate barriers and enablers across intervention features, inner and outer settings, individuals, and processes. This assessment should inform training, workflow integration in primary care, schools, and mobile units, procurement and maintenance plans, data capture and interoperability, and strategies for fidelity and appropriate adaptation. Embedding mixed-methods process evaluation and cost measurement within trials and pilots links effectiveness with feasibility and acceptability and produces actionable guidance for scale up [61,62,63].
- (5)
- How will the program demonstrate population impact beyond trial efficacy? Evaluation extends beyond internal validity to encompass reach, uptake, implementation quality, and durability of effects. Analyses quantify the proportion and representativeness of the eligible population that receives the intervention, document changes in clinical and patient outcomes including unintended effects and their distribution across subgroups and measure organizational and provider uptake with attention to non-adopting settings. Implementation is examined through fidelity to core components, context-appropriate adaptations, resource utilization, and direct and indirect costs. Follow-up assesses maintenance of effects at the individual level and sustained delivery at the organizational level over time [64].
- (6)
- Can payers and policymakers justify adoption and reimbursement? Decision making relies on formal health technology assessment that integrates comparative clinical effectiveness, safety, and economic value with organizational, ethical, social, legal, and equity considerations. Adoption is justified when the intervention demonstrates meaningful health gain relative to current practice, affordability within the health budget, operational feasibility in the intended settings, and a net positive impact on equity [36].
4. Methods
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Global Burden of Disease, WHO NCD Microdata Repository. Available online: https://extranet.who.int/ncdsmicrodata/index.php/catalog/STEPS?page=1&view=v&ps=15&repo=STEPS (accessed on 28 January 2024).
- Esmaeili, S. Review of Biotechnology Applications in Dentistry. EC Dent. Sci. 2024, 23, 1–4. [Google Scholar]
- Kumari, S.; Samara, M.; Ampadi Ramachandran, R.; Gosh, S.; George, H.; Wang, R.; Pesavento, R.P.; Mathew, M.T. A Review on Saliva-Based Health Diagnostics: Biomarker Selection and Future Directions. Biomed. Mater. Devices 2024, 2, 121–138. [Google Scholar] [CrossRef]
- Domokos, Z.; Simon, F.; Uhrin, E.; Szabó, B.; Váncsa, S.; Varga, G.; Hegyi, P.; Kerémi, B.; Németh, O. Evaluating Salivary MMP-8 as a Biomarker for Periodontal Diseases: A Systematic Review and Meta-Analysis. Heliyon 2024, 10. [Google Scholar] [CrossRef]
- Ali, M.; Taj, Y.; Tanwir, F.; Bakhat, S.; Ahmed, S.A. MMP-8, IL-6, and IL-1β: The Most Promising Salivary Biomarkers for Early Diagnosis of Periodontitis. J. Coll. Physicians Surg. Pak. 2025, 35, 825–829. [Google Scholar] [CrossRef]
- Wei, S.; Lin, T.; Sáenz-Ravello, G.; Gao, H.; Zhang, Y.; Tonetti, M.S.; Deng, K. Diagnostic Accuracy of Salivary Active Matrix Metalloproteinase (AMMP)-8 Point-of-Care Test for Detecting Periodontitis in Adults: A Systematic Review and Meta-Analysis. J. Clin. Periodontol. 2024, 51, 1093–1108. [Google Scholar] [CrossRef]
- Li, Y.; Kung, J.C.K.; Shi, J.; Wu, X.; Lam, S.L.T.; Deng, K.; Zhang, X.; Lai, H.; Pelekos, G.; Jin, L.; et al. Diagnostic Accuracy of a Point-Of-Care AMMP-8 Test for Discriminating Periodontal Health Status in Adults: Validation Trials and Updated Meta-Analysis. J. Clin. Periodontol. 2025, 52, 510–529. [Google Scholar] [CrossRef]
- Rocha, A.C.S.D.; Orlandini, R.K.; Motta, A.C.F.; Pinheiro, J.B.; Silva, G.A.e.; Oliveira, V.d.C.; Lourenço, A.G. Variability of Salivary Analytes under Daily Conditions and Their Implications for Periodontitis Biomarkers. Front. Dent. Med. 2024, 5, 1369186. [Google Scholar] [CrossRef]
- Dong, A.; Proctor, G.; Zaric, S. Diagnostic Accuracy of Microbiome-Derived Biomarkers in Periodontitis: Systematic Review and Meta-Analysis. J. Periodontal Res. 2025, 60, 748–761. [Google Scholar] [CrossRef] [PubMed]
- Antonelli, R.; Massei, V.; Ferrari, E.; Gallo, M.; Pertinhez, T.A.; Vescovi, P.; Pizzi, S.; Meleti, M. Salivary Diagnosis of Dental Caries: A Systematic Review. Curr. Issues Mol. Biol. 2024, 46, 4234–4250. [Google Scholar] [CrossRef] [PubMed]
- Rapado-González, Ó.; Salta, S.; López-López, R.; Henrique, R.; Suárez-Cunqueiro, M.M.; Jerónimo, C. DNA Methylation Markers for Oral Cancer Detection in Non- and Minimally Invasive Samples: A Systematic Review. Clin. Epigenet. 2024, 16, 105. [Google Scholar] [CrossRef] [PubMed]
- Rapado-González, Ó.; Martínez-Reglero, C.; Salgado-Barreira, Á.; Takkouche, B.; López-López, R.; Suárez-Cunqueiro, M.M.; Muinelo-Romay, L. Salivary Biomarkers for Cancer Diagnosis: A Meta-Analysis. Ann. Med. 2020, 52, 131–144. [Google Scholar] [CrossRef]
- Koopaie, M.; Akhbari, P.; Fatahzadeh, M.; Kolahdooz, S. Identification of Common Salivary MiRNA in Oral Lichen Planus and Oral Squamous Cell Carcinoma: Systematic Review and Meta-Analysis. BMC Oral. Health 2024, 24, 1177. [Google Scholar] [CrossRef]
- Umapathy, V.R.; Natarajan, P.M.; Swamikannu, B.; Moses, J.; Jones, S.; Chandran, M.P.; Anbumozhi, M.K. Emerging Biosensors for Oral Cancer Detection and Diagnosis—A Review Unravelling Their Role in Past and Present Advancements in the Field of Early Diagnosis. Biosensors 2022, 12, 498. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Chen, X.; Xing, J.; Lian, M.; Huang, D.; Lu, Y.; Feng, G.; Feng, X. MiR-140-5p Regulates the Odontoblastic Differentiation of Dental Pulp Stem Cells via the Wnt1/β-Catenin Signaling Pathway. Stem Cell Res. Ther. 2019, 10, 226. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Goldman, G.; MacDougall, M.; Chen, S. BMP Signaling Pathway in Dentin Development and Diseases. Cells 2022, 11, 2216. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Chu, X.Y.; Chen, X.; Xiang, Y.L.; Li, Z.L.; Gao, C.Y.; Luan, Y.Y.; Yang, K.; Zhang, D.L. Dental Pulp Stem Cell-Derived Extracellular Vesicles Loaded with Hydrogels Promote Osteogenesis in Rats with Alveolar Bone Defects. Mol. Med. Rep. 2025, 31, 29. [Google Scholar] [CrossRef] [PubMed]
- Nogawa, S.; Morishita, S.; Saito, K.; Kato, H. Genome-Wide Association Meta-Analysis Identifies Two Novel Loci Associated with Dental Caries. BMC Oral. Health 2024, 24, 1003. [Google Scholar] [CrossRef]
- Shrestha, P.; Graff, M.; Gu, Y.; Wang, Y.; Avery, C.L.; Ginnis, J.; Simancas-Pallares, M.A.; Ferreira Zandoná, A.G.; Alotaibi, R.N.; Orlova, E.; et al. Multiancestry Genome-Wide Association Study of Early Childhood Caries. J. Dent. Res. 2025, 104, 280–289. [Google Scholar] [CrossRef]
- Nibali, L.; Divaris, K.; Lu, E.M.C. The Promise and Challenges of Genomics-Informed Periodontal Disease Diagnoses. Periodontol 2000 2024, 95, 194–202. [Google Scholar] [CrossRef]
- Siewert, A.; Hoeland, S.; Mangold, E.; Ludwig, K.U. Combining Genetic and Single-Cell Expression Data Reveals Cell Types and Novel Candidate Genes for Orofacial Clefting. Sci. Rep. 2024, 14, 26492. [Google Scholar] [CrossRef]
- Salminen, A.; Hyvärinen, K.; Ritari, J.; Leppilahti, J.M.; Palotie, U.; Vuollo, V.; Kambur, O.; Reis, K.; Reigo, A.; Palta, P.; et al. Genome-Wide Association Study of Pulpal and Apical Diseases. Nat. Commun. 2025, 16, 6774. [Google Scholar] [CrossRef]
- Khoury, M.J.; Janssens, A.C.J.W.; Ransohoff, D.F. How Can Polygenic Inheritance Be Used in Population Screening for Common Diseases? Genet. Med. 2013, 15, 437–443. [Google Scholar] [CrossRef] [PubMed]
- Algarni, A.A. Antibacterial Agents for Composite Resin Restorative Materials: Current Knowledge and Future Prospects. Cureus 2024, 16, e57212. [Google Scholar] [CrossRef] [PubMed]
- Sales-Junior, R.A.d.; de Bessa, M.S.; Oliveira, F.J.D.d.; Barbosa, B.F.d.S.; Santos, K.d.S.; Owen, M.; Feitosa, V.P.; Borges, B.C.D. Multifaceted Characterization of Antibacterial Resin Composites: A Scoping Review on Efficacy, Properties, and in Vivo Performance. Jpn. Dent. Sci. Rev. 2025, 61, 112–137. [Google Scholar] [CrossRef]
- Melo, M.A.S.; Garcia, I.M.; Alluhaidan, T.; Qaw, M.; Montoya, C.; Orrego, S.; Balhaddad, A.A.; Mokeem, L. The next Frontier in Antibacterial Dental Resins: A 20-Year Journey of Innovation and Expectations. Dent. Mater. 2025, 41, 1045–1057. [Google Scholar] [CrossRef] [PubMed]
- Kunrath, M.F.; Farina, G.; Sturmer, L.B.S.; Teixeira, E.R. TiO2 Nanotubes as an Antibacterial Nanotextured Surface for Dental Implants: Systematic Review and Meta-Analysis. Dent. Mater. 2024, 40, 907–920. [Google Scholar] [CrossRef]
- Wang, W.; Liu, H.; Guo, Z.; Hu, Z.; Wang, K.; Leng, Y.; Yuan, C.; Su, B.; Wang, W.; Liu, H.; et al. Various Antibacterial Strategies Utilizing Titanium Dioxide Nanotubes Prepared via Electrochemical Anodization Biofabrication Method. Biomimetics 2024, 9, 408. [Google Scholar] [CrossRef]
- Gkioka, M.; Rausch-Fan, X. Antimicrobial Effects of Metal Coatings or Physical, Chemical Modifications of Titanium Dental Implant Surfaces for Prevention of Peri-Implantitis: A Systematic Review of In Vivo Studies. Antibiotics 2024, 13, 908. [Google Scholar] [CrossRef]
- Hegde, D.; Suprabha, B.S.; Rao, A. Organic Antibacterial Modifications of High-Viscosity Glass Ionomer Cement for Atraumatic Restorative Treatment: A Review. Jpn. Dent. Sci. Rev. 2024, 60, 22–31. [Google Scholar] [CrossRef]
- Chug, M.K.; Crutchfield, N.; Garren, M.; Handa, H.; Brisbois, E.J. Engineering Nitric Oxide-Releasing Antimicrobial Dental Coating for Targeted Gingival Therapy. ACS Appl. Bio Mater. 2024, 7, 2993–3004. [Google Scholar] [CrossRef]
- Zalega, M.; Bociong, K. Antibacterial Agents Used in Modifications of Dental Resin Composites: A Systematic Review. Appl. Sci. 2024, 14, 3710. [Google Scholar] [CrossRef]
- Fernandes, G.V.O.; Martins, B.G.d.S.; Fernandes, J.C.H.; Gabet, Y.; Vizanski, A. The Novel IMPACT Tool and Quadrant Protocol for Peri-Implantitis: Surface Refinement and Re-Osseointegration Validated by SEM/EDS and Long-Term Clinical Case Reports. Medicina 2025, 61, 1094. [Google Scholar] [CrossRef]
- Eaton, K.; Yusuf, H.; Vassallo, P. Editorial: The WHO Global Oral Health Action Plan 2023-2030. Community Dent Health 2023, 40, 68–69. [Google Scholar] [CrossRef] [PubMed]
- Rochmah, T.N.; Ramadhani, A.; Bramantoro, T.; Permata, L.G.; Tun, T.Z. Systematic Review on Cost-Effectiveness Analysis of School-Based Oral Health Promotion Program. PLoS ONE 2023, 18, e0284518. [Google Scholar] [CrossRef] [PubMed]
- Anand, S.; Sönmez, Ö.F. Strengthening Dental Materiovigilance: A Review of International Reporting Frameworks. Int. Dent. J. 2025, 75, 100943. [Google Scholar] [CrossRef] [PubMed]
- Jurczak, K.M.; van der Boon, T.A.B.; Devia-Rodriguez, R.; Schuurmann, R.C.L.; Sjollema, J.; van Huizen, L.; De Vries, J.P.P.M.; van Rijn, P. Recent Regulatory Developments in EU Medical Device Regulation and Their Impact on Biomaterials Translation. Bioeng. Transl. Med. 2024, 10, e10721. [Google Scholar] [CrossRef]
- Spatafora, G.; Li, Y.; He, X.; Cowan, A.; Tanner, A.C.R. The Evolving Microbiome of Dental Caries. Microorganisms 2024, 12, 121. [Google Scholar] [CrossRef]
- Yin, I.X.; Udduttulla, A.; Xu, V.W.; Chen, K.J.; Zhang, M.Y.; Chu, C.H. Use of Antimicrobial Nanoparticles for the Management of Dental Diseases. Nanomaterials 2025, 15, 209. [Google Scholar] [CrossRef]
- Lima, L.A.; Lima, F.R.L.; Silva, P.G.B.; Rodrigues, L.K.A. Enhancing Antimicrobial, Physical, and Mechanical Properties of Restorative Dental Materials through Metallic Nanoparticle Incorporation: A Systematic Review and Meta-Analysis. Discov. Mater. 2025, 5, 29. [Google Scholar] [CrossRef]
- Mutreja, I.; Lan, C.; Li, Q.; Aparicio, C. Chemoselective Coatings of GL13K Antimicrobial Peptides for Dental Implants. Pharmaceutics 2023, 15, 2418. [Google Scholar] [CrossRef]
- Luo, S.C.; Wei, S.M.; Luo, X.T.; Yang, Q.Q.; Wong, K.H.; Cheung, P.C.K.; Zhang, B.B. How Probiotics, Prebiotics, Synbiotics, and Postbiotics Prevent Dental Caries: An Oral Microbiota Perspective. npj Biofilms Microbiomes 2024, 10, 14. [Google Scholar] [CrossRef] [PubMed]
- Parhi, S.; Pal, S.; Das, S.K.; Ghosh, P. Strategies toward Development of Antimicrobial Biomaterials for Dental Healthcare Applications. Biotechnol. Bioeng. 2021, 118, 4590–4622. [Google Scholar] [CrossRef]
- Domb, A.J.; Sharifzadeh, G.; Nahum, V.; Hosseinkhani, H. Safety Evaluation of Nanotechnology Products. Pharmaceutics 2021, 13, 1615. [Google Scholar] [CrossRef]
- Patel, M. Dental Caries Vaccine: Are We There Yet? Lett. Appl. Microbiol. 2020, 70, 2–12. [Google Scholar] [CrossRef]
- Loeurng, V.; Puth, S.; Hong, S.H.; Lee, Y.S.; Radhakrishnan, K.; Koh, J.T.; Kook, J.K.; Rhee, J.H.; Lee, S.E. A Flagellin-Adjuvanted Trivalent Mucosal Vaccine Targeting Key Periodontopathic Bacteria. Vaccines 2024, 12, 754. [Google Scholar] [CrossRef]
- Rocha, F.G.; Berges, A.; Sedra, A.; Ghods, S.; Kapoor, N.; Pill, L.; Davey, M.E.; Fairman, J.; Gibson, F.C. A Porphyromonas gingivalis Capsule-Conjugate Vaccine Protects From Experimental Oral Bone Loss. Front. Oral Health 2021, 2, 686402. [Google Scholar] [CrossRef]
- Sönmez, Ö.F.; Bedi, R. Dental Therapists Could Be a Player in United Kingdom HPV Vaccination Uptake. Br. Dent. J. 2025, 238, 308–310. [Google Scholar] [CrossRef]
- Ndon, S.; Singh, A.; Ha, P.K.; Aswani, J.; Chan, J.Y.K.; Xu, M.J. Human Papillomavirus-Associated Oropharyngeal Cancer: Global Epidemiology and Public Policy Implications. Cancers 2023, 15, 4080. [Google Scholar] [CrossRef]
- Riad, A.; Põld, A.; Kateeb, E.; Attia, S. Oral Adverse Events Following COVID-19 Vaccination: Analysis of VAERS Reports. Front. Public. Health 2022, 10, 952781. [Google Scholar] [CrossRef] [PubMed]
- Koren, L.; Koren, A.; Likić, R.; Katanec, T. Revolutionizing Dentistry: Preclinical Insights and Future Applications of MRNA Vaccines in Dentistry-A Narrative Review. Dent. J. 2025, 13, 79. [Google Scholar] [CrossRef] [PubMed]
- Patel, P.; Patel, B.; Vyas, S.D.; Patel, M.S.; Hirani, T.; Haque, M.; Kumar, S. A Narrative Review of Periodontal Vaccines: Hope or Hype? Cureus 2025, 17, e80636. [Google Scholar] [CrossRef]
- Wang, S.; Yan, T.; Zhang, B.; Chen, Y.; Li, Z. Porphyromonas gingivalis Vaccine: Antigens and Mucosal Adjuvants. Vaccines 2024, 12, 619. [Google Scholar] [CrossRef] [PubMed]
- Phua, K.K.L.; Staats, H.F.; Leong, K.W.; Nair, S.K. Intranasal MRNA Nanoparticle Vaccination Induces Prophylactic and Therapeutic Anti-Tumor Immunity. Sci. Rep. 2014, 4, 5128. [Google Scholar] [CrossRef] [PubMed]
- Gote, V.; Bolla, P.K.; Kommineni, N.; Butreddy, A.; Nukala, P.K.; Palakurthi, S.S.; Khan, W. A Comprehensive Review of MRNA Vaccines. Int. J. Mol. Sci. 2023, 24, 2700. [Google Scholar] [CrossRef] [PubMed]
- Dobrow, M.J.; Hagens, V.; Chafe, R.; Sullivan, T.; Rabeneck, L. Consolidated Principles for Screening Based on a Systematic Review and Consensus Process. CMAJ 2018, 190, E422–E429. [Google Scholar] [CrossRef]
- Andermann, A.; Blancquaert, I.; Beauchamp, S.; Déry, V. Revisiting Wilson and Jungner in the Genomic Age: A Review of Screening Criteria over the Past 40 Years. Bull. World Health Organ. 2008, 86, 317. [Google Scholar] [CrossRef]
- Wilson, J.M.G.; Jungner, G. Principles and Practice of Screening for Disease; World Health Organization: Geneva, Switzerland, 1968. [Google Scholar]
- Land, K.J.; Boeras, D.I.; Chen, X.S.; Ramsay, A.R.; Peeling, R.W. REASSURED Diagnostics to Inform Disease Control Strategies, Strengthen Health Systems and Improve Patient Outcomes. Nat. Microbiol. 2019, 4, 46–54. [Google Scholar] [CrossRef]
- Salvador-Carulla, L.; Woods, C.; de Miquel, C.; Lukersmith, S. Adaptation of the Technology Readiness Levels for Impact Assessment in Implementation Sciences: The TRL-IS Checklist. Heliyon 2024, 10, e29930. [Google Scholar] [CrossRef]
- Skivington, K.; Matthews, L.; Simpson, S.A.; Craig, P.; Baird, J.; Blazeby, J.M.; Boyd, K.A.; Craig, N.; French, D.P.; McIntosh, E.; et al. A New Framework for Developing and Evaluating Complex Interventions: Update of Medical Research Council Guidance. BMJ 2021, 374, n2061. [Google Scholar] [CrossRef]
- Loudon, K.; Treweek, S.; Sullivan, F.; Donnan, P.; Thorpe, K.E.; Zwarenstein, M. The PRECIS-2 Tool: Designing Trials That Are Fit for Purpose. BMJ 2015, 350, h2147. [Google Scholar] [CrossRef]
- Damschroder, L.J.; Aron, D.C.; Keith, R.E.; Kirsh, S.R.; Alexander, J.A.; Lowery, J.C. Fostering Implementation of Health Services Research Findings into Practice: A Consolidated Framework for Advancing Implementation Science. Implement. Sci. 2009, 4, 50. [Google Scholar] [CrossRef] [PubMed]
- Pereira, E.L.; Strayer, T.E.; Harden, S.M.; Glasgow, R.E.; Studts, C.; Estabrooks, P.A.; Huebschmann, A.G. Improving the Usability of Online Resources to Support Implementation Research and Practice: The RE-AIM Website Use Case. J. Clin. Transl. Sci. 2025, 9, e146. [Google Scholar] [CrossRef] [PubMed]


| Condition/Target | Biomarker/Index Test | Matrix | Intended Public-Health Use | Summary Diagnostic Performance * | Regulatory/Implementation Notes |
|---|---|---|---|---|---|
| Periodontitis (presence) | aMMP-8 point-of-care oral rinse test (POC-ORT) | Mouth-rinse/saliva | Community/clinic adjunct screening and monitoring; triage for dental exam | Pooled Se 0.63 (95% CI 0.41–0.82), Sp 0.84 (0.65–0.95) (meta-analysis of 6 studies). In a 2025 home-screening model combined with risk factors, Se 94%, Sp 77% [6]. | Not a replacement for periodontal exam. False-negatives possible. Use within multi-test pathways; verify local requirements before population deployment [7]. |
| Periodontitis (activity) | IL-6, IL-8 (salivary cytokines) | Saliva | Adjunct risk flag in programs where exams are limited | IL-6 AUC 0.709–0.852; IL-8 AUC 0.671–0.815 [8]. | Investigational; not validated as stand-alone tests. |
| Periodontitis (presence) | Microbiome signatures | Saliva | Exploratory screening; research use | Reviews report “high” accuracy for specific signatures, but subgingival samples outperform saliva for clinical utility [9]. | Assay and threshold variability; not yet suitable for population screening. |
| Caries risk (adults) | Salivary molecules (e.g., mucins, sCD14, IL-2RA/4/13, urease, carbonic anhydrase VI; plus flow/pH/buffering) | Saliva | Risk stratification to target prevention (not diagnosis) | Consistent associations across 16 studies, but no unified thresholds; meta-analysis not feasible due to heterogeneity [10]. | Use as part of multifactorial risk tools; not diagnostic of lesions. |
| Oral cancer (OSCC/HNSCC) | miRNA panels (saliva ± blood) | Saliva (±blood) | High-risk clinic adjunct; case-finding | Pooled Se 78%, Sp 82% | Biomarker sets differ by study; standardization needed before screening. |
| Oral cancer (OSCC/HNSCC) | mRNA panels (saliva) | Saliva | High-risk clinic adjunct | Pooled Se 91%, Sp 90% [11]. | Promising, but heterogeneity and assay access limit field use. |
| Oral cancer (OSCC/OPSCC) | DNA methylation panels (saliva) | Saliva | High-risk clinic adjunct; case-finding | Meta-analyses indicate higher accuracy than cytokines; pooled Se ~88%, Sp ~89% in recent synthesis; several single gene/combined panel’s report AUC ≥ 0.80 [12]. | Strong early evidence; requires standardized protocols and accessible assays. |
| OPMD (e.g., oral lichen planus) | miRNA panels (saliva) | Saliva | Specialist triage adjunct | Pooled Se 0.80, Sp 0.89, AUC 0.93 for OLP diagnosis [13]. | Not generalizable to all OPMDs; research context recommended. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sonmez, O.F.; Makara, T.S.; Bedi, R. Leveraging Dental Biotechnology for Population Oral Health: Innovations in Prevention, Diagnosis, and Treatment. Int. J. Mol. Sci. 2025, 26, 11188. https://doi.org/10.3390/ijms262211188
Sonmez OF, Makara TS, Bedi R. Leveraging Dental Biotechnology for Population Oral Health: Innovations in Prevention, Diagnosis, and Treatment. International Journal of Molecular Sciences. 2025; 26(22):11188. https://doi.org/10.3390/ijms262211188
Chicago/Turabian StyleSonmez, Omer Faruk, Thuto Serufe Makara, and Raman Bedi. 2025. "Leveraging Dental Biotechnology for Population Oral Health: Innovations in Prevention, Diagnosis, and Treatment" International Journal of Molecular Sciences 26, no. 22: 11188. https://doi.org/10.3390/ijms262211188
APA StyleSonmez, O. F., Makara, T. S., & Bedi, R. (2025). Leveraging Dental Biotechnology for Population Oral Health: Innovations in Prevention, Diagnosis, and Treatment. International Journal of Molecular Sciences, 26(22), 11188. https://doi.org/10.3390/ijms262211188

