The Effect of Maternal Stress on 11beta-Hydroxysteroid Dehydrogenase Activity During Pregnancy: Evidence for Potential Pregnancy Complications and Consequences on Fetal Development and Metabolism
Abstract
1. Introduction
2. Materials and Methods
3. Physiology of Stress and Cortisol Metabolism
4. Maternal Stress During Pregnancy and Consequences on the Mother and Fetus
4.1. Maternal Stress During Pregnancy and Pregnancy Complications
4.1.1. Maternal Cardiovascular Diseases—Hypertension and Preeclampsia
4.1.2. Preterm Birth
4.1.3. Spontaneous Abortion
4.1.4. Maternal Metabolism—Gestational Diabetes Mellitus
4.2. Maternal Stress During Pregnancy and Fetal Development
4.2.1. In Utero
4.2.2. At Birth
4.2.3. Childhood Pathologies
4.3. Maternal Stress During Pregnancy and Changes in Fetal Metabolism
5. Maternal Stress During Pregnancy and Changes in the Expression and/or Activity of 11β-HSD Isoenzymes
6. 11β-HSD Type 1 and Type 2 Dysfunction Leading to Pregnancy Complications and Fetal Developmental and Metabolic Abnormalities
6.1. 11β-HSD Type 1 and Type 2 Dysfunction and Pregnancy Complications
6.2. 11β-HSD Type 1 and Type 2 Dysfunction and Fetal Development
6.3. 11β-HSD Type 1 and Type 2 Function and Changes in Fetal Metabolism
7. Discussion
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Konstantakou, P.; Mastorakos, G.; Vrachnis, N.; Tomlinson, J.W.; Valsamakis, G. Dysregulation of 11beta-hydroxysteroid dehydrogenases: Implications during pregnancy and beyond. J. Matern. Fetal Neonatal Med. 2017, 30, 284–293. [Google Scholar] [CrossRef]
- Seckl, J.R.; Holmes, M.C. Mechanisms of disease: Glucocorticoids, their placental metabolism and fetal ‘programming’ of adult pathophysiology. Nat. Clin. Pract. Endocrinol. Metab. 2007, 3, 479–488. [Google Scholar] [CrossRef]
- Gluckman, P.D.; Hanson, M.A. Living with the past: Evolution, development, and patterns of disease. Science 2004, 305, 1733–1736. [Google Scholar] [CrossRef]
- O’Connor, T.G.; Ben-Shlomo, Y.; Heron, J.; Golding, J.; Adams, D.; Glover, V. Prenatal anxiety predicts individual differences in cortisol in pre-adolescent children. Biol. Psychiatry 2005, 58, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Power, C.; Jefferis, B. Fetal environment and subsequent obesity: A study of maternal smoking. Int. J. Epidemiol. 2002, 31, 413–419. [Google Scholar] [CrossRef] [PubMed]
- Dunkerton, S.; Aiken, C. Impact of the intrauterine environment on future reproductive and metabolic health. Obstet. Gynaecol. 2002, 24, 93–100. [Google Scholar] [CrossRef]
- Dumesic, D.A.; Hoyos, L.R.; Chazenbalk, G.D.; Naik, R.; Padmanabhan, V.; Abbott, D.H. Mechanisms of intergenerational transmission of polycystic ovary syndrome. Reproduction 2020, 159, R1–R13. [Google Scholar] [CrossRef]
- DiPietro, J.A. Maternal stress in pregnancy: Considerations for fetal development. J. Adolesc. Health 2012, 51, S3–S8. [Google Scholar] [CrossRef] [PubMed]
- Dahlerup, B.R.; Egsmose, E.L.; Siersma, V.; Mortensen, E.L.; Hedegaard, M.; Knudsen, L.E.; Mathiesen, L. Maternal stress and placental function, a study using questionnaires and biomarkers at birth. PLoS ONE 2018, 13, e0207184. [Google Scholar] [CrossRef]
- Reynolds, R.M. Glucocorticoid excess and the developmental origins of disease: Two decades of testing the hypothesis. PNEC 2013, 38, 1–11. [Google Scholar]
- Entringer, S.; Wust, S.; Kumsta, R.; Layes, I.M.; Nelson, E.L.; Hellhammer, D.H.; Wadhwa, P.D. Prenatal psychosocial stress exposure is associated with insulin resistance in young adults. AJOG 2008, 199, 498e1–498e7. [Google Scholar] [CrossRef]
- Li, J.; Olsen, J.; Vestergaard, M.; Obel, C.; Kristensen, J.K.; Virk, J. Prenatal exposure to bereavement and type-2 diabetes: A Danish longitudinal population based study. PLoS ONE 2012, 7, e43508. [Google Scholar] [CrossRef]
- Dancause, K.N.; Laplante, D.P.; Oremus, C.; Fraser, S.; Brunet, A.; King, S. Disaster-related prenatal maternal stress influences birth outcomes: Project Ice Storm. Early Hum. Dev. 2011, 87, 813–820. [Google Scholar] [CrossRef]
- Stroud, L.R.; Papandonatos, G.D.; Parade, S.H.; Salisbury, A.L.; Phipps, M.G.; Lester, B.M.; Padbury, J.F.; Marsit, C.J. Prenatal Major Depressive Disorder, Placenta Glucocorticoid and Serotonergic Signaling, and Infant Cortisol Response. Psychosom. Med. 2016, 78, 979–990. [Google Scholar] [CrossRef] [PubMed]
- Tegethoff, M.; Greene, N.; Olsen, J.; Schaffner, E.; Meinlschmidt, G. Stress during pregnancy and offspring pediatric disease: A National Cohort Study. EHP 2011, 119, 1647–1652. [Google Scholar] [CrossRef]
- Mishra, S.; Shetty, A.; Rao, C.R.; Nayak, S.; Kamath, A. Effect of maternal perceived stress during pregnancy on gestational diabetes mellitus risk: A prospective case-control study. Diabetes Metab. Syndr. Obes. 2020, 14, 1163–1169. [Google Scholar] [CrossRef] [PubMed]
- Brunton, P.J.; Sullivan, K.M.; Kerrigan, D.; Russell, J.A.; Seckl, J.R.; Drake, A.J. Sex-specific effects of prenatal stress on glucose homoeostasis and peripheral metabolism in rats. J. Endocrinol. 2013, 217, 161–173. [Google Scholar] [CrossRef] [PubMed]
- Tomlinson, J.W.; Stewart, P.M. Cortisol metabolism and the role of 11beta-hydroxysteroid dehydrogenase. Best Pract. Res. Clin. Endocrinol. Metab. 2001, 15, 61–78. [Google Scholar] [CrossRef]
- Drake, A.J.; Tang, J.I.; Nyirenda, M.J. Mechanisms underlying the role of glucocorticoids in the early life programming of adult disease. Clin. Sci. 2007, 113, 219e232. [Google Scholar] [CrossRef]
- Yang, Q.; Wang, W.; Liu, C.; Wang, Y.; Sun, K. Compartmentalized localization of 11β-HSD 1 and 2 at the feto-maternal interface in the first trimester of human pregnancy. Placenta 2016, 46, 63–71. [Google Scholar] [CrossRef]
- Ghaemmaghami, P.; Dainese, S.M.; La Marca, R.; Zimmermann, R.; Ehlert, U. The association between the acute psychobiological stress response in second trimester pregnant women, amniotic fluid glucocorticoids, and neonatal birth outcome. Dev. Psychobiol. 2014, 56, 734–747. [Google Scholar] [CrossRef]
- Cottrell, E.C.; Holmes, M.C.; Livingstone, D.E.; Kenyon, C.J.; Seckl, J.R. Reconciling the nutritional and glucocorticoid hypotheses of fetal programming. FASEB J. 2012, 26, 1866–1874. [Google Scholar] [CrossRef]
- Harris, A.; Seckl, J. Glucocorticoids, prenatal stress and the programming of disease. Horm. Behav. 2011, 59, 279–289. [Google Scholar] [CrossRef] [PubMed]
- McEwen, B.S. Physiology and neurobiology of stress and adaptation: Central role of the brain. Physiol. Rev. 2007, 87, 873–904. [Google Scholar] [CrossRef] [PubMed]
- Epel, E.S.; Crosswell, A.D.; Mayer, S.E.; Prather, A.A.; Slavich, G.M.; Puterman, E.; Mendes, W.B. More than a feeling: A unified view of stress measurement for population science. Front. Neuroendocrinol. 2018, 49, 146–169. [Google Scholar] [CrossRef] [PubMed]
- Heeren, A.; Bernstein, E.E.; McNally, R.J. Deconstructing trait anxiety: A network perspective. Anxiety Stress Coping 2018, 31, 262–276. [Google Scholar] [CrossRef]
- Schernthaner-Reiter, M.H.; Wolf, P.; Vila, G.; Luger, A. The Interaction of Insulin and Pituitary Hormone Syndromes. Front. Endocrinol. 2021, 12, 626427. [Google Scholar] [CrossRef] [PubMed]
- Graham, A.M.; Rasmussen, J.M.; Entringer, S.; Ben Ward, E.; Rudolph, M.D.; Gilmore, J.H.; Styner, M.; Wadhwa, P.D.; Fair, D.A.; Buss, C. Maternal Cortisol Concentrations During Pregnancy and Sex-Specific Associations with Neonatal Amygdala Connectivity and Emerging Internalizing Behaviors. Biol. Psychiatry 2019, 85, 172–181. [Google Scholar] [CrossRef]
- Chan, J.; Rabbitt, E.H.; Innes, B.A.; Bulmer, J.N.; Stewart, P.M.; Kilby, M.D.; Hewison, M. Glucocorticoid-induced apoptosis in human decidua: A novel role for 11beta-hydroxysteroid dehydrogenase in late gestation. J. Endocrinol. 2007, 195, 7–15. [Google Scholar] [CrossRef]
- Burton, P.J.; Waddell, B.J. Dual function of 11beta-hydroxysteroid dehydrogenase in placenta: Modulating placental glucocorticoid passage and local steroid action. Biol. Reprod. 1999, 60, 234–240. [Google Scholar] [CrossRef]
- Valsamakis, G.; Kanaka-Gantenbein, C.; Malamitsi-Puchner, A.; Mastorakos, G. Causes of intrauterine growth restriction and the postnatal development of the metabolic syndrome. Ann. N. Y. Acad. Sci. 2006, 1092, 138–147. [Google Scholar] [CrossRef]
- Greiner, M.; Paredes, A.; Araya, V.; Lara, H.E. Role of stress and sympathetic innervation in the development of polycystic ovarian syndrome. Endocrine 2005, 28, 319–324. [Google Scholar] [CrossRef]
- Landsbergis, P.A.; Hatch, M.C. Psychosocial work stress and pregnancy-induced hypertension. Epidemiology 1996, 7, 346–351. [Google Scholar] [CrossRef]
- Kurki, T.; Hiilesmaa, V.; Raitasalo, R.; Mattila, H.; Ylikorkala, O. Depression and anxiety in early pregnancy and risk for preeclampsia. Obstet. Gynecol. 2000, 95, 487–490. [Google Scholar] [PubMed]
- Yu, Y.; Zhang, S.; Wang, G.; Hong, X.; Mallow, E.B.; Walker, S.O.; Pearson, C.; Heffner, L.; Zuckerman, B.; Wang, X. The combined association of psychosocial stress and chronic hypertension with preeclampsia. AJOG 2013, 209, 438.e1–438.e12. [Google Scholar] [CrossRef] [PubMed]
- Morgan, N.; Christensen, K.; Skedros, G.; Kim, S.; Schliep, K. Life stressors, hypertensive disorders of pregnancy, and preterm birth. J. Psychosom. Obstet. Gynecol. 2022, 43, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Hobel, C.J.; Dunkel-Schetter, C.; Roesch, S.C.; Castro, L.C.; Arora, C.P. Maternal plasma corticotropin-releasing hormone associated with stress at 20 weeks’ gestation in pregnancies ending in preterm delivery. AJOG 1999, 180, S257–S263. [Google Scholar] [CrossRef]
- Lilliecreutz, C.; Larén, J.; Sydsjö, G.; Josefsson, A. Effect of maternal stress during pregnancy on the risk for preterm birth. BMC Pregnancy Childbirth 2016, 16, 5. [Google Scholar] [CrossRef]
- Neugebauer, R.; Kline, J.; Stein, Z.; Shrout, P.; Warburton, D.; Susser, M. Association of stressful life events with chromosomally normal spontaneous abortion. Am. J. Epidemiol. 1996, 143, 588–596. [Google Scholar] [CrossRef]
- Marinescu, I.P.; Foarfă, M.C.; Pîrlog, M.C.; Turculeanu, A. Prenatal depression and stress—Risk factors for placental pathology and spontaneous abortion. Rom. J. Morphol. Embryol. 2014, 55, 1155–1160. [Google Scholar]
- Xiaoming, Z. The characteristics of the dominant frequency of the a- wave and its influence on the psychological behavior in anxious adolescents. China J. Health Psychol. 2013, 21, 989–999. [Google Scholar]
- Valsamakis, G.; Papatheodorou, D.C.; Chalarakis, N.; Vrachnis, N.N.; Sidiropoulou, E.J.; Manolikaki, M.; Mantzou, A.; Margeli, A.; Papassotiriou, I.; Chrousos, G.P.; et al. In pregnancy increased maternal STAI trait stress score shows decreased insulin sensitivity and increased stress hormones. Psychoneuroendocrinology 2017, 84, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Byrn, M.; Penckofer, S. The relationship between gestational diabetes and antenatal depression. J. Obstet. Gynecol. Neonatal Nurs. 2015, 44, 246–255. [Google Scholar] [CrossRef]
- Horsch, A.; Kang, J.S.; Vial, Y.; Ehlert, U.; Borghini, A.; Marques-Vidal, P.; Jacobs, I.; Puder, J.J. Stress exposure and psychological stress responses are related to glucose concentrations during pregnancy. Br. J. Health Psychol. 2016, 21, 712–729. [Google Scholar] [CrossRef]
- Bowers, K.; Laughon, S.K.; Kim, S.; Mumford, S.L.; Brite, J.; Kiely, M.; Zhang, C. The association between a medical history of depression and gestational diabetes in a large multi-ethnic cohort in the United States. Paediatr. Perinat. Epidemiol. 2013, 27, 323–328. [Google Scholar] [CrossRef]
- Zhi, W.; Suqin, R. Investigation and analysis of anxiety and depression in pregnant women with gestational diabetes mellitus. Chin. J. Mod. Nurs. 2009, 15, 1935–1937. [Google Scholar]
- Baorong, Y. Clinical investigation and analysis of mental health status of pregnant women with gestational diabetes mellitus. Chin. J. Mod. Drug Appl. 2015, 9, 242–244. [Google Scholar]
- Chengxian, D.; Jin, L. Effects of anxiety and depression on pregnancy outcome in pregnant women with gestational diabetes mellitus. J. Int. Psychiatry 2016, 43, 178–181. [Google Scholar]
- Lijuan, Z. Investigation of depression in patients with gestational diabetes mellitus and its relationship with delivery style and adverse pregnancy outcome. J. Int. Psychiatry 2018, 45, 144–146. [Google Scholar]
- Brunton, P.J. Effects of maternal exposure to social stress during pregnancy: Consequences for mother and offspring. Reproduction 2013, 146, R175–R189. [Google Scholar] [CrossRef] [PubMed]
- Lesage, J.; Del-Favero, F.; Leonhardt, M.; Louvart, H.; Maccari, S.; Vieau, D.; Darnaudery, M. Prenatal stress induces intrauterine growth restriction and programmes glucose intolerance and feeding behaviour disturbances in the aged rat. J. Endocrinol. 2004, 181, 291–316. [Google Scholar] [CrossRef] [PubMed]
- Lou, H.C.; Hansen, D.; Nordentoft, M.; Pryds, O.; Jensen, F.; Nim, J. Prenatal stressors of human life affect fetal brain development. Dev. Med. Child Neurol. 1994, 36, 826–832. [Google Scholar] [CrossRef] [PubMed]
- Ziljmans, M.A.C.; Korpela, K.; RiksenWalraven, K.M.; de Vos, W.; de Weerth, C.M. Maternal prenatal stress is associated with the infant intestinal microbiota. Psychoneuroendocrinology 2015, 53, 233–245. [Google Scholar] [CrossRef] [PubMed]
- Paarlberg, K.M.; Vingerhoets, A.J.; Passchier, J.; Dekker, G.A.; van Geijn, H.P. Psychosocial predictors of low birth weight: A prospective study. Br. J. Obstet. Gynaecol. 1999, 6, 834–841. [Google Scholar] [CrossRef]
- Weinstock, M. The potential influence of maternal stress hormones on development and mental health of the offspring. Brain Behav. Immun. 2005, 19, 296–308. [Google Scholar] [CrossRef]
- Borders, A.E.; Grobman, W.A.; Amsden, L.B.; Holl, J.L. Chronic stress and low birth weight neonates in a low-income population of women. Obstet. Gynecol. 2007, 109, 331–338. [Google Scholar] [CrossRef]
- Zhu, P.; Tao, F.; Hao, J.; Sun, Y.; Jiang, X. Prenatal life events stress: Implications for preterm birth and infant birthweight. AJOG 2010, 203, 34.e1–34.e8. [Google Scholar] [CrossRef]
- Gilles, M.; Otto, H.; Wolf, I.A.C.; Scharnholz, B.; Peus, V.; Schredl, M.; Sütterlin, M.W.; Witt, S.H.; Rietschel, M.; Laucht, M.; et al. Maternal hypothalamus-pituitary-adrenal (HPA) system activity and stress during pregnancy: Effects on gestational age and infant’s anthropometric measures at birth. Psychoneuroendocrinology 2018, 94, 152–161. [Google Scholar] [CrossRef]
- Grobman, W.A.; Wing, D.A.; Albert, P.; Kim, S.; Grewal, J.; Guille, C.; Newman, R.; Chien, E.K.; Owen, J.; D’Alton, M.E.; et al. Maternal Depressive Symptoms, Perceived Stress, and Fetal Growth. J. Ultrasound Med. 2017, 36, 1639–1648. [Google Scholar] [CrossRef]
- Lewis, A.J.; Austin, E.; Galbally, M. Prenatal maternal mental health and fetal growth restriction: A systematic review. J. Dev. Orig. Health Dis. 2016, 17, 416–428. [Google Scholar] [CrossRef]
- Chen, M.J.; Grobman, W.A.; Gollan, J.K.; Borders, A.E. The use of psychosocial stress scales in preterm birth research. AJOG 2011, 205, 402–434. [Google Scholar] [CrossRef]
- Glover, V.; O’Connor, T.G.; O’Donnell, K. Prenatal stress and the programming of the HPA axis. Neurosci. Biobehav. Rev. 2010, 35, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Fatima, M.; Srivastav, S.; Mondal, A.C. Prenatal stress and depression associated neuronal development in neonates. Int. J. Dev. Neurosci. 2017, 60, 1–7. [Google Scholar] [CrossRef]
- Ward, A.J. Prenatal stress and childhood psychopathology. Child Psychiatry Hum. Dev. 1991, 22, 97–110. [Google Scholar] [CrossRef]
- Nestler, E.J. Epigenetic mechanisms of depression. JAMA Psychiatry 2014, 71, 454–456. [Google Scholar] [CrossRef]
- Li, J.; Olsen, J.; Vestergaard, M.; Obel, C.; Baker, J.L.; Sørensen, T.I. Prenatal stress exposure related to maternal bereavement and risk of childhood overweight. PLoS ONE 2010, 5, e11896. [Google Scholar] [CrossRef] [PubMed]
- O’Donnel, K.; Bugge Jensen, A.; Freeman, L.; Khalife, N.; O’Connor, T.; Glover, V. Maternal prenatal anxiety and downregulation of placental 11β-HSD2. Psychoneuroendocrinology 2012, 37, 818–826. [Google Scholar] [CrossRef] [PubMed]
- Goland, R.S.; Jozak, S.; Warren, W.B.; Conwell, I.M.; Stark, R.I.; Tropper, P.J. Elevated levels of umbilical cord plasma corticotropin-releasing hormone in growthretarded fetuses. J. Clin. Endocrinol. Metab. 1993, 77, 1174–1179. [Google Scholar]
- Valsamakis, G.; Papatheodorou, D.; Chalarakis, N.; Manolikaki, M.; Margeli, A.; Papassotiriou, I.; Barber, T.M.; Kumar, S.; Kalantaridou, S.; Mastorakos, G. Maternal chronic stress correlates with serum levels of cortisol, glucose and C-peptide in the fetus, and maternal non chronic stress with fetal growth. Psychoneuroendocrinology 2020, 114, 104591. [Google Scholar] [CrossRef]
- Yehuda, R.; Engel, S.M.; Brand, S.R.; Seckl, J.; Marcus, S.M.; Berkowitz, G.S. Transgenerational effects of posttraumatic stress disorder in babies of mothers exposed to the World Trade Center attacks during pregnancy. J. Clin. Endocrinol. Metab. 2005, 90, 4115–4118. [Google Scholar] [CrossRef]
- Cao, J.; Chen, Y.; Wang, H. 11β-hydroxysteroid dehydrogenases and biomarkers in fetal development. Toxicology 2022, 479, 153316. [Google Scholar] [CrossRef]
- Maeyama, H.; Hirasawa, T.; Tahara, Y.; Obata, C.; Kasai, H.; Moriishi, K.; Mochizuki, K.; Kubota, T. Maternal restraint stress during pregnancy in mice induces 11β-HSD1-associated metabolic changes in the livers of the offspring. J. Dev. Orig. Health Dis. 2015, 6, 105–114. [Google Scholar] [CrossRef]
- Jensen Peña, C.; Monk, C.; Champagne, F.A. Epigenetic effects of prenatal stress on 11β-hydroxysteroid dehydrogenase-2 in the placenta and fetal brain. PLoS ONE 2012, 7, e39791. [Google Scholar] [CrossRef]
- Jahnke, J.R.; Terán, E.; Murgueitio, F.; Cabrera, H.; Thompson, A.L. Maternal stress, placental 11β-hydroxysteroid dehydrogenase type 2, and infant HPA axis development in humans: Psychosocial and physiological pathways. Placenta 2021, 104, 179–187. [Google Scholar] [CrossRef]
- Tartour, A.I.; Chivese, T.; Eltayeb, S.; Elamin, F.M.; Fthenou, E.; Seed Ahmed, M.; Babu, G.R. Prenatal psychological distress and 11β-HSD2 gene expression in human placentas: Systematic review and meta-analysis. Psychoneuroendocrinology 2024, 166, 107060. [Google Scholar] [CrossRef] [PubMed]
- Seth, S.; Lewis, A.J.; Saffery, R.; Lappas, M.; Galbally, M. Maternal Prenatal Mental Health and Placental 11β-HSD2 Gene Expression: Initial Findings from the Mercy Pregnancy and Emotional Wellbeing Study. Int. J. Mol. Sci. 2015, 16, 27482–27496. [Google Scholar] [CrossRef]
- Welberg, L.A.; Thrivikraman, K.V.; Plotsky, P.M. Chronic maternal stress inhibits the capacity to up-regulate placental 11beta-hydroxysteroid dehydrogenase type 2 activity. J. Endocrinol. 2005, 186, R7–R12. [Google Scholar] [CrossRef] [PubMed]
- Yu, P.; Zhou, J.; Ge, C.; Fang, M.; Zhang, Y.; Wang, H. Differential expression of placental 11β-HSD2 induced by high maternal glucocorticoid exposure mediates sex differences in placental and fetal development. Sci. Total Environ. 2022, 827, 154396. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.J.; Chen, S.W.; Xu, X.; Zhang, H.L.; Yan, J.Y. The effect of cold exposure on the levels of glucocorticoids, 11-hydroxysteroid dehydrogenase 2, and placental vascularization in a rat model. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 11961–11974. [Google Scholar]
- Shimodaira, M.; Nakayama, T.; Sato, I.; Sato, N.; Izawa, N.; Nizutani, Y.; Furuya, K.; Yamamoto, T. Glucocorticoid synthesis-related genes:HSD11B1 and HSD11B2 in hypertensive disorders in pregnancy. Gynecol. Endocrinol. 2013, 36, 734–738. [Google Scholar]
- Funghi, L.; Damiani, F.; Yen, C.F.; Lee, C.L.; Lombardi, A.; Schatz, F.; Lockwood, C.J.; Marcolongo, P.; Petraglia, F.; Arcuri, F. Expression and regulation of 11β-hydroxysteroid dehydrogenase type 1 in first trimester human decidua cells: Implication in preeclampsia. Mol. Cell. Endocrinol. 2016, 437, 163–170. [Google Scholar] [CrossRef]
- Wang, W.; Chen, Z.-J.; Myatt, L.; Sun, K. 11β-HSD1 in Human Fetal Membranes as a Potential Therapeutic Target for Preterm Birth. Endocr. Rev. 2018, 39, 241–260. [Google Scholar] [CrossRef]
- Causevic, M.; Mohaupt, M. 11beta-Hydroxysteroid dehydrogenase type 2 in pregnancy and preeclampsia. Mol. Asp. Med. 2007, 28, 220–226. [Google Scholar] [CrossRef]
- Aufdenblatten, M.; Baumann, M.; Raio, L.; Dick, B.; Frey, B.M.; Schneider, H.; Surbek, D.; Hocher, B.; Mohaupt, M.G. Prematurity is related to high placental cortisol in preeclampsia. Pediatr. Res. 2009, 65, 198–202. [Google Scholar] [CrossRef] [PubMed]
- McCalla, C.O.; Nacharaju, V.L.; Muneyyirci-Delale, O.; Glasgow, S.; Feldman, J.G. Placental 11beta-hydroxysteroid dehydrogenase activity in normotensive and preeclamptic pregnancies. Steroids 1998, 63, 511–515. [Google Scholar] [CrossRef] [PubMed]
- Schoof, E.; Girstl, M.; Frobenius, W.; Kirschbaum, M.; Dorr, H.G.; Rascher, W.; Dotsch, J. Decreased gene expression of 11beta-hydroxysteroid dehydrogenase type 2 and 15-hydroxyprostaglandin dehydrogenase in human placenta of patients with preelampsia. J. Clin. Endocrinol. Metab. 2001, 86, 1313–1317. [Google Scholar]
- Wang, G.; Huang, Y.; Hu, T.; Zhang, B.; Tang, Z.; Yao, R.; Huang, Y.; Fan, X.; Ni, X. Contribution of placental 11β-HSD2 to the pathogenesis of preeclampsia. FASEB J. 2020, 34, 15379–15399. [Google Scholar] [CrossRef]
- Siemiątkowska, A.; Kosicka, K.; Szpera-Goździewicz, A.; Krzyścin, M.; Bręborowicz, G.H.; Główka, F.K. Cortisol metabolism in pregnancies with small for gestational age neonates. Sci. Rep. 2019, 9, 17890. [Google Scholar] [CrossRef]
- Ma, R.; Liu, J.; Wu, L.; Sun, J.; Yang, Z.; Yu, C.; Yuan, P.; Xiao, X. Differential expression of placental 11β-hydroxysteroid dehydrogenases in pregnant women with diet-treated gestational diabetes mellitus. Steroids 2012, 77, 798–805. [Google Scholar] [CrossRef] [PubMed]
- Mericq, V.; Medina, P.; Kakarieka, E.; Marquez, L.; Johnson, M.C.; Iniguez, G. Differences in expression and activity of 11beta-hydroxysteroid dehydrogenase type 1 and 2 in human placentas of term pregnancies according to birth weight and gender. Eur. J. Endocrinol. 2009, 161, 419–425. [Google Scholar] [CrossRef]
- Majzoub, J.A.; McGregor, J.A.; Lockwood, C.J.; Smith, R.; Taggart, M.S.; Schulkin, J. A central theory of preterm and term labor: Putative role for corticotrophin-releasing hormone. AJOG 1999, 180, 5232–5241. [Google Scholar] [CrossRef] [PubMed]
- Tzschoppe, A.; Struwe, E.; Blessing, H.; Fahlbusch, F.; Liebhaber, G.; Dorr, H.G.; Rauh, M.; Rascher, W.; Goecke, T.W.; Schild, R.L.; et al. Placental 11beta-HSD2 gene expression at birth is inversely correlated with growth velocity in the first year of life after intrauterine growth restriction. Pediatr. Res. 2009, 65, 647–653. [Google Scholar] [CrossRef] [PubMed]
- Wachter, R.; Masarik, L.; Burzle, M.; Malik, A.; von Mandach, U. Differential expression and activity of 11beta-hydroxysteroid dehydrogenase in human placenta and fetal membranes from pregnancies with intrauterine growth restriction. Fetal Diagn. Ther. 2009, 25, 328–335. [Google Scholar] [CrossRef] [PubMed]
- Kajantie, E.; Dunkel, L.; Turpeinen, U.; Stenman, U.H.; Wood, P.J.; Nuutila, M.; Andersson, S. Placental 11beta-hydroxysteroid dehydrogenase type 2 and fetal cortisol/cortisone shuttle in small preterm infants. J. Clin. Endocrinol. Metab. 2003, 88, 493–500. [Google Scholar] [CrossRef] [PubMed]
- Dave-Sharma, S.; Wilson, R.C.; Harbison, M.D.; Newfield, R.; Azar, M.R.; Krozowski, Z.S.; Funder, J.W.; Shackleton, C.H.; Bradlow, H.L.; Wei, J.Q.; et al. Examination of genotype and phenotype relationships in 14 patients with apparent mineralocorticoid excess. J. Clin. Endocrinol. Metab. 1998, 83, 2244–2254. [Google Scholar] [CrossRef]
- Fujisawa, Y.; Nakagawa, Y.; Li, R.S.; Liu, Y.J.; Ohzeki, T. Diabetic pregnancy in rats leads to impaired glucose metabolism in offspring involving tissue-specific dysregulation of 11beta-hydroxysteroid dehydrogenase type 1 expression. Life Sci. 2007, 81, 724–731. [Google Scholar] [CrossRef]




Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pavli, P.; Mastorakos, G.; Eleftheriades, M.; Valsamakis, G. The Effect of Maternal Stress on 11beta-Hydroxysteroid Dehydrogenase Activity During Pregnancy: Evidence for Potential Pregnancy Complications and Consequences on Fetal Development and Metabolism. Int. J. Mol. Sci. 2025, 26, 11071. https://doi.org/10.3390/ijms262211071
Pavli P, Mastorakos G, Eleftheriades M, Valsamakis G. The Effect of Maternal Stress on 11beta-Hydroxysteroid Dehydrogenase Activity During Pregnancy: Evidence for Potential Pregnancy Complications and Consequences on Fetal Development and Metabolism. International Journal of Molecular Sciences. 2025; 26(22):11071. https://doi.org/10.3390/ijms262211071
Chicago/Turabian StylePavli, Polina, George Mastorakos, Makarios Eleftheriades, and Georgios Valsamakis. 2025. "The Effect of Maternal Stress on 11beta-Hydroxysteroid Dehydrogenase Activity During Pregnancy: Evidence for Potential Pregnancy Complications and Consequences on Fetal Development and Metabolism" International Journal of Molecular Sciences 26, no. 22: 11071. https://doi.org/10.3390/ijms262211071
APA StylePavli, P., Mastorakos, G., Eleftheriades, M., & Valsamakis, G. (2025). The Effect of Maternal Stress on 11beta-Hydroxysteroid Dehydrogenase Activity During Pregnancy: Evidence for Potential Pregnancy Complications and Consequences on Fetal Development and Metabolism. International Journal of Molecular Sciences, 26(22), 11071. https://doi.org/10.3390/ijms262211071

