Directions of Immunotherapy for Non-Small-Cell Lung Cancer Treatment: Past, Present and Possible Future
Abstract
1. Introduction
2. Immune Checkpoint Inhibitors
2.1. PD-1/PD-L1 Axis
| Study | Enrollment | Endpoints | Phase | Ref. |
|---|---|---|---|---|
| AMBER | 219 | Safety and tolerability Maximum tolerated dose (MTD) Recommended phase II dose (RP2D) | Phase 1 | [57] |
| CA184-156 | 954 | OS, PFS, ORR, irPFS and irAEs | Phase 3 | [58] |
| CHECKMATE-9LA | 719 | OS, PFS, ORR and DOR | Phase 3 | [59,60] |
| CheckMate-017 | 272 | OS, PFS, ORR and DOR | Phase 3 | [26] |
| CHECKMATE-227 | 1739 | OS, PFS, ORR and DOR | Phase 3 | [61] |
| CITYSCAPE | 135 | OS, PFS, ORR, DOR and AE | Phase 2/3 | [62] |
| EMPOWER-Lung 1 | 712 | OS and PFS | Phase 3 | [51] |
| EMPOWER-Lung 3 | 466 | OS, PFS and ORR | Phase 3 | [52] |
| HARMONi-2 | 398 | PFS | Phase 3 | [63] |
| Impower132 | 578 | OS, PFS, ORR and DOR | Phase 3 | [64] |
| KEYNOTE-024 | 305 | OS and PFS | Phase 3 | [45] |
| KEYNOTE-189 | 616 | OS and PFS | Phase 3 | [65] |
| KEYNOTE-407 | 559 | OS and PFS | Phase 3 | [66] |
| NEOpredict-Lung | 60 | Surgery within 43 days, OS and DFS | Phase 2 | [67] |
| OAK | 1225 | OS | Phase 3 | [46] |
| RELATIVITY-047 | 714 | OS, PFS and ORR | Phase 3 | [68] |
| SKYSCRAPER-01 | 534 | OS and PFS | Phase 3 | [69] |
2.2. CTLA-4 Pathway
3. Combination Therapy
4. Novel Immune Checkpoint Targets
4.1. Lymphocyte Activation Gene 3
4.2. T Cell Immunoglobulin and Mucin-Domain-Containing-3
4.3. T Cell Immunoreceptor with Immunoglobulin and ITIM Domain
4.4. Novel Potential Immune Checkpoints
5. Novel Approaches to NSCLC Immunotherapy
5.1. Adoptive T Cell Tranfer
5.2. Oncological Vaccines
5.3. Bispecific Antibodies
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Gridelli, C.; Rossi, A.; Carbone, D.P.; Guarize, J.; Karachaliou, N.; Mok, T.; Petrella, F.; Spaggiari, L.; Rosell, R. Non-Small-Cell Lung Cancer. Nat. Rev. Dis. Prim. 2015, 1, 15009. [Google Scholar] [CrossRef]
- Jemal, A.; Ma, J.; Rosenberg, P.S.; Siegel, R.; Anderson, W.F. Increasing Lung Cancer Death Rates Among Young Women in Southern and Midwestern States. J. Clin. Oncol. 2012, 30, 2739–2744. [Google Scholar] [CrossRef]
- Haddadin, S.; Perry, M.C. History of Small-Cell Lung Cancer. Clin. Lung Cancer 2011, 12, 87–93. [Google Scholar] [CrossRef]
- de Sousa, V.M.L.; Carvalho, L. Heterogeneity in Lung Cancer. Pathobiology 2018, 85, 96–107. [Google Scholar] [CrossRef]
- Travis, W.D.; Brambilla, E.; Nicholson, A.G.; Yatabe, Y.; Austin, J.H.M.; Beasley, M.B.; Chirieac, L.R.; Dacic, S.; Duhig, E.; Flieder, D.B.; et al. The 2015 World Health Organization classification of lung tumors: Impact of genetic, clinical and radiologic advances since the 2004 classification. J. Thorac. Oncol. 2015, 10, 1243–1260. [Google Scholar] [CrossRef]
- Travis, W.D.; Brambilla, E.; Riely, G.J. New Pathologic Classification of Lung Cancer: Relevance for Clinical Practice and Clinical Trials. J. Clin. Oncol. 2013, 31, 992–1001. [Google Scholar] [CrossRef]
- Petersen, I. The Morphological and Molecular Diagnosis of Lung Cancer. Dtsch. Aerzteblatt Online 2011, 108, 525–531. [Google Scholar] [CrossRef]
- Travis, W.D.; Brambilla, E.; Noguchi, M.; Nicholson, A.G.; Geisinger, K.R.; Yatabe, Y.; Beer, D.G.; Powell, C.A.; Riely, G.J.; Van Schil, P.E.; et al. International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society International Multidisciplinary Classification of Lung Adenocarcinoma. J. Thorac. Oncol. 2011, 6, 244–285. [Google Scholar] [CrossRef]
- Travis, W.D.; Brambilla, E.; Burke, A.P.; Marx, A.; Nicholson, A.G. Introduction to The 2015 World Health Organization Classification of Tumors of the Lung, Pleura, Thymus, and Heart. J. Thorac. Oncol. 2015, 10, 1240–1242. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer Statistics, 2019. CA Cancer J. Clin. 2019, 69, 7–34. [Google Scholar] [CrossRef]
- Leone, G.M.; Candido, S.; Lavoro, A.; Vivarelli, S.; Gattuso, G.; Calina, D.; Libra, M.; Falzone, L. Clinical Relevance of Targeted Therapy and Immune-Checkpoint Inhibition in Lung Cancer. Pharmaceutics 2023, 15, 1252. [Google Scholar] [CrossRef]
- Shah, A.; Apple, J.; Belli, A.J.; Barcellos, A.; Hansen, E.; Fernandes, L.L.; Zettler, C.M.; Wang, C.-K. Real-World Study of Disease-Free Survival & Patient Characteristics Associated with Disease-Free Survival in Early-Stage Non-Small Cell Lung Cancer: A Retrospective Observational Study. Cancer Treat. Res. Commun. 2023, 36, 100742. [Google Scholar] [CrossRef]
- Jeon, D.S.; Kim, H.C.; Kim, S.H.; Kim, T.-J.; Kim, H.K.; Moon, M.H.; Beck, K.S.; Suh, Y.-G.; Song, C.; Ahn, J.S.; et al. Five-Year Overall Survival and Prognostic Factors in Patients with Lung Cancer: Results from the Korean Association of Lung Cancer Registry (KALC-R) 2015. Cancer Res. Treat. 2023, 55, 103–111. [Google Scholar] [CrossRef]
- Athey, V.L.; Walters, S.J.; Rogers, T.K. Symptoms at Lung Cancer Diagnosis Are Associated with Major Differences in Prognosis. Thorax 2018, 73, 1177–1181. [Google Scholar] [CrossRef]
- Ganti, A.K.; Klein, A.B.; Cotarla, I.; Seal, B.; Chou, E. Update of Incidence, Prevalence, Survival, and Initial Treatment in Patients with Non–Small Cell Lung Cancer in the US. JAMA Oncol. 2021, 7, 1824. [Google Scholar] [CrossRef]
- Asmara, O.D.; Hardavella, G.; Ramella, S.; Petersen, R.H.; Tietzova, I.; Boerma, E.C.; Tenda, E.D.; Bouterfas, A.; Heuvelmans, M.A.; van Geffen, W.H. Stage III NSCLC Treatment Options: Too Many Choices. Breathe 2024, 20, 240047. [Google Scholar] [CrossRef]
- Park, S.; Ock, C.-Y.; Kim, H.; Pereira, S.; Park, S.; Ma, M.; Choi, S.; Kim, S.; Shin, S.; Aum, B.J.; et al. Artificial Intelligence–Powered Spatial Analysis of Tumor-Infiltrating Lymphocytes as Complementary Biomarker for Immune Checkpoint Inhibition in Non–Small-Cell Lung Cancer. J. Clin. Oncol. 2022, 40, 1916–1928. [Google Scholar] [CrossRef]
- Federico, L.; McGrail, D.J.; Bentebibel, S.-E.; Haymaker, C.; Ravelli, A.; Forget, M.-A.; Karpinets, T.; Jiang, P.; Reuben, A.; Negrao, M.V.; et al. Distinct Tumor-Infiltrating Lymphocyte Landscapes Are Associated with Clinical Outcomes in Localized Non-Small-Cell Lung Cancer. Ann. Oncol. 2022, 33, 42–56. [Google Scholar] [CrossRef]
- Kunimasa, K.; Goto, T. Immunosurveillance and Immunoediting of Lung Cancer: Current Perspectives and Challenges. Int. J. Mol. Sci. 2020, 21, 597. [Google Scholar] [CrossRef]
- Qiang, M.; Liu, H.; Yang, L.; Wang, H.; Guo, R. Immunotherapy for Small Cell Lung Cancer: The Current State and Future Trajectories. Discov. Oncol. 2024, 15, 355. [Google Scholar] [CrossRef]
- Desai, A.; Peters, S. Immunotherapy-Based Combinations in Metastatic NSCLC. Cancer Treat. Rev. 2023, 116, 102545. [Google Scholar] [CrossRef]
- Cascone, T.; Fradette, J.; Pradhan, M.; Gibbons, D.L. Tumor Immunology and Immunotherapy of Non-Small-Cell Lung Cancer. Cold Spring Harb. Perspect. Med. 2022, 12, a037895. [Google Scholar] [CrossRef]
- Vaddepally, R.K.; Kharel, P.; Pandey, R.; Garje, R.; Chandra, A.B. Review of Indications of FDA-Approved Immune Checkpoint Inhibitors per NCCN Guidelines with the Level of Evidence. Cancers 2020, 12, 738. [Google Scholar] [CrossRef] [PubMed]
- Fehrenbacher, L.; Spira, A.; Ballinger, M.; Kowanetz, M.; Vansteenkiste, J.; Mazieres, J.; Park, K.; Smith, D.; Artal-Cortes, A.; Lewanski, C.; et al. Atezolizumab versus Docetaxel for Patients with Previously Treated Non-Small-Cell Lung Cancer (POPLAR): A Multicentre, Open-Label, Phase 2 Randomised Controlled Trial. Lancet 2016, 387, 1837–1846, Erratum in Lancet 2017, 389, e5. [Google Scholar] [CrossRef]
- Borghaei, H.; Paz-Ares, L.; Horn, L.; Spigel, D.R.; Steins, M.; Ready, N.E.; Chow, L.Q.; Vokes, E.E.; Felip, E.; Holgado, E.; et al. Nivolumab versus Docetaxel in Advanced Nonsquamous Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2015, 373, 1627–1639. [Google Scholar] [CrossRef]
- Garon, E.B.; Rizvi, N.A.; Hui, R.; Leighl, N.; Balmanoukian, A.S.; Eder, J.P.; Patnaik, A.; Aggarwal, C.; Gubens, M.; Horn, L.; et al. Pembrolizumab for the Treatment of Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2015, 372, 2018–2028. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Qiao, M.; Zhou, C. The Cutting-Edge Progress of Immune-Checkpoint Blockade in Lung Cancer. Cell. Mol. Immunol. 2021, 18, 279–293. [Google Scholar] [CrossRef]
- Dong, Y.; Sun, Q.; Zhang, X. PD-1 and Its Ligands Are Important Immune Checkpoints in Cancer. Oncotarget 2017, 8, 2171–2186. [Google Scholar] [CrossRef]
- Shen, X.; Zhang, L.; Li, J.; Li, Y.; Wang, Y.; Xu, Z.-X. Recent Findings in the Regulation of Programmed Death Ligand 1 Expression. Front. Immunol. 2019, 10, 1337. [Google Scholar] [CrossRef]
- Pabla, S.; Conroy, J.M.; Nesline, M.K.; Glenn, S.T.; Papanicolau-Sengos, A.; Burgher, B.; Hagen, J.; Giamo, V.; Andreas, J.; Lenzo, F.L.; et al. Proliferative Potential and Resistance to Immune Checkpoint Blockade in Lung Cancer Patients. J. Immunother. Cancer 2019, 7, 27. [Google Scholar] [CrossRef]
- Mariniello, A.; Borgeaud, M.; Weiner, M.; Frisone, D.; Kim, F.; Addeo, A. Primary and Acquired Resistance to Immunotherapy with Checkpoint Inhibitors in NSCLC: From Bedside to Bench and Back. BioDrugs 2025, 39, 215–235. [Google Scholar] [CrossRef]
- Arulraj, T.; Wang, H.; Deshpande, A.; Varadhan, R.; Emens, L.A.; Jaffee, E.M.; Fertig, E.J.; Santa-Maria, C.A.; Popel, A.S. Virtual Patient Analysis Identifies Strategies to Improve the Performance of Predictive Biomarkers for PD-1 Blockade. Proc. Natl. Acad. Sci. USA 2024, 121, e2410911121. [Google Scholar] [CrossRef]
- Sha, D.; Jin, Z.; Budczies, J.; Kluck, K.; Stenzinger, A.; Sinicrope, F.A. Tumor Mutational Burden as a Predictive Biomarker in Solid Tumors. Cancer Discov. 2020, 10, 1808–1825. [Google Scholar] [CrossRef] [PubMed]
- Vryza, P.; Fischer, T.; Mistakidi, E.; Zaravinos, A. Tumor Mutation Burden in the Prognosis and Response of Lung Cancer Patients to Immune-Checkpoint Inhibition Therapies. Transl. Oncol. 2023, 38, 101788. [Google Scholar] [CrossRef]
- Ben Dori, S.; Aizic, A.; Sabo, E.; Hershkovitz, D. Spatial Heterogeneity of PD-L1 Expression and the Risk for Misclassification of PD-L1 Immunohistochemistry in Non-Small Cell Lung Cancer. Lung Cancer 2020, 147, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.Y.; Kim, T.-E.; Park, C.K.; Yoon, H.-K.; Sa, Y.J.; Kim, H.R.; Woo, I.S.; Kim, T.-J. Comprehensive Comparison of 22C3 and SP263 PD-L1 Expression in Non-Small-Cell Lung Cancer Using Routine Clinical and Conditioned Archives. Cancers 2022, 14, 3138. [Google Scholar] [CrossRef]
- Ahmed, J.; Das, B.; Shin, S.; Chen, A. Challenges and Future Directions in the Management of Tumor Mutational Burden-High (TMB-H) Advanced Solid Malignancies. Cancers 2023, 15, 5841. [Google Scholar] [CrossRef]
- Zgura, A.; Chipuc, S.; Bacalbasa, N.; Haineala, B.; Rodica, A.; Sebastian, V. Evaluating Tumour Mutational Burden as a Key Biomarker in Personalized Cancer Immunotherapy: A Pan-Cancer Systematic Review. Cancers 2025, 17, 480. [Google Scholar] [CrossRef] [PubMed]
- McGrail, D.J.; Pilié, P.G.; Rashid, N.U.; Voorwerk, L.; Slagter, M.; Kok, M.; Jonasch, E.; Khasraw, M.; Heimberger, A.B.; Lim, B.; et al. High Tumor Mutation Burden Fails to Predict Immune Checkpoint Blockade Response across All Cancer Types. Ann. Oncol. 2021, 32, 661–672. [Google Scholar] [CrossRef]
- Thagaard, J.; Broeckx, G.; Page, D.B.; Jahangir, C.A.; Verbandt, S.; Kos, Z.; Gupta, R.; Khiroya, R.; Abduljabbar, K.; Acosta Haab, G.; et al. Pitfalls in Machine Learning-based Assessment of Tumor-infiltrating Lymphocytes in Breast Cancer: A Report of the International Immuno-Oncology Biomarker Working Group on Breast Cancer. J. Pathol. 2023, 260, 498–513. [Google Scholar] [CrossRef] [PubMed]
- Thommen, D.S.; Schumacher, T.N. T Cell Dysfunction in Cancer. Cancer Cell 2018, 33, 547–562. [Google Scholar] [CrossRef] [PubMed]
- Brahmer, J.; Reckamp, K.L.; Baas, P.; Crinò, L.; Eberhardt, W.E.E.; Poddubskaya, E.; Antonia, S.; Pluzanski, A.; Vokes, E.E.; Holgado, E.; et al. Nivolumab versus Docetaxel in Advanced Squamous-Cell Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2015, 373, 123–135. [Google Scholar] [CrossRef] [PubMed]
- Sul, J.; Blumenthal, G.M.; Jiang, X.; He, K.; Keegan, P.; Pazdur, R. FDA Approval Summary: Pembrolizumab for the Treatment of Patients with Metastatic Non-Small Cell Lung Cancer Whose Tumors Express Programmed Death-Ligand 1. Oncologist 2016, 21, 643–650. [Google Scholar] [CrossRef]
- Reck, M.; Rodríguez-Abreu, D.; Robinson, A.G.; Hui, R.; Csőszi, T.; Fülöp, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; et al. Pembrolizumab versus Chemotherapy for PD-L1–Positive Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2016, 375, 1823–1833. [Google Scholar] [CrossRef]
- Rittmeyer, A.; Barlesi, F.; Waterkamp, D.; Park, K.; Ciardiello, F.; von Pawel, J.; Gadgeel, S.M.; Hida, T.; Kowalski, D.M.; Dols, M.C.; et al. Atezolizumab versus Docetaxel in Patients with Previously Treated Non-Small-Cell Lung Cancer (OAK): A Phase 3, Open-Label, Multicentre Randomised Controlled Trial. Lancet 2017, 389, 255–265. [Google Scholar] [CrossRef]
- Antonia, S.J.; Villegas, A.; Daniel, D.; Vicente, D.; Murakami, S.; Hui, R.; Kurata, T.; Chiappori, A.; Lee, K.H.; de Wit, M.; et al. Overall Survival with Durvalumab After Chemoradiotherapy in Stage III NSCLC. N. Engl. J. Med. 2018, 379, 2342–2350. [Google Scholar] [CrossRef]
- Faivre-Finn, C.; Vicente, D.; Kurata, T.; Planchard, D.; Paz-Ares, L.; Vansteenkiste, J.F.; Spigel, D.R.; Garassino, M.C.; Reck, M.; Senan, S.; et al. Four-Year Survival with Durvalumab After Chemoradiotherapy in Stage III NSCLC—An Update from the PACIFIC Trial. J. Thorac. Oncol. 2021, 16, 860–867. [Google Scholar] [CrossRef]
- Johnson, M.L.; Cho, B.C.; Luft, A.; Alatorre-Alexander, J.; Geater, S.L.; Laktionov, K.; Kim, S.-W.; Ursol, G.; Hussein, M.; Lim, F.L.; et al. Durvalumab with or Without Tremelimumab in Combination with Chemotherapy as First-Line Therapy for Metastatic Non–Small-Cell Lung Cancer: The Phase III POSEIDON Study. J. Clin. Oncol. 2023, 41, 1213–1227. [Google Scholar] [CrossRef]
- Sezer, A.; Kilickap, S.; Gümüş, M.; Bondarenko, I.; Özgüroğlu, M.; Gogishvili, M.; Turk, H.M.; Cicin, I.; Bentsion, D.; Gladkov, O.; et al. Cemiplimab Monotherapy for First-Line Treatment of Advanced Non-Small-Cell Lung Cancer with PD-L1 of at Least 50%: A Multicentre, Open-Label, Global, Phase 3, Randomised, Controlled Trial. Lancet 2021, 397, 592–604. [Google Scholar] [CrossRef]
- Özgüroğlu, M.; Kilickap, S.; Sezer, A.; Gümüş, M.; Bondarenko, I.; Gogishvili, M.; Nechaeva, M.; Schenker, M.; Cicin, I.; Ho, G.F.; et al. First-Line Cemiplimab Monotherapy and Continued Cemiplimab beyond Progression plus Chemotherapy for Advanced Non-Small-Cell Lung Cancer with PD-L1 50% or More (EMPOWER-Lung 1): 35-Month Follow-up from a Mutlicentre, Open-Label, Randomised, Phase 3 Trial. Lancet Oncol. 2023, 24, 989–1001, Erratum in Lancet Oncol. 2023, 24, e405. [Google Scholar] [CrossRef]
- Gogishvili, M.; Melkadze, T.; Makharadze, T.; Giorgadze, D.; Dvorkin, M.; Penkov, K.; Laktionov, K.; Nemsadze, G.; Nechaeva, M.; Rozhkova, I.; et al. Cemiplimab plus Chemotherapy versus Chemotherapy Alone in Non-Small Cell Lung Cancer: A Randomized, Controlled, Double-Blind Phase 3 Trial. Nat. Med. 2022, 28, 2374–2380. [Google Scholar] [CrossRef]
- Passaro, A.; Brahmer, J.; Antonia, S.; Mok, T.; Peters, S. Managing Resistance to Immune Checkpoint Inhibitors in Lung Cancer: Treatment and Novel Strategies. J. Clin. Oncol. 2022, 40, 598–610. [Google Scholar] [CrossRef]
- Wei, K.; Zhang, H.; Yang, S.; Cui, Y.; Zhang, B.; Liu, J.; Tang, L.; Tan, Y.; Liu, S.; Chen, S.; et al. Chemo-Drugs in Cell Microparticles Reset Antitumor Activity of Macrophages by Activating Lysosomal P450 and Nuclear HnRNPA2B1. Signal Transduct. Target. Ther. 2023, 8, 22. [Google Scholar] [CrossRef]
- Yatabe, Y. Molecular Pathology of Non-small Cell Carcinoma. Histopathology 2024, 84, 50–66. [Google Scholar] [CrossRef] [PubMed]
- Hu, A.; Sun, L.; Lin, H.; Liao, Y.; Yang, H.; Mao, Y. Harnessing Innate Immune Pathways for Therapeutic Advancement in Cancer. Signal Transduct. Target. Ther. 2024, 9, 68. [Google Scholar] [CrossRef] [PubMed]
- Davar, D.; Eroglu, Z.; Milhem, M.; Becerra, C.; Gutierrez, M.; Ribas, A.; Di Pace, B.; Wang, T.; Zhang, H.; Ghosh, S.; et al. 596 AMBER, Part 2B: A Phase 1 Study of Cobolimab plus Dostarlimab in Patients with Advanced/Metastatic Non-Small Cell Lung Cancer (NSCLC) Previously Treated with Anti-PD(L)-1 Therapy. In Proceedings of the Regular and Young Investigator Award Abstracts, San Diego, CA, USA, 1–5 November 2023; BMJ Publishing Group Ltd.: London, UK, 2023; p. A678. [Google Scholar]
- Reck, M.; Luft, A.; Szczesna, A.; Havel, L.; Kim, S.-W.; Akerley, W.; Pietanza, M.C.; Wu, Y.; Zielinski, C.; Thomas, M.; et al. Phase III Randomized Trial of Ipilimumab Plus Etoposide and Platinum Versus Placebo Plus Etoposide and Platinum in Extensive-Stage Small-Cell Lung Cancer. J. Clin. Oncol. 2016, 34, 3740–3748. [Google Scholar] [CrossRef]
- Paz-Ares, L.; Ciuleanu, T.-E.; Cobo, M.; Schenker, M.; Zurawski, B.; Menezes, J.; Richardet, E.; Bennouna, J.; Felip, E.; Juan-Vidal, O.; et al. First-Line Nivolumab plus Ipilimumab Combined with Two Cycles of Chemotherapy in Patients with Non-Small-Cell Lung Cancer (CheckMate 9LA): An International, Randomised, Open-Label, Phase 3 Trial. Lancet Oncol. 2021, 22, 198–211, Erratum in Lancet Oncol. 2021, 22, e92. [Google Scholar] [CrossRef]
- Carbone, D.P.; Ciuleanu, T.-E.; Cobo, M.; Schenker, M.; Zurawski, B.; Menezes, J.; Richardet, E.; Felip, E.; Cheng, Y.; Juan-Vidal, O.; et al. Nivolumab plus Ipilimumab with Chemotherapy as First-Line Treatment of Patients with Metastatic Non-Small-Cell Lung Cancer: Final, 6-Year Outcomes from CheckMate 9LA. ESMO Open 2025, 10, 105123. [Google Scholar] [CrossRef] [PubMed]
- Hellmann, M.D.; Paz-Ares, L.; Bernabe Caro, R.; Zurawski, B.; Kim, S.-W.; Carcereny Costa, E.; Park, K.; Alexandru, A.; Lupinacci, L.; de la Mora Jimenez, E.; et al. Nivolumab plus Ipilimumab in Advanced Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2019, 381, 2020–2031. [Google Scholar] [CrossRef]
- Cho, B.C.; Abreu, D.R.; Hussein, M.; Cobo, M.; Patel, A.J.; Secen, N.; Lee, K.H.; Massuti, B.; Hiret, S.; Yang, J.C.H.; et al. Tiragolumab plus Atezolizumab versus Placebo plus Atezolizumab as a First-Line Treatment for PD-L1-Selected Non-Small-Cell Lung Cancer (CITYSCAPE): Primary and Follow-up Analyses of a Randomised, Double-Blind, Phase 2 Study. Lancet Oncol. 2022, 23, 781–792. [Google Scholar] [CrossRef]
- Xiong, A.; Wang, L.; Chen, J.; Wu, L.; Liu, B.; Yao, J.; Zhong, H.; Li, J.; Cheng, Y.; Sun, Y.; et al. Ivonescimab versus Pembrolizumab for PD-L1-Positive Non-Small Cell Lung Cancer (HARMONi-2): A Randomised, Double-Blind, Phase 3 Study in China. Lancet 2025, 405, 839–849, Erratum in Lancet 2025, 406, 2062. [Google Scholar] [CrossRef]
- Nishio, M.; Barlesi, F.; West, H.; Ball, S.; Bordoni, R.; Cobo, M.; Longeras, P.D.; Goldschmidt, J.; Novello, S.; Orlandi, F.; et al. Atezolizumab Plus Chemotherapy for First-Line Treatment of Nonsquamous NSCLC: Results from the Randomized Phase 3 IMpower132 Trial. J. Thorac. Oncol. 2021, 16, 653–664. [Google Scholar] [CrossRef]
- Gandhi, L.; Rodríguez-Abreu, D.; Gadgeel, S.; Esteban, E.; Felip, E.; De Angelis, F.; Domine, M.; Clingan, P.; Hochmair, M.J.; Powell, S.F.; et al. Pembrolizumab plus Chemotherapy in Metastatic Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2018, 378, 2078–2092. [Google Scholar] [CrossRef] [PubMed]
- Paz-Ares, L.; Luft, A.; Vicente, D.; Tafreshi, A.; Gümüş, M.; Mazières, J.; Hermes, B.; Çay Şenler, F.; Csőszi, T.; Fülöp, A.; et al. Pembrolizumab plus Chemotherapy for Squamous Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2018, 379, 2040–2051. [Google Scholar] [CrossRef]
- Schuler, M.; Cuppens, K.; Plönes, T.; Wiesweg, M.; Du Pont, B.; Hegedus, B.; Köster, J.; Mairinger, F.; Darwiche, K.; Paschen, A.; et al. Neoadjuvant Nivolumab with or without Relatlimab in Resectable Non-Small-Cell Lung Cancer: A Randomized Phase 2 Trial. Nat. Med. 2024, 30, 1602–1611. [Google Scholar] [CrossRef] [PubMed]
- Long, G.V.; Lipson, E.J.; Hodi, F.S.; Ascierto, P.A.; Larkin, J.; Lao, C.; Grob, J.-J.; Ejzykowicz, F.; Moshyk, A.; Garcia-Horton, V.; et al. First-Line Nivolumab Plus Relatlimab Versus Nivolumab Plus Ipilimumab in Advanced Melanoma: An Indirect Treatment Comparison Using RELATIVITY-047 and CheckMate 067 Trial Data. J. Clin. Oncol. 2024, 42, 3926–3934. [Google Scholar] [CrossRef] [PubMed]
- Peters, S.; Herbst, R.; Horinouchi, H.; Paz-Ares, L.; Johnson, M.; Solomon, B.; Gumus, M.; Erman, M.; Bondarenko, I.; Kim, D.-W.; et al. Abstract CT051: SKYSCRAPER-01: A Phase III, Randomized Trial of Tiragolumab (Tira) + Atezolizumab (Atezo) versus Placebo (Pbo) + Atezo in Patients (Pts) with Previously-Untreated PD-L1-High, Locally Advanced Unresectable/Metastatic NSCLC. Cancer Res. 2025, 85, CT051. [Google Scholar] [CrossRef]
- Hodi, F.S.; O’Day, S.J.; McDermott, D.F.; Weber, R.W.; Sosman, J.A.; Haanen, J.B.; Gonzalez, R.; Robert, C.; Schadendorf, D.; Hassel, J.C.; et al. Improved Survival with Ipilimumab in Patients with Metastatic Melanoma. N. Engl. J. Med. 2010, 363, 711–723. [Google Scholar] [CrossRef]
- Ibarrondo, F.J.; Comin-Anduix, B.; Escuin-Ordinas, H. Tremelimumab: Research and Clinical Development. Onco. Targets. Ther. 2016, 9, 1767. [Google Scholar] [CrossRef]
- Buchbinder, E.I.; Desai, A. CTLA-4 and PD-1 Pathways: Similarities, Differences, and Implications of Their Inhibition. Am. J. Clin. Oncol. 2016, 39, 98–106. [Google Scholar] [CrossRef]
- Lynch, T.J.; Bondarenko, I.; Luft, A.; Serwatowski, P.; Barlesi, F.; Chacko, R.; Sebastian, M.; Neal, J.; Lu, H.; Cuillerot, J.-M.; et al. Ipilimumab in Combination with Paclitaxel and Carboplatin As First-Line Treatment in Stage IIIB/IV Non–Small-Cell Lung Cancer: Results from a Randomized, Double-Blind, Multicenter Phase II Study. J. Clin. Oncol. 2012, 30, 2046–2054. [Google Scholar] [CrossRef]
- Lauriola, A.; Davalli, P.; Marverti, G.; Santi, S.; Caporali, A.; D’Arca, D. Targeting the Interplay of Independent Cellular Pathways and Immunity: A Challenge in Cancer Immunotherapy. Cancers 2023, 15, 3009. [Google Scholar] [CrossRef]
- Leisha, A.E. Chemotherapy and Tumor Immunity: An Unexpected Collaboration. Front. Biosci. 2008, 13, 249. [Google Scholar] [CrossRef]
- Hendriks, L.E.L.; Menis, J.; Remon, J. First-Line Immune-Chemotherapy Combination for Squamous NSCLC Is Already a Reality. Transl. Lung Cancer Res. 2020, 9, 819–823. [Google Scholar] [CrossRef]
- Zhang, D.; Zhao, J.; Zhang, Y.; Jiang, H.; Liu, D. Revisiting Immune Checkpoint Inhibitors: New Strategies to Enhance Efficacy and Reduce Toxicity. Front. Immunol. 2024, 15, 1490129. [Google Scholar] [CrossRef]
- Vellanki, P.J.; Mulkey, F.; Jaigirdar, A.A.; Rodriguez, L.; Wang, Y.; Xu, Y.; Zhao, H.; Liu, J.; Howe, G.; Wang, J.; et al. FDA Approval Summary: Nivolumab with Ipilimumab and Chemotherapy for Metastatic Non–Small Cell Lung Cancer, A Collaborative Project Orbis Review. Clin. Cancer Res. 2021, 27, 3522–3527. [Google Scholar] [CrossRef] [PubMed]
- Brahmer, J.R.; Lee, J.-S.; Ciuleanu, T.-E.; Bernabe Caro, R.; Nishio, M.; Urban, L.; Audigier-Valette, C.; Lupinacci, L.; Sangha, R.; Pluzanski, A.; et al. Five-Year Survival Outcomes with Nivolumab Plus Ipilimumab Versus Chemotherapy as First-Line Treatment for Metastatic Non–Small-Cell Lung Cancer in CheckMate 227. J. Clin. Oncol. 2023, 41, 1200–1212. [Google Scholar] [CrossRef] [PubMed]
- Peters, S.; Paz-Ares, L.G.; Reck, M.; Carbone, D.P.; Brahmer, J.R.; Borghaei, H.; Lu, S.; O’Byrne, K.J.; John, T.; Ciuleanu, T.-E.; et al. Long-Term Survival Outcomes with First-Line Nivolumab Plus Ipilimumab–Based Treatment in Patients with Metastatic NSCLC and Tumor Programmed Death-Ligand 1 Lower Than 1%: A Pooled Analysis. J. Thorac. Oncol. 2025, 20, 94–108. [Google Scholar] [CrossRef]
- Gray, J.E.; Villegas, A.; Daniel, D.; Vicente, D.; Murakami, S.; Hui, R.; Kurata, T.; Chiappori, A.; Lee, K.H.; Cho, B.C.; et al. Three-Year Overall Survival with Durvalumab after Chemoradiotherapy in Stage III NSCLC—Update from PACIFIC. J. Thorac. Oncol. 2020, 15, 288–293. [Google Scholar] [CrossRef] [PubMed]
- Barlesi, F.; Vansteenkiste, J.; Spigel, D.; Ishii, H.; Garassino, M.; de Marinis, F.; Özgüroğlu, M.; Szczesna, A.; Polychronis, A.; Uslu, R.; et al. Avelumab versus Docetaxel in Patients with Platinum-Treated Advanced Non-Small-Cell Lung Cancer (JAVELIN Lung 200): An Open-Label, Randomised, Phase 3 Study. Lancet Oncol. 2018, 19, 1468–1479, Erratum in Lancet Oncol. 2018, 19, e581. [Google Scholar] [CrossRef]
- Fares, C.M.; Van Allen, E.M.; Drake, C.G.; Allison, J.P.; Hu-Lieskovan, S. Mechanisms of Resistance to Immune Checkpoint Blockade: Why Does Checkpoint Inhibitor Immunotherapy Not Work for All Patients? Am. Soc. Clin. Oncol. Educ. B. 2019, 39, 147–164. [Google Scholar] [CrossRef]
- Nuti, M.; Zizzari, I.G.; Botticelli, A.; Rughetti, A.; Marchetti, P. The Ambitious Role of Anti Angiogenesis Molecules: Turning a Cold Tumor into a Hot One. Cancer Treat. Rev. 2018, 70, 41–46. [Google Scholar] [CrossRef]
- Socinski, M.A.; Jotte, R.M.; Cappuzzo, F.; Orlandi, F.; Stroyakovskiy, D.; Nogami, N.; Rodríguez-Abreu, D.; Moro-Sibilot, D.; Thomas, C.A.; Barlesi, F.; et al. Atezolizumab for First-Line Treatment of Metastatic Nonsquamous NSCLC. N. Engl. J. Med. 2018, 378, 2288–2301. [Google Scholar] [CrossRef]
- Bahnassy, A.A.; Ismail, H.; Mohanad, M.; El-Bastawisy, A.; Yousef, H.F. The Prognostic Role of PD-1, PD-L1, ALK, and ROS1 Proteins Expression in Non-Small Cell Lung Carcinoma Patients from Egypt. J. Egypt. Natl. Canc. Inst. 2022, 34, 23. [Google Scholar] [CrossRef]
- Rihawi, K.; Gelsomino, F.; Sperandi, F.; Melotti, B.; Fiorentino, M.; Casolari, L.; Ardizzoni, A. Pembrolizumab in the Treatment of Metastatic Non-Small Cell Lung Cancer: A Review of Current Evidence. Ther. Adv. Respir. Dis. 2017, 11, 353–373. [Google Scholar] [CrossRef]
- Li, X.; Wang, W.; Xu, C.; Yuan, Q. Efficacy and Safety of Immunotherapy Combined with Anlotinib as FirstLine Treatment in Older NSCLC Patients with PD-L1 Expression < 50%. Curr. Cancer Drug Targets 2025, 25, 818–828. [Google Scholar] [CrossRef] [PubMed]
- Pandey, R.; Shukla, S.; Husain, N.; Islam, M.; Hadi, R.; Kant Tripathi, S.; Singhal, A. Correlation Between Programmed Death Ligand-1(PD-L1) Expression and Driver Gene Mutations in Non-Small Cell Lung Carcinoma- Adenocarcinoma Phenotype. Asian Pac. J. Cancer Prev. 2022, 23, 131–142. [Google Scholar] [CrossRef] [PubMed]
- Gang, X.; Yan, J.; Li, X.; Shi, S.; Xu, L.; Liu, R.; Cai, L.; Li, H.; Zhao, M. Immune Checkpoint Inhibitors Rechallenge in Non-Small Cell Lung Cancer: Current Evidence and Future Directions. Cancer Lett. 2024, 604, 217241. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Wei, X.; Wang, Z.; Zhu, Y.; Zhao, W.; Dong, Y. Primary and Acquired Resistance against Immune Check Inhibitors in Non-Small Cell Lung Cancer. Cancers 2022, 14, 3294. [Google Scholar] [CrossRef]
- Lee, Y.J.; Lee, J.B.; Ha, S.-J.; Kim, H.R. Clinical Perspectives to Overcome Acquired Resistance to Anti–Programmed Death-1 and Anti–Programmed Death Ligand-1 Therapy in Non-Small Cell Lung Cancer. Mol. Cells 2021, 44, 363–373. [Google Scholar] [CrossRef]
- Lombardo, S.; Bramanti, A.; Ciurleo, R.; Basile, M.; Pennisi, M.; Bella, R.; Mangano, K.; Bramanti, P.; Nicoletti, F.; Fagone, P. Profiling of Inhibitory Immune Checkpoints in Glioblastoma: Potential Pathogenetic Players. Oncol. Lett. 2020, 20, 332. [Google Scholar] [CrossRef]
- Leone, G.M.; Mangano, K.; Caponnetto, S.; Fagone, P.; Nicoletti, F. Identification of Poliovirus Receptor-like 3 Protein as a Prognostic Factor in Triple-Negative Breast Cancer. Cells 2024, 13, 1299. [Google Scholar] [CrossRef]
- Patwekar, M.; Sehar, N.; Patwekar, F.; Medikeri, A.; Ali, S.; Aldossri, R.M.; Rehman, M.U. Novel Immune Checkpoint Targets: A Promising Therapy for Cancer Treatments. Int. Immunopharmacol. 2024, 126, 111186. [Google Scholar] [CrossRef] [PubMed]
- Borgeaud, M.; Sandoval, J.; Obeid, M.; Banna, G.; Michielin, O.; Addeo, A.; Friedlaender, A. Novel Targets for Immune-Checkpoint Inhibition in Cancer. Cancer Treat. Rev. 2023, 120, 102614. [Google Scholar] [CrossRef]
- Huang, Q.; Li, Y.; Huang, Y.; Wu, J.; Bao, W.; Xue, C.; Li, X.; Dong, S.; Dong, Z.; Hu, S. Advances in Molecular Pathology and Therapy of Non-Small Cell Lung Cancer. Signal Transduct. Target. Ther. 2025, 10, 186. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Du, Q.; Jin, J.; Wei, Y.; Lu, Y.; Li, Q. LAG3 and Its Emerging Role in Cancer Immunotherapy. Clin. Transl. Med. 2021, 11, e365. [Google Scholar] [CrossRef]
- Shi, A.-P.; Tang, X.-Y.; Xiong, Y.-L.; Zheng, K.-F.; Liu, Y.-J.; Shi, X.-G.; Lv, Y.; Jiang, T.; Ma, N.; Zhao, J.-B. Immune Checkpoint LAG3 and Its Ligand FGL1 in Cancer. Front. Immunol. 2022, 12, 785091. [Google Scholar] [CrossRef]
- Qi, Y.; Chen, L.; Liu, Q.; Kong, X.; Fang, Y.; Wang, J. Research Progress Concerning Dual Blockade of Lymphocyte-Activation Gene 3 and Programmed Death-1/Programmed Death-1 Ligand-1 Blockade in Cancer Immunotherapy: Preclinical and Clinical Evidence of This Potentially More Effective Immunotherapy Strategy. Front. Immunol. 2021, 11, 563258. [Google Scholar] [CrossRef]
- Tawbi, H.A.; Schadendorf, D.; Lipson, E.J.; Ascierto, P.A.; Matamala, L.; Castillo Gutiérrez, E.; Rutkowski, P.; Gogas, H.J.; Lao, C.D.; De Menezes, J.J.; et al. Relatlimab and Nivolumab versus Nivolumab in Untreated Advanced Melanoma. N. Engl. J. Med. 2022, 386, 24–34. [Google Scholar] [CrossRef] [PubMed]
- Krebs, M.G.; Forster, M.; Majem, M.; Peguero, J.; Iams, W.; Clay, T.; Roxburgh, P.; Doger, B.; Bajaj, P.; Barba, A.; et al. Eftilagimod Alpha (a Soluble LAG-3 Protein) Combined with Pembrolizumab in Second-Line Metastatic NSCLC Refractory to Anti–Programmed Cell Death Protein 1/Programmed Death-Ligand 1-Based Therapy: Final Results from a Phase 2 Study. JTO Clin. Res. Rep. 2024, 5, 100725. [Google Scholar] [CrossRef]
- Lin, C.-C.; Garralda, E.; Schöffski, P.; Hong, D.S.; Siu, L.L.; Martin, M.; Maur, M.; Hui, R.; Soo, R.A.; Chiu, J.; et al. A Phase 2, Multicenter, Open-Label Study of Anti-LAG-3 Ieramilimab in Combination with Anti-PD-1 Spartalizumab in Patients with Advanced Solid Malignancies. Oncoimmunology 2024, 13, 2290787. [Google Scholar] [CrossRef]
- Zeidan, A.M.; Komrokji, R.S.; Brunner, A.M. TIM-3 Pathway Dysregulation and Targeting in Cancer. Expert Rev. Anticancer Ther. 2021, 21, 523–534. [Google Scholar] [CrossRef]
- Tang, R.; Rangachari, M.; Kuchroo, V.K. Tim-3: A Co-Receptor with Diverse Roles in T Cell Exhaustion and Tolerance. Semin. Immunol. 2019, 42, 101302. [Google Scholar] [CrossRef] [PubMed]
- Sabatos, C.A.; Chakravarti, S.; Cha, E.; Schubart, A.; Sánchez-Fueyo, A.; Zheng, X.X.; Coyle, A.J.; Strom, T.B.; Freeman, G.J.; Kuchroo, V.K. Interaction of Tim-3 and Tim-3 Ligand Regulates T Helper Type 1 Responses and Induction of Peripheral Tolerance. Nat. Immunol. 2003, 4, 1102–1110. [Google Scholar] [CrossRef] [PubMed]
- Curigliano, G.; Gelderblom, H.; Mach, N.; Doi, T.; Tai, D.; Forde, P.M.; Sarantopoulos, J.; Bedard, P.L.; Lin, C.-C.; Hodi, F.S.; et al. Phase I/Ib Clinical Trial of Sabatolimab, an Anti–TIM-3 Antibody, Alone and in Combination with Spartalizumab, an Anti–PD-1 Antibody, in Advanced Solid Tumors. Clin. Cancer Res. 2021, 27, 3620–3629, Erratum in Clin Cancer Res. 2024, 30, 3957. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-C.; Curigliano, G.; Santoro, A.; Kim, D.-W.; Tai, D.; Hodi, F.S.; Wilgenhof, S.; Doi, T.; Sabatos-Peyton, C.; Szpakowski, S.; et al. Sabatolimab in Combination with Spartalizumab in Patients with Non-Small Cell Lung Cancer or Melanoma Who Received Prior Treatment with Anti-PD-1/PD-L1 Therapy: A Phase 2 Multicentre Study. BMJ Open 2024, 14, e079132. [Google Scholar] [CrossRef]
- Yu, X.; Harden, K.; Gonzalez, L.C.; Francesco, M.; Chiang, E.; Irving, B.; Tom, I.; Ivelja, S.; Refino, C.J.; Clark, H.; et al. The Surface Protein TIGIT Suppresses T Cell Activation by Promoting the Generation of Mature Immunoregulatory Dendritic Cells. Nat. Immunol. 2009, 10, 48–57. [Google Scholar] [CrossRef]
- Stanietsky, N.; Rovis, T.L.; Glasner, A.; Seidel, E.; Tsukerman, P.; Yamin, R.; Enk, J.; Jonjic, S.; Mandelboim, O. Mouse TIGIT Inhibits NK-cell Cytotoxicity upon Interaction with PVR. Eur. J. Immunol. 2013, 43, 2138–2150. [Google Scholar] [CrossRef]
- Yeo, J.; Ko, M.; Lee, D.-H.; Park, Y.; Jin, H. TIGIT/CD226 Axis Regulates Anti-Tumor Immunity. Pharmaceuticals 2021, 14, 200. [Google Scholar] [CrossRef]
- Qian, L.; Wu, L.; Miao, X.; Xu, J.; Zhou, Y. The Role of TIGIT-CD226-PVR Axis in Mediating T Cell Exhaustion and Apoptosis in NSCLC. Apoptosis 2025, 30, 784–804. [Google Scholar] [CrossRef]
- Chu, X.; Tian, W.; Wang, Z.; Zhang, J.; Zhou, R. Co-Inhibition of TIGIT and PD-1/PD-L1 in Cancer Immunotherapy: Mechanisms and Clinical Trials. Mol. Cancer 2023, 22, 93, Erratum in Mol. Cancer 2023, 22, 101. [Google Scholar] [CrossRef]
- Banta, K.L.; Xu, X.; Chitre, A.S.; Au-Yeung, A.; Takahashi, C.; O’Gorman, W.E.; Wu, T.D.; Mittman, S.; Cubas, R.; Comps-Agrar, L.; et al. Mechanistic Convergence of the TIGIT and PD-1 Inhibitory Pathways Necessitates Co-Blockade to Optimize Anti-Tumor CD8+ T Cell Responses. Immunity 2022, 55, 512–526.e9. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Liu, X.; Gu, Z.; Jiang, Z.; Zhao, S.; Song, Y.; Yu, J. Targeting TIGIT for Cancer Immunotherapy: Recent Advances and Future Directions. Biomark. Res. 2024, 12, 7. [Google Scholar] [CrossRef]
- Socinski, M.A.; Rodriguez Abreu, D.; Lee, D.H.; Cappuzzo, F.; Nishio, M.; Lovly, C.M.; Ozyilkan, O.; Li, Q.; Johnson, M.L.; Garon, E.B.; et al. LBA2 SKYSCRAPER-06: Efficacy and Safety of Tiragolumab plus Atezolizumab plus Chemotherapy (Tira + Atezo + Chemo) vs. Pembrolizumab plus Chemotherapy (Pembro + Chemo) in Patients (Pts) with Advanced Non-Squamous Non-Small Cell Lung Cancer (NSq NSCLC). Immuno-Oncol. Technol. 2024, 24, 101025. [Google Scholar] [CrossRef]
- Khalaji, A.; Yancheshmeh, F.B.; Farham, F.; Khorram, A.; Sheshbolouki, S.; Zokaei, M.; Vatankhah, F.; Soleymani-Goloujeh, M. Don’t Eat Me/Eat Me Signals as a Novel Strategy in Cancer Immunotherapy. Heliyon 2023, 9, e20507. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Guo, X.; Ma, W. Opportunities and Challenges of CD47-Targeted Therapy in Cancer Immunotherapy. Oncol. Res. 2024, 32, 49–60. [Google Scholar] [CrossRef] [PubMed]
- Subbiah, V.; Vaishampayan, U.N.; Puri, S.; Kummar, S.; Perez, J.M.; Italiano, A.; Shao, J.; Bathia, R.; Sills, A.; Patel, S.P. A Phase 2 Multi-Arm Study of Magrolimab in Combination with Docetaxel in Patients with Locally Advanced or Metastatic Solid Tumors: ELEVATE Lung and UC. J. Clin. Oncol. 2023, 41, TPS9142. [Google Scholar] [CrossRef]
- Patel, S.P.; Alonso-Gordoa, T.; Banerjee, S.; Wang, D.; Naidoo, J.; Standifer, N.E.; Palmer, D.C.; Cheng, L.-Y.; Kourtesis, P.; Ascierto, M.L.; et al. Phase 1/2 Study of Monalizumab plus Durvalumab in Patients with Advanced Solid Tumors. J. Immunother. Cancer 2024, 12, e007340. [Google Scholar] [CrossRef]
- Garcia-Lorenzo, E.; Moreno, V. Targeting the Adenosine 2A Receptor in Non-Small Cell Lung Cancer: Shooting with Blank Bullets? Transl. Lung Cancer Res. 2023, 12, 653–656. [Google Scholar] [CrossRef]
- Van Kerkhove, O.; Verfaillie, S.; Maes, B.; Cuppens, K. The Adenosinergic Pathway in Non-Small Cell Lung Cancer. Cancers 2024, 16, 3142. [Google Scholar] [CrossRef] [PubMed]
- Sung, M.; Zer, A.; Walia, P.; Khoja, L.; Maganti, M.; Labbe, C.; Shepherd, F.A.; Bradbury, P.A.; Liu, G.; Leighl, N.B. Correlation of Immune-Related Adverse Events and Response from Immune Checkpoint Inhibitors in Patients with Advanced Non-Small Cell Lung Cancer. J. Thorac. Dis. 2020, 12, 2706–2712. [Google Scholar] [CrossRef]
- Blum, S.M.; Rouhani, S.J.; Sullivan, R.J. Effects of Immune-related Adverse Events (irAEs) and Their Treatment on Antitumor Immune Responses. Immunol. Rev. 2023, 318, 167–178. [Google Scholar] [CrossRef]
- Daniello, L.; Elshiaty, M.; Bozorgmehr, F.; Kuon, J.; Kazdal, D.; Schindler, H.; Shah, R.; Volckmar, A.-L.; Lusky, F.; Diekmann, L.; et al. Therapeutic and Prognostic Implications of Immune-Related Adverse Events in Advanced Non-Small-Cell Lung Cancer. Front. Oncol. 2021, 11, 703893. [Google Scholar] [CrossRef]
- Vaddepally, R.; Doddamani, R.; Sodavarapu, S.; Madam, N.R.; Katkar, R.; Kutadi, A.P.; Mathew, N.; Garje, R.; Chandra, A.B. Review of Immune-Related Adverse Events (IrAEs) in Non-Small-Cell Lung Cancer (NSCLC)—Their Incidence, Management, Multiorgan IrAEs, and Rechallenge. Biomedicines 2022, 10, 790. [Google Scholar] [CrossRef]
- Cufer, T.; Kosty, M.P. ESMO/ASCO Recommendations for a Global Curriculum in Medical Oncology Edition 2023. JCO Glob. Oncol. 2023, 9, e2300277. [Google Scholar] [CrossRef]
- Schneider, B.J.; Naidoo, J.; Santomasso, B.D.; Lacchetti, C.; Adkins, S.; Anadkat, M.; Atkins, M.B.; Brassil, K.J.; Caterino, J.M.; Chau, I.; et al. Management of Immune-Related Adverse Events in Patients Treated with Immune Checkpoint Inhibitor Therapy: ASCO Guideline Update. J. Clin. Oncol. 2021, 39, 4073–4126. [Google Scholar] [CrossRef] [PubMed]
- Gault, A.; Hogarth, L.; Williams, K.C.; Greystoke, A.; Rajan, N.; Speight, A.; Lamb, C.A.; Bridgewood, A.; Brown-Schofield, L.-J.; Rayner, F.; et al. Monitoring ImmunE DysregulAtion FoLLowing Immune CheckpOint-InhibitioN (MEDALLION): Protocol for an Observational Cancer Immunotherapy Cohort Study. BMC Cancer 2024, 24, 733. [Google Scholar] [CrossRef]
- Teimouri, A.; Minard, L.V.; Scott, S.N.; Daniels, A.; Snow, S. Real-World Adherence to Toxicity Management Guidelines for Immune-Related Adverse Events. Curr. Oncol. 2022, 29, 3104–3117. [Google Scholar] [CrossRef]
- Li, M.S.C.; Chan, A.L.S.; Mok, K.K.S.; Chan, L.L.; Mok, T.S.K. Next-Generation Immunotherapy: Igniting New Hope for Lung Cancer. Ther. Adv. Med. Oncol. 2024, 16, 17588359241302021. [Google Scholar] [CrossRef] [PubMed]
- Garg, P.; Pareek, S.; Kulkarni, P.; Horne, D.; Salgia, R.; Singhal, S.S. Next-Generation Immunotherapy: Advancing Clinical Applications in Cancer Treatment. J. Clin. Med. 2024, 13, 6537. [Google Scholar] [CrossRef] [PubMed]
- Punekar, S.R.; Shum, E.; Grello, C.M.; Lau, S.C.; Velcheti, V. Immunotherapy in Non-Small Cell Lung Cancer: Past, Present, and Future Directions. Front. Oncol. 2022, 12, 877594. [Google Scholar] [CrossRef]
- Kciuk, M.; Yahya, E.B.; Mohamed, M.M.I.; Rashid, S.; Iqbal, M.O.; Kontek, R.; Abdulsamad, M.A.; Allaq, A.A. Recent Advances in Molecular Mechanisms of Cancer Immunotherapy. Cancers 2023, 15, 2721. [Google Scholar] [CrossRef]
- Fu, Q.; Chen, N.; Ge, C.; Li, R.; Li, Z.; Zeng, B.; Li, C.; Wang, Y.; Xue, Y.; Song, X.; et al. Prognostic Value of Tumor-Infiltrating Lymphocytes in Melanoma: A Systematic Review and Meta-Analysis. Oncoimmunology 2019, 8, e1593806. [Google Scholar] [CrossRef] [PubMed]
- Vielva, L.R. Tumor Lymphocytic Infiltration in Non-Small Cell Lung Cancer: The Ultimate Prognostic Marker? Transl. Lung Cancer Res. 2016, 5, 370–372. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Kong, Y.; Qian, Y.; Guo, H.; Zhao, L.; Wang, H.; Xu, K.; Ye, L.; Liu, Y.; Lu, H.; et al. Spatial Heterogeneity of Infiltrating Immune Cells in the Tumor Microenvironment of Non-Small Cell Lung Cancer. Transl. Oncol. 2024, 50, 102143. [Google Scholar] [CrossRef]
- Ellis, G.I.; Sheppard, N.C.; Riley, J.L. Genetic Engineering of T Cells for Immunotherapy. Nat. Rev. Genet. 2021, 22, 427–447. [Google Scholar] [CrossRef]
- Nix, M.A.; Wiita, A.P. Alternative Target Recognition Elements for Chimeric Antigen Receptor (CAR) T Cells: Beyond Standard Antibody Fragments. Cytotherapy 2024, 26, 729–738. [Google Scholar] [CrossRef]
- Roselli, E.; Boucher, J.C.; Li, G.; Kotani, H.; Spitler, K.; Reid, K.; Cervantes, E.V.; Bulliard, Y.; Tu, N.; Lee, S.B.; et al. 4-1BB and Optimized CD28 Co-Stimulation Enhances Function of Human Mono-Specific and Bi-Specific Third-Generation CAR T Cells. J. Immunother. Cancer 2021, 9, e003354. [Google Scholar] [CrossRef]
- Porter, D.L.; Levine, B.L.; Kalos, M.; Bagg, A.; June, C.H. Chimeric Antigen Receptor–Modified T Cells in Chronic Lymphoid Leukemia. N. Engl. J. Med. 2011, 365, 725–733. [Google Scholar] [CrossRef]
- Kalos, M.; Levine, B.L.; Porter, D.L.; Katz, S.; Grupp, S.A.; Bagg, A.; June, C.H. T Cells with Chimeric Antigen Receptors Have Potent Antitumor Effects and Can Establish Memory in Patients with Advanced Leukemia. Sci. Transl. Med. 2011, 3, 95ra73. [Google Scholar] [CrossRef] [PubMed]
- Sorkhabi, A.D.; Khosroshahi, L.M.; Sarkesh, A.; Mardi, A.; Aghebati-Maleki, A.; Aghebati-Maleki, L.; Baradaran, B. The Current Landscape of CAR T-Cell Therapy for Solid Tumors: Mechanisms, Research Progress, Challenges, and Counterstrategies. Front. Immunol. 2023, 14, 1113882. [Google Scholar] [CrossRef]
- Feng, K.; Guo, Y.; Dai, H.; Wang, Y.; Li, X.; Jia, H.; Han, W. Chimeric Antigen Receptor-Modified T Cells for the Immunotherapy of Patients with EGFR-Expressing Advanced Relapsed/Refractory Non-Small Cell Lung Cancer. Sci. China Life Sci. 2016, 59, 468–479. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Z.; Ding, Y.; Fang, Y.; Wang, P.; Chu, W.; Jin, Z.; Yang, X.; Wang, J.; Lou, J.; et al. Phase I Clinical Trial of EGFR-Specific CAR-T Cells Generated by the PiggyBac Transposon System in Advanced Relapsed/Refractory Non-Small Cell Lung Cancer Patients. J. Cancer Res. Clin. Oncol. 2021, 147, 3725–3734. [Google Scholar] [CrossRef]
- Fabrizio, F.P.; Muscarella, L.A.; Rossi, A. B7-H3/CD276 and Small-Cell Lung Cancer: What’s New? Transl. Oncol. 2024, 39, 101801. [Google Scholar] [CrossRef]
- Oh, M.S.; Abascal, J.; Rennels, A.K.; Salehi-Rad, R.; Dubinett, S.M.; Liu, B. Tumor Heterogeneity and the Immune Response in Non-Small Cell Lung Cancer: Emerging Insights and Implications for Immunotherapy. Cancers 2025, 17, 1027. [Google Scholar] [CrossRef]
- Andreou, T.; Neophytou, C.; Kalli, M.; Mpekris, F.; Stylianopoulos, T. Breaking Barriers: Enhancing CAR-Armored T Cell Therapy for Solid Tumors through Microenvironment Remodeling. Front. Immunol. 2025, 16, 1638186. [Google Scholar] [CrossRef]
- Xiao, X.; Huang, S.; Chen, S.; Wang, Y.; Sun, Q.; Xu, X.; Li, Y. Mechanisms of Cytokine Release Syndrome and Neurotoxicity of CAR T-Cell Therapy and Associated Prevention and Management Strategies. J. Exp. Clin. Cancer Res. 2021, 40, 367. [Google Scholar] [CrossRef] [PubMed]
- Martín-Rojas, R.M.; Gómez-Centurión, I.; Bailén, R.; Bastos, M.; Diaz-Crespo, F.; Carbonell, D.; Correa-Rocha, R.; Pion, M.; Muñoz, C.; Sancho, M.; et al. Hemophagocytic Lymphohistiocytosis/Macrophage Activation Syndrome (HLH/MAS) Following Treatment with Tisagenlecleucel. Clin. Case Rep. 2022, 10, e05209. [Google Scholar] [CrossRef] [PubMed]
- Sterner, R.C.; Sterner, R.M. CAR-T Cell Therapy: Current Limitations and Potential Strategies. Blood Cancer J. 2021, 11, 69. [Google Scholar] [CrossRef]
- Andersen, M.H. Tumor Microenvironment Antigens. Semin. Immunopathol. 2023, 45, 253–264. [Google Scholar] [CrossRef]
- Luo, J.; Zhang, X. Challenges and Innovations in CAR-T Cell Therapy: A Comprehensive Analysis. Front. Oncol. 2024, 14, 1399544. [Google Scholar] [CrossRef]
- Martín-Antonio, B.; Blanco, B.; González-Murillo, Á.; Hidalgo, L.; Minguillón, J.; Pérez-Chacón, G. Newer Generations of Multi-Target CAR and STAb-T Immunotherapeutics: NEXT CART Consortium as a Cooperative Effort to Overcome Current Limitations. Front. Immunol. 2024, 15, 1386856. [Google Scholar] [CrossRef] [PubMed]
- Zeltsman, M.; Dozier, J.; McGee, E.; Ngai, D.; Adusumilli, P.S. CAR T-Cell Therapy for Lung Cancer and Malignant Pleural Mesothelioma. Transl. Res. 2017, 187, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Saffern, M.; Samstein, R. Taking CAR T Cells up a Synthetic Notch. Nat. Rev. Immunol. 2021, 21, 135. [Google Scholar] [CrossRef] [PubMed]
- Dimitri, A.; Herbst, F.; Fraietta, J.A. Engineering the Next-Generation of CAR T-Cells with CRISPR-Cas9 Gene Editing. Mol. Cancer 2022, 21, 78. [Google Scholar] [CrossRef]
- Wang, J.; Ma, J.; Xie, F.; Miao, F.; Lv, L.; Huang, Y.; Zhang, X.; Yu, J.; Tai, Z.; Zhu, Q.; et al. Immunogenic Cell Death-Based Cancer Vaccines: Promising Prospect in Cancer Therapy. Front. Immunol. 2024, 15, 1389173. [Google Scholar] [CrossRef]
- Liu, D.; Che, X.; Wang, X.; Ma, C.; Wu, G. Tumor Vaccines: Unleashing the Power of the Immune System to Fight Cancer. Pharmaceuticals 2023, 16, 1384. [Google Scholar] [CrossRef]
- Clinical Development and Perspectives of CIMAvax EGF, Cuban Vaccine for Non-Small-Cell Lung Cancer Therapy. MEDICC Rev. 2010, 12, 17. [CrossRef]
- Tagliamento, M.; Rijavec, E.; Barletta, G.; Biello, F.; Rossi, G.; Grossi, F.; Genova, C. CIMAvax-EGF, a Therapeutic Non-Small Cell Lung Cancer Vaccine. Expert Opin. Biol. Ther. 2018, 18, 829–835. [Google Scholar] [CrossRef]
- Vega, Y.I.F.; González, D.L.P.; Sarmiento, S.C.A.; Tul, L.E.A.; Valdés, I.B.I.; Machado, J.R.; Larrinaga, Á.E.; Rodríguez, J.E.F.; García, J.L.; Otero, D.C.; et al. Survival of NSCLC Patients Treated with Cimavax-EGF as Switch Maintenance in the Real-World Scenario. J. Cancer 2023, 14, 874–879. [Google Scholar] [CrossRef] [PubMed]
- Aurisicchio, L.; Ciliberto, G. Emerging Cancer Vaccines: The Promise of Genetic Vectors. Cancers 2011, 3, 3687–3713. [Google Scholar] [CrossRef] [PubMed]
- Tosch, C.; Bastien, B.; Barraud, L.; Grellier, B.; Nourtier, V.; Gantzer, M.; Limacher, J.M.; Quemeneur, E.; Bendjama, K.; Préville, X. Viral Based Vaccine TG4010 Induces Broadening of Specific Immune Response and Improves Outcome in Advanced NSCLC. J. Immunother. Cancer 2017, 5, 70. [Google Scholar] [CrossRef]
- Quoix, E.; Lena, H.; Losonczy, G.; Forget, F.; Chouaid, C.; Papai, Z.; Gervais, R.; Ottensmeier, C.; Szczesna, A.; Kazarnowicz, A.; et al. TG4010 Immunotherapy and First-Line Chemotherapy for Advanced Non-Small-Cell Lung Cancer (TIME): Results from the Phase 2b Part of a Randomised, Double-Blind, Placebo-Controlled, Phase 2b/3 Trial. Lancet Oncol. 2016, 17, 212–223. [Google Scholar] [CrossRef]
- Abakushina, E.V.; Popova, L.I.; Zamyatnin, A.A.; Werner, J.; Mikhailovsky, N.V.; Bazhin, A.V. The Advantages and Challenges of Anticancer Dendritic Cell Vaccines and NK Cells in Adoptive Cell Immunotherapy. Vaccines 2021, 9, 1363. [Google Scholar] [CrossRef]
- Madan, R.A.; Gulley, J.L. Sipuleucel-T: Harbinger of a New Age of Therapeutics for Prostate Cancer. Expert Rev. Vaccines 2011, 10, 141–150. [Google Scholar] [CrossRef]
- Lee, J.M.; Lee, M.-H.; Garon, E.; Goldman, J.W.; Salehi-Rad, R.; Baratelli, F.E.; Schaue, D.; Wang, G.; Rosen, F.; Yanagawa, J.; et al. Phase I Trial of Intratumoral Injection of CCL21 Gene–Modified Dendritic Cells in Lung Cancer Elicits Tumor-Specific Immune Responses and CD8+ T-Cell Infiltration. Clin. Cancer Res. 2017, 23, 4556–4568. [Google Scholar] [CrossRef]
- Salehi-Rad, R.; Lim, R.J.; Du, Y.; Tran, L.M.; Li, R.; Ong, S.L.; Ling Huang, Z.; Dumitras, C.; Zhang, T.; Park, S.J.; et al. CCL21-DC in Situ Vaccination in Murine NSCLC Overcomes Resistance to Immunotherapy and Generates Systemic Tumor-Specific Immunity. J. Immunother. Cancer 2023, 11, e006896. [Google Scholar] [CrossRef]
- Costin, D.; Chen, K.; Gralla, R.J.; Garofalo, B.; Wang, M.; Kurland, E. A Phase 2 Study of EIK1001, a Toll-like Receptor 7/8 (TLR7/8) Agonist, in Combination with Pembrolizumab and Chemotherapy in Patients with Stage 4 Non-Small Cell Lung Cancer. J. Clin. Oncol. 2024, 42, TPS8667. [Google Scholar] [CrossRef]
- Aggarwal, C.; Sterman, D.; Alesi, E.R.; Maldonado, F.; Mehra, R.; Bestvina, C.M.; Reisenauer, J.S.; Swartz, L.K.; Puri, S.; Ibrahim, O.; et al. Overall Survival after Treatment with CAN-2409 plus Valacyclovir in Combination with Continued ICI in Patients with Stage III/IV NSCLC with an Inadequate Response to ICI. J. Clin. Oncol. 2024, 42, 8634. [Google Scholar] [CrossRef]
- Hussain, M.S.; Sultana, A.; Bisht, A.S.; Gupta, G. Groundbreaking MRNA Lung Cancer Vaccine Trials: A New Dawn in Cancer Treatment. Curr. Cancer Drug Targets 2025, 25, 962–967. [Google Scholar] [CrossRef]
- Chen, D.-T.; Sabari, J.; Thompson, J.; Niu, J.; Mamdani, H.; Thapa, R.; Thompson, Z.; Posina, T.; Ryan, A.; Venhaus, R.; et al. Abstract CT052: A Phase IB Study of MRNA-Based Active Cancer Vaccine, BI1361849, Combined with Durvalumab and Tremelimumab Immunotherapy in Patients with Non-Small Cell Lung Cancer (NSCLC). Cancer Res. 2024, 84, CT052. [Google Scholar] [CrossRef]
- Lee, K.-W.; Yam, J.W.P.; Mao, X. Dendritic Cell Vaccines: A Shift from Conventional Approach to New Generations. Cells 2023, 12, 2147. [Google Scholar] [CrossRef]
- Yao, Y.; Fu, C.; Zhou, L.; Mi, Q.-S.; Jiang, A. DC-Derived Exosomes for Cancer Immunotherapy. Cancers 2021, 13, 3667. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, G.; Tirard, A.; Villani, A.-C. Plasmacytoid Dendritic Cells: Welcome Back to the DC Fold. Immunity 2022, 55, 380–382. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Zhao, Q. Clinical Progresses and Challenges of Bispecific Antibodies for the Treatment of Solid Tumors. Mol. Diagn. Ther. 2024, 28, 669–702. [Google Scholar] [CrossRef]
- Herrera, M.; Pretelli, G.; Desai, J.; Garralda, E.; Siu, L.L.; Steiner, T.M.; Au, L. Bispecific Antibodies: Advancing Precision Oncology. Trends Cancer 2024, 10, 893–919. [Google Scholar] [CrossRef]
- Keam, S.J. Cadonilimab: First Approval. Drugs 2022, 82, 1333–1339. [Google Scholar] [CrossRef]
- Frentzas, S.; Gan, H.K.; Cosman, R.; Coward, J.; Tran, B.; Millward, M.; Zhou, Y.; Wang, W.; Xia, D.; Wang, Z.M.; et al. A Phase 1a/1b First-in-Human Study (COMPASSION-01) Evaluating Cadonilimab in Patients with Advanced Solid Tumors. Cell Rep. Med. 2023, 4, 101242. [Google Scholar] [CrossRef]
- Gao, X.; Xu, N.; Li, Z.; Shen, L.; Ji, K.; Zheng, Z.; Liu, D.; Lou, H.; Bai, L.; Liu, T.; et al. Safety and Antitumour Activity of Cadonilimab, an Anti-PD-1/CTLA-4 Bispecific Antibody, for Patients with Advanced Solid Tumours (COMPASSION-03): A Multicentre, Open-Label, Phase 1b/2 Trial. Lancet Oncol. 2023, 24, 1134–1146. [Google Scholar] [CrossRef]
- Huang, Y.; Yang, Y.; Zhao, Y.; Zhao, H.; Zhou, N.; Zhang, Y.; Chen, L.; Zhou, T.; Chen, G.; Wu, T.; et al. QL1706 (Anti-PD-1 IgG4/CTLA-4 Antibody) plus Chemotherapy with or without Bevacizumab in Advanced Non-Small Cell Lung Cancer: A Multi-Cohort, Phase II Study. Signal Transduct. Target. Ther. 2024, 9, 23. [Google Scholar] [CrossRef] [PubMed]
- Cho, B.C.; Simi, A.; Sabari, J.; Vijayaraghavan, S.; Moores, S.; Spira, A. Amivantamab, an Epidermal Growth Factor Receptor (EGFR) and Mesenchymal-Epithelial Transition Factor (MET) Bispecific Antibody, Designed to Enable Multiple Mechanisms of Action and Broad Clinical Applications. Clin. Lung Cancer 2023, 24, 89–97. [Google Scholar] [CrossRef]
- Liao, Y.-Y.; Tsai, C.-L.; Huang, H.-P. Optimizing Osimertinib for NSCLC: Targeting Resistance and Exploring Combination Therapeutics. Cancers 2025, 17, 459. [Google Scholar] [CrossRef]
- Zhou, C.; Tang, K.-J.; Cho, B.C.; Liu, B.; Paz-Ares, L.; Cheng, S.; Kitazono, S.; Thiagarajan, M.; Goldman, J.W.; Sabari, J.K.; et al. Amivantamab plus Chemotherapy in NSCLC with EGFR Exon 20 Insertions. N. Engl. J. Med. 2023, 389, 2039–2051. [Google Scholar] [CrossRef]
- Felip, E.; Cho, B.C.; Gutiérrez, V.; Alip, A.; Besse, B.; Lu, S.; Spira, A.I.; Girard, N.; Califano, R.; Gadgeel, S.M.; et al. Amivantamab plus Lazertinib versus Osimertinib in First-Line EGFR-Mutant Advanced Non-Small-Cell Lung Cancer with Biomarkers of High-Risk Disease: A Secondary Analysis from MARIPOSA. Ann. Oncol. 2024, 35, 805–816. [Google Scholar] [CrossRef] [PubMed]
- Rosenfeld, R. Amivantamab plus Lazertinib in Previously Untreated EGFR -Mutated Advanced NSCLC. N. Engl. J. Med. 2025, 392, 619–621. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.A.; Chen, M.F.; Hui, A.B.; Choudhury, N.J.; Lee, J.J.-K.; Zheng, J.; Ahn, L.S.H.; Pupo, A.; Nesselbush, M.; Jabara, I.; et al. A Phase 2 Study of Amivantamab plus Lazertinib in Patients with EGFR- Mutant Lung Cancer and Active Central Nervous System Disease. J. Clin. Oncol. 2024, 42, 8517. [Google Scholar] [CrossRef]
- Cho, B.C.; Lu, S.; Felip, E.; Spira, A.I.; Girard, N.; Lee, J.-S.; Lee, S.-H.; Ostapenko, Y.; Danchaivijitr, P.; Liu, B.; et al. Amivantamab plus Lazertinib in Previously Untreated EGFR -Mutated Advanced NSCLC. N. Engl. J. Med. 2024, 391, 1486–1498. [Google Scholar] [CrossRef]
- Frentzas, S.; Austria Mislang, A.R.; Lemech, C.; Nagrial, A.; Underhill, C.; Wang, W.; Wang, Z.M.; Li, B.; Xia, Y.; Coward, J.I.G. Phase 1a Dose Escalation Study of Ivonescimab (AK112/SMT112), an Anti-PD-1/VEGF-A Bispecific Antibody, in Patients with Advanced Solid Tumors. J. Immunother. Cancer 2024, 12, e008037. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, G.; Chen, J.; Zhuang, L.; Du, Y.; Yu, Q.; Zhuang, W.; Zhao, Y.; Zhou, M.; Zhang, W.; et al. AK112, a Novel PD-1/VEGF Bispecific Antibody, in Combination with Chemotherapy in Patients with Advanced Non-Small Cell Lung Cancer (NSCLC): An Open-Label, Multicenter, Phase II Trial. eClinicalMedicine 2023, 62, 102106. [Google Scholar] [CrossRef]
- Dhillon, S. Ivonescimab: First Approval. Drugs 2024, 84, 1135–1142. [Google Scholar] [CrossRef] [PubMed]
- Duell, J.; Lammers, P.E.; Djuretic, I.; Chunyk, A.G.; Alekar, S.; Jacobs, I.; Gill, S. Bispecific Antibodies in the Treatment of Hematologic Malignancies. Clin. Pharmacol. Ther. 2019, 106, 781–791. [Google Scholar] [CrossRef] [PubMed]
- Salvador, J.-P.; Vilaplana, L.; Marco, M.-P. Nanobody: Outstanding Features for Diagnostic and Therapeutic Applications. Anal. Bioanal. Chem. 2019, 411, 1703–1713. [Google Scholar] [CrossRef] [PubMed]



| NCT Number | Interventions | Study Status | Sponsor | Phase |
|---|---|---|---|---|
| NCT03916627 | Fianlimab | Active not recruiting | Regeneron Pharmaceuticals | Phase 2 |
| NCT05785767 | Fianlimab | Recruiting | Regeneron Pharmaceuticals | Phase 2|3 |
| NCT05800015 | Fianlimab | Recruiting | Regeneron Pharmaceuticals | Phase 2|3 |
| NCT06161441 | Fianlimab | Recruiting | Regeneron Pharmaceuticals | Phase 2 |
| NCT06865339 | Fianlimab | Recruiting | Nitin Ohri | Phase 2 |
| NCT06918132 | Fianlimab | Recruiting | Mayo Clinic | Phase 2 |
| NCT05978401 | GLS-012 | Not yet recruiting | Guangzhou Gloria Biosciences | Phase 1|2 |
| NCT05787613 | HLX26 | Active not recruiting | Shanghai Henlius Biotech | Phase 2 |
| NCT04205552 | Relatlimab | Recruiting | University Hospital, Essen | Phase 2 |
| NCT04623775 | Relatlimab | Active not recruiting | Bristol-Myers Squibb | Phase 2 |
| NCT05176483 | Relatlimab | Active not recruiting | Exelixis | Phase 1 |
| NCT06561386 | Relatlimab | Recruiting | Bristol-Myers Squibb | Phase 3 |
| NCT Number | Interventions | Study Status | Sponsor | Phase |
|---|---|---|---|---|
| NCT02817633 | TSR-022 | Active not recruiting | Tesaro, Inc. | Phase 1 |
| NCT04931654 | AZD7789 | Active not recruiting | AstraZeneca | Phase 1|2 |
| NCT06162572 | S095018 | Recruiting | Servier Bio-Innovation LLC | Phase 1|2 |
| NCT Number | Study Status | Interventions | Sponsor | Phase |
|---|---|---|---|---|
| NCT03563716 | Active not recruiting | Tiragolumab | Genentech, Inc. | Phase 2 |
| NCT04294810 | Active not recruiting | Tiragolumab | Hoffmann-La Roche | Phase 3 |
| NCT04374877 | Active not recruiting | CHS-388 | Coherus Biosciences, Inc. | Phase 1 |
| NCT04736173 | Active not recruiting | Domvanalimab | Arcus Biosciences, Inc. | Phase 2 |
| NCT04746924 | Active not recruiting | Ociperlimab | BeiGene | Phase 3 |
| NCT04995523 | Recruiting | AZD2936 | AstraZeneca | Phase 1|2 |
| NCT05102214 | Recruiting | HLX301 | Shanghai Henlius Biotech | Phase 1|2 |
| NCT05417321 | Recruiting | HB0036 | Shanghai Huaota Biopharmaceutical | Phase 1|2 |
| NCT05676931 | Active not recruiting | Domvanalimab | Gilead Sciences | Phase 2 |
| NCT06627647 | Recruiting | Rilvegostomig | AstraZeneca | Phase 3 |
| NCT06692738 | Recruiting | Rilvegostomig | AstraZeneca | Phase 3 |
| NCT06773507 | Recruiting | BC008-1A | Sichuan Luzhou Buchang Biopharmaceutical | Phase 1 |
| NCT Number | Study Status | Interventions | Sponsor | Phase |
|---|---|---|---|---|
| NCT04503278 | Recruiting | CLDN6 CAR-T | BioNTech Cell & Gene Therapies GmbH | Phase 1 |
| NCT04556669 | Recruiting | aPD-L1 and anti-CD22 CAR-T | Hebei Senlang Biotechnology Inc., Ltd. | Phase 1 |
| NCT05060796 | Recruiting | CXCR5 modified EGFR CART | Hospital of Guangzhou Medical University | Phase 1 |
| NCT05239143 | Active not recruiting | P-MUC1C-ALLO1 CAR-T | Poseida Therapeutics, Inc. | Phase 1 |
| NCT05620342 | Recruiting | iC9.GD2.CAR-T | UNC Lineberger Comprehensive Cancer Center | Phase 1 |
| NCT05736731 | Active not recruiting | A2B530 | A2 Biotherapeutics Inc. | Phase 1|2 |
| NCT06043466 | Recruiting | CEA-targeted CAR-T | Chongqing Precision Biotech Co., Ltd. | Phase 1 |
| NCT06051695 | Recruiting | A2B694 | A2 Biotherapeutics Inc. | Phase 1|2 |
| NCT06653023 | Recruiting | Universal CAR-T injection | Wondercel Biotech (ShenZhen) | Phase 1 |
| NCT06682793 | Recruiting | A2B395 | A2 Biotherapeutics Inc. | Phase 1|2 |
| NCT06972576 | Recruiting | EphA2-targeted CAR-T Cells | Zhejiang University | Phase 1 |
| NCT07116057 | Recruiting | MOv19-BBz CAR T cells | University of Pennsylvania | Phase 1 |
| NCT Number | Study Status | Interventions | Sponsor | Phase |
|---|---|---|---|---|
| NCT01720836 | Recruiting | MUC1 Peptide Vaccine | Olivera Finn | Phase 1|2 |
| NCT02432963 | Active not recruiting | Virus Ankara Vaccine Expressing p53 | City of Hope Medical Center | Phase 1 |
| NCT03546361 | Active not recruiting | Autologous DC-Adenovirus CCL21 Vaccine | Jonsson Comprehensive Cancer Center | Phase 1 |
| NCT03552718 | Active not recruiting | YE-NEO-001 | NantBioScience, Inc. | Phase 1 |
| NCT03908671 | Recruiting | Personalized mRNA Tumor Vaccine | Stemirna Therapeutics | Not Applicable |
| NCT03970746 | Active not recruiting | DC vaccine | PDC*line Pharma SAS | Phase 1|2 |
| NCT04147078 | Recruiting | DC vaccine | Sichuan University | Phase 1 |
| NCT04266730 | Not yet recruiting | PANDA-VAC | UNC Lineberger Comprehensive Cancer Center | Phase 1 |
| NCT04298606 | Recruiting | EGF-rP64K/Montanide ISA 51 Vaccine | Roswell Park Cancer Institute | Phase 1 |
| NCT04503278 | Recruiting | CLDN6 uRNA-LPX/CLDN6 modRNA-LPX | BioNTech Cell & Gene Therapies GmbH | Phase 1 |
| NCT04686305 | Recruiting | T-DXd | AstraZeneca | Phase 1 |
| NCT05104515 | Recruiting | OVM-200 | Oxford Vacmedix UK Ltd. | Phase 1 |
| NCT05142189 | Recruiting | BNT116 | BioNTech SE | Phase 1 |
| NCT05195619 | Active not recruiting | PEP-DC vaccine | Centre Hospitalier Universitaire Vaudois | Phase 1 |
| NCT05242965 | Active not recruiting | Plasmid DNA Vaccine | University of Washington | Phase 2 |
| NCT05254184 | Recruiting | Mutant KRAS-Targeted Peptide Vaccine | Sidney Kimmel Comprehensive Cancer Center | Phase 1 |
| NCT05269381 | Recruiting | Neoantigen Peptide Vaccine | Mayo Clinic | Phase 1|2 |
| NCT05344209 | Recruiting | UV1 | Vestre Viken Hospital Trust | Phase 2 |
| NCT05557591 | Active not recruiting | BNT116 | Regeneron Pharmaceuticals | Phase 2 |
| NCT05950139 | Recruiting | Peptide vaccine | Sidney Kimmel Comprehensive Cancer Center | Phase 1|2 |
| NCT06015724 | Recruiting | KRAS vaccine | Georgetown University | Phase 2 |
| NCT06095934 | Recruiting | Neoantigen vaccine | Nanjing Drum Tower Hospital of Nanjing University | Not Applicable |
| NCT06253520 | Recruiting | GRT-C903/GRT-R904 | National Cancer Institute (NCI) | Phase 1 |
| NCT06472245 | Recruiting | OSE2101 | OSE Immunotherapeutics | Phase 3 |
| NCT06685653 | Not yet recruiting | RGL-270 | Nanjing Tianyinshan Hospital | Phase 1 |
| NCT06735508 | Not yet recruiting | mRNA Neoantigen Vaccine | Guangdong Provincial People’s Hospital | Phase 1 |
| NCT06751849 | Recruiting | Neoantigen-loaded DC vaccine | Hospital of Nanchang University | Phase 2 |
| NCT06751901 | Recruiting | Neoantigen-based peptide vaccine | Hospital of Nanchang University | Phase 2 |
| NCT06752044 | Recruiting | Neoantigen-based peptide vaccine | Hospital of Nanchang University | Not Applicable |
| NCT06752057 | Recruiting | Neoantigen-loaded DC vaccine | Hospital of Nanchang University | Not Applicable |
| NCT07073183 | Not yet recruiting | CV09070101 mRNA vaccine | CureVac | Phase 1 |
| NCT Number | Study Status | Interventions | Sponsor | Phase |
|---|---|---|---|---|
| NCT02609776 | Active not recruiting | Amivantamab | Janssen Research & Development, LLC | Phase 1 |
| NCT02912949 | Active not recruiting | MCLA-128 | Merus N.V. | Phase 2 |
| NCT03526835 | Recruiting | MCLA-158 | Merus N.V. | Phase 1|2 |
| NCT03797391 | Recruiting | EMB-01 | Shanghai EpimAb Biotherapeutics | Phase 1|2 |
| NCT04140500 | Active not recruiting | RO7247669 | Hoffmann-La Roche | Phase 1|2 |
| NCT04603287 | Active not recruiting | SI-B001 | Sichuan Baili Pharmaceutical | Phase 1 |
| NCT04606472 | Active not recruiting | SI-B003 | Sichuan Baili Pharmaceutical | Phase 1 |
| NCT04777084 | Recruiting | IBI318 | Hunan Province Tumor Hospital | Phase 1 |
| NCT04868877 | Recruiting | MCLA-129 | Merus N.V. | Phase 1|2 |
| NCT04930432 | Recruiting | MCLA-129 | Betta Pharmaceuticals | Phase 1|2 |
| NCT04931654 | Active not recruiting | AZD7789 | AstraZeneca | Phase 1|2 |
| NCT04995523 | Recruiting | AZD2936 | AstraZeneca | Phase 1|2 |
| NCT05102214 | Recruiting | HLX301 | Shanghai Henlius Biotech | Phase 1|2 |
| NCT05117242 | Active not recruiting | Acasunlimab | Genmab | Phase 2 |
| NCT05180474 | Active not recruiting | GEN1047 | Genmab | Phase 1|2 |
| NCT05360381 | Active not recruiting | HLX35 | Shanghai Henlius Biotech | Phase 1 |
| NCT05377658 | Recruiting | AK104 | Henan Cancer Hospital | Phase 2 |
| NCT05420220 | Recruiting | KN046 | Jiangsu Alphamab Biopharmaceuticals | Phase 2 |
| NCT05498389 | Not yet recruiting | EMB-01 | Shanghai EpimAb Biotherapeutics | Phase 1|2 |
| NCT05663866 | Active not recruiting | Amivantamab | Janssen Research & Development, LLC | Phase 2 |
| NCT05780307 | Recruiting | IMM2520 | ImmuneOnco Biopharmaceuticals | Phase 1 |
| NCT05816499 | Active not recruiting | Cadonilimab | Shanghai Chest Hospital | Phase 1|2 |
| NCT05845671 | Recruiting | Amivantamab | University of Colorado, Denver | Phase 1|2 |
| NCT06015568 | Not yet recruiting | MCLA-129 | Betta Pharmaceuticals | Phase 1 |
| NCT06116682 | Recruiting | Amivantamab | SWOG Cancer Research Network | Phase 2 |
| NCT06147037 | Recruiting | FPI-2053 | Fusion Pharmaceuticals Inc. | Phase 1 |
| NCT06196814 | Not yet recruiting | AK112 | Hunan Province Tumor Hospital | Phase 1|2 |
| NCT06361927 | Recruiting | SSGJ-707 | Sunshine Guojian Pharmaceutical | Phase 2 |
| NCT06412471 | Recruiting | SSGJ-707 | Sunshine Guojian Pharmaceutical | Phase 2 |
| NCT06417008 | Recruiting | HS-20117 | Hansoh BioMedical R&D Company | Phase 2|3 |
| NCT06424821 | Recruiting | Cadonilimab | Shanghai Pulmonary Hospital | Phase 2 |
| NCT06467500 | Recruiting | Cadonilimab | Xin-Hua Xu | Phase 2 |
| NCT06532591 | Recruiting | Cadonilimab | Sichuan Cancer Hospital and Research Institute | Phase 2 |
| NCT06621563 | Recruiting | HS-20117 | Hansoh BioMedical R&D Company | Phase 1 |
| NCT06724263 | Not yet recruiting | B1962 | Tasly Biopharmaceuticals | Phase 2 |
| NCT06766591 | Not yet recruiting | Ivonescimab | Jiangsu Province Nanjing Brain Hospital | Not Applicable |
| NCT06793813 | Recruiting | Cadonilimab | Chinese Academy of Medical Sciences | Phase 2 |
| NCT06943820 | Recruiting | AK129 | Akeso | Phase 1|2 |
| NCT06996782 | Recruiting | Rilvegostomig | AstraZeneca | Phase 1|2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leone, G.M.; Scuderi, G.; Fagone, P.; Mangano, K. Directions of Immunotherapy for Non-Small-Cell Lung Cancer Treatment: Past, Present and Possible Future. Int. J. Mol. Sci. 2025, 26, 11055. https://doi.org/10.3390/ijms262211055
Leone GM, Scuderi G, Fagone P, Mangano K. Directions of Immunotherapy for Non-Small-Cell Lung Cancer Treatment: Past, Present and Possible Future. International Journal of Molecular Sciences. 2025; 26(22):11055. https://doi.org/10.3390/ijms262211055
Chicago/Turabian StyleLeone, Gian Marco, Grazia Scuderi, Paolo Fagone, and Katia Mangano. 2025. "Directions of Immunotherapy for Non-Small-Cell Lung Cancer Treatment: Past, Present and Possible Future" International Journal of Molecular Sciences 26, no. 22: 11055. https://doi.org/10.3390/ijms262211055
APA StyleLeone, G. M., Scuderi, G., Fagone, P., & Mangano, K. (2025). Directions of Immunotherapy for Non-Small-Cell Lung Cancer Treatment: Past, Present and Possible Future. International Journal of Molecular Sciences, 26(22), 11055. https://doi.org/10.3390/ijms262211055

