The Paraoxonase (PON) Gene Family in Health, Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) and Other Diseases
Abstract
1. Introduction
The Paraoxonase Gene Family
2. Paraoxonase-1
2.1. Structure of PON1
2.2. Function of PON1: An Antioxidant Enzyme
2.3. PON1 and MASLD: Reduced PON1 Activity
2.4. PON1 and Other Diseases
2.4.1. Role in Cardiovascular and Metabolic Diseases
2.4.2. Role in Chronic Kidney Disease (CKD) and Cardiac Injury in CKD
Association with Immune Dysregulation
Association with Autoimmune and Inflammatory Diseases
2.4.3. Role in Neurological Diseases
2.4.4. Role in Cancer
2.5. Animal Models
2.6. PON1 Polymorphisms
3. Paraoxonase-2
3.1. Structure of PON2
3.2. Function of PON2
3.3. PON2 and MASLD
3.4. PON2 and Other Diseases
3.4.1. Role in Cardiovascular Disease and Atherosclerosis
3.4.2. Role in Neurodegenerative Diseases
3.4.3. Role in Cancer
3.5. Animal Models
3.6. PON2 Polymorphisms
4. Paraoxonase-3
4.1. Structure of PON3
4.2. Function of PON3
4.3. PON3 and MASLD
4.4. Role in Human Health and Disease
4.4.1. Role in Cardiovascular and Metabolic Diseases
4.4.2. Role in Immune-Mediated and Infectious Diseases
4.4.3. Association with Autoimmune Diseases
4.4.4. Protective Role in Liver Health
4.4.5. Dual Role in Cancer
4.5. PON3 Polymorphisms
4.6. Animal Models
5. Conclusions and Future Perspective
Funding
Data Availability Statement
Conflicts of Interest
References
- Scorletti, E.; Carr, R.M. A new perspective on NAFLD: Focusing on lipid droplets. J. Hepatol. 2022, 76, 934–945. [Google Scholar] [CrossRef] [PubMed]
- Lazarus, J.V.; Mark, H.E.; Anstee, Q.M.; Arab, J.P.; Batterham, R.L.; Castera, L.; Cortez-Pinto, H.; Crespo, J.; Cusi, K.; Dirac, M.A.; et al. Advancing the global public health agenda for NAFLD: A consensus statement. Nat. Rev. Gastroenterol. Hepatol. 2022, 19, 60–78. [Google Scholar] [CrossRef] [PubMed]
- Tacke, F.; Horn, P.; Wong, V.W.-S.; Ratziu, V.; Bugianesi, E.; Francque, S.; Zelber-Sagi, S.; Valenti, L.; Roden, M.; Schick, F.; et al. EASL-EASD-EASO Clinical Practice Guidelines on the management of metabolic dysfunction-associated steatotic liver disease (MASLD). J. Hepatol. 2024, 81, 492–542. [Google Scholar] [CrossRef] [PubMed]
- Parthasarathy, G.; Revelo, X.; Malhi, H. Pathogenesis of Nonalcoholic Steatohepatitis: An Overview. Hepatol. Commun. 2020, 4, 478–492. [Google Scholar] [CrossRef]
- Tilg, H.; Moschen, A.R. Evolution of inflammation in nonalcoholic fatty liver disease: The multiple parallel hits hypothesis. Hepatology 2010, 52, 1836–1846. [Google Scholar] [CrossRef]
- Khairnar, R.; Islam, M.A.; Fleishman, J.; Kumar, S. Shedding light on non-alcoholic fatty liver disease: Pathogenesis, molecular mechanisms, models, and emerging therapeutics. Life Sci. 2023, 312, 121185. [Google Scholar] [CrossRef]
- Wong, R.J.; Aguilar, M.; Cheung, R.; Perumpail, R.B.; Harrison, S.A.; Younossi, Z.M.; Ahmed, A. Nonalcoholic steatohepatitis is the second leading etiology of liver disease among adults awaiting liver transplantation in the United States. Gastroenterology 2015, 148, 547–555. [Google Scholar] [CrossRef]
- Li, Y.; Yang, P.; Ye, J.; Xu, Q.; Wu, J.; Wang, Y. Updated mechanisms of MASLD pathogenesis. Lipids Health Dis. 2024, 23, 117. [Google Scholar] [CrossRef]
- Bessone, F.; Razori, M.V.; Roma, M.G. Molecular pathways of nonalcoholic fatty liver disease development and progression. Cell. Mol. Life Sci. 2019, 76, 99–128. [Google Scholar] [CrossRef]
- Harrison, S.A.; Bedossa, P.; Guy, C.D.; Schattenberg, J.M.; Loomba, R.; Taub, R.; Labriola, D.; Moussa, S.E.; Neff, G.W.; Rinella, M.E.; et al. A Phase 3, Randomized, Controlled Trial of Resmetirom in NASH with Liver Fibrosis. N. Engl. J. Med. 2024, 390, 497–509. [Google Scholar] [CrossRef]
- Sorenson, R.C.; Primo-Parmo, S.L.; Camper, S.A.; La Du, B.N. The genetic mapping and gene structure of mouse paraoxonase/arylesterase. Genomics 1995, 30, 431–438. [Google Scholar] [CrossRef]
- Primo-Parmo, S.L.; Sorenson, R.C.; Teiber, J.; La Du, B.N. The human serum paraoxonase/arylesterase gene (PON1) is one member of a multigene family. Genomics 1996, 33, 498–507. [Google Scholar] [CrossRef]
- Mackness, M.; Mackness, B. Human paraoxonase-1 (PON1): Gene structure and expression, promiscuous activities and multiple physiological roles. Gene 2015, 567, 12–21. [Google Scholar] [CrossRef]
- Ferretti, G.; Bacchetti, T. Effect of dietary lipids on paraoxonase-1 activity and gene expression. Nutr. Metab. Cardiovasc. Dis. 2012, 22, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Ng, C.J.; Wadleigh, D.J.; Gangopadhyay, A.; Hama, S.; Grijalva, V.R.; Navab, M.; Fogelman, A.M.; Reddy, S.T. Paraoxonase-2 is a ubiquitously expressed protein with antioxidant properties and is capable of preventing cell-mediated oxidative modification of low density lipoprotein. J. Biol. Chem. 2001, 276, 44444–44449. [Google Scholar] [CrossRef]
- Reddy, S.T.; Wadleigh, D.J.; Grijalva, V.; Ng, C.; Hama, S.; Gangopadhyay, A.; Shih, D.M.; Lusis, A.J.; Navab, M.; Fogelman, A.M. Human paraoxonase-3 is an HDL-associated enzyme with biological activity similar to paraoxonase-1 protein but is not regulated by oxidized lipids. Arterioscler. Thromb. Vasc. Biol. 2001, 21, 542–547. [Google Scholar] [CrossRef] [PubMed]
- Davies, H.G.; Richter, R.J.; Keifer, M.; Broomfield, C.A.; Sowalla, J.; Furlong, C.E. The effect of the human serum paraoxonase polymorphism is reversed with diazoxon, soman and sarin. Nat. Genet. 1996, 14, 334–336. [Google Scholar] [CrossRef]
- Marsillach, J.; Parra, S.; Ferré, N.; Coll, B.; Alonso-Villaverde, C.; Joven, J.; Camps, J. Paraoxonase-1 in Chronic Liver Diseases, Neurological Diseases and HIV Infection. In The Paraoxonases: Their Role in Disease Development and Xenobiotic Metabolism; Mackness, B., Mackness, M., Aviram, M., Paragh, G., Eds.; Springer: Dordrecht, The Netherlands, 2008; pp. 187–198. [Google Scholar] [CrossRef]
- Milaciu, M.V.; Vesa, S.C.; Bocsan, I.C.; Ciumarnean, L.; Sampelean, D.; Negrean, V.; Pop, R.M.; Matei, D.M.; Pasca, S.; Rachisan, A.L.; et al. Paraoxonase-1 Serum Concentration and PON1 Gene Polymorphisms: Relationship with Non-Alcoholic Fatty Liver Disease. J. Clin. Med. 2019, 8, 2200. [Google Scholar] [CrossRef]
- Camps, J.; Marsillach, J.; Joven, J. Measurement of serum paraoxonase-1 activity in the evaluation of liver function. World J. Gastroenterol. 2009, 15, 1929–1933. [Google Scholar] [CrossRef] [PubMed]
- Blaha-Nelson, D.; Kruger, D.M.; Szeler, K.; Ben-David, M.; Kamerlin, S.C. Active Site Hydrophobicity and the Convergent Evolution of Paraoxonase Activity in Structurally Divergent Enzymes: The Case of Serum Paraoxonase 1. J. Am. Chem. Soc. 2017, 139, 1155–1167. [Google Scholar] [CrossRef]
- Vitarius, J.A.; Sultatos, L.G. The role of calcium in the hydrolysis of the organophosphate paraoxon by human serum A-esterase. Life Sci. 1995, 56, 125–134. [Google Scholar] [CrossRef]
- She, Z.G.; Chen, H.Z.; Yan, Y.; Li, H.; Liu, D.P. The human paraoxonase gene cluster as a target in the treatment of atherosclerosis. Antioxid. Redox Signal. 2012, 16, 597–632. [Google Scholar] [CrossRef]
- Taler-Vercic, A.; Golicnik, M.; Bavec, A. The Structure and Function of Paraoxonase-1 and Its Comparison to Paraoxonase-2 and -3. Molecules 2020, 25, 5980. [Google Scholar] [CrossRef]
- Rajkovic, M.G.; Rumora, L.; Barisic, K. The paraoxonase 1, 2 and 3 in humans. Biochem. Med. 2011, 21, 122–130. [Google Scholar] [CrossRef] [PubMed]
- Draganov, D.I.; La Du, B.N. Pharmacogenetics of paraoxonases: A brief review. Naunyn Schmiedebergs Arch. Pharmacol. 2004, 369, 78–88. [Google Scholar] [CrossRef]
- Mahrooz, A.; Mackness, M.; Bagheri, A.; Ghaffari-Cherati, M.; Masoumi, P. The epigenetic regulation of paraoxonase 1 (PON1) as an important enzyme in HDL function: The missing link between environmental and genetic regulation. Clin. Biochem. 2019, 73, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Van Dijck, E.; Diels, S.; Fransen, E.; Cremers, T.C.; Verrijken, A.; Dirinck, E.; Hoischen, A.; Vandeweyer, G.; Vanden Berghe, W.; Van Gaal, L.; et al. A Case-Control Study Supports Genetic Contribution of the PON Gene Family in Obesity and Metabolic Dysfunction Associated Steatotic Liver Disease. Antioxidants 2024, 13, 1051. [Google Scholar] [CrossRef] [PubMed]
- Rosenblat, M.; Gaidukov, L.; Khersonsky, O.; Vaya, J.; Oren, R.; Tawfik, D.S.; Aviram, M. The catalytic histidine dyad of high density lipoprotein-associated serum paraoxonase-1 (PON1) is essential for PON1-mediated inhibition of low density lipoprotein oxidation and stimulation of macrophage cholesterol efflux. J. Biol. Chem. 2006, 281, 7657–7665. [Google Scholar] [CrossRef]
- Meneses, M.J.; Silvestre, R.; Sousa-Lima, I.; Macedo, M.P. Paraoxonase-1 as a Regulator of Glucose and Lipid Homeostasis: Impact on the Onset and Progression of Metabolic Disorders. Int. J. Mol. Sci. 2019, 20, 4049. [Google Scholar] [CrossRef]
- Howell, K.W.; Meng, X.; Fullerton, D.A.; Jin, C.; Reece, T.B.; Cleveland, J.C., Jr. Toll-like receptor 4 mediates oxidized LDL-induced macrophage differentiation to foam cells. J. Surg. Res. 2011, 171, e27–e31. [Google Scholar] [CrossRef]
- Liu, W.; Yin, Y.; Zhou, Z.; He, M.; Dai, Y. OxLDL-induced IL-1beta secretion promoting foam cells formation was mainly via CD36 mediated ROS production leading to NLRP3 inflammasome activation. Inflamm. Res. 2014, 63, 33–43. [Google Scholar] [CrossRef]
- Shunmoogam, N.; Naidoo, P.; Chilton, R. Paraoxonase (PON)-1: A brief overview on genetics, structure, polymorphisms and clinical relevance. Vasc. Health Risk Manag. 2018, 14, 137–143. [Google Scholar] [CrossRef]
- Camps, J.; Castane, H.; Rodriguez-Tomas, E.; Baiges-Gaya, G.; Hernandez-Aguilera, A.; Arenas, M.; Iftimie, S.; Joven, J. On the Role of Paraoxonase-1 and Chemokine Ligand 2 (C-C motif) in Metabolic Alterations Linked to Inflammation and Disease. A 2021 Update. Biomolecules 2021, 11, 971. [Google Scholar] [CrossRef]
- Esterbauer, H.; Schaur, R.J.; Zollner, H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic. Biol. Med. 1991, 11, 81–128. [Google Scholar] [CrossRef] [PubMed]
- Tavori, H.; Aviram, M.; Khatib, S.; Musa, R.; Mannheim, D.; Karmeli, R.; Vaya, J. Human carotid lesion linoleic acid hydroperoxide inhibits paraoxonase 1 (PON1) activity via reaction with PON1 free sulfhydryl cysteine 284. Free Radic. Biol. Med. 2011, 50, 148–156. [Google Scholar] [CrossRef] [PubMed]
- Milkovic, L.; Zarkovic, N.; Marusic, Z.; Zarkovic, K.; Jaganjac, M. The 4-Hydroxynonenal-Protein Adducts and Their Biological Relevance: Are Some Proteins Preferred Targets? Antioxidants 2023, 12, 856. [Google Scholar] [CrossRef]
- Rozenberg, O.; Aviram, M. S-Glutathionylation regulates HDL-associated paraoxonase 1 (PON1) activity. Biochem. Biophys. Res. Commun. 2006, 351, 492–498. [Google Scholar] [CrossRef]
- Cao, S.S.; Kaufman, R.J. Unfolded protein response. Curr. Biol. 2012, 22, R622–R626. [Google Scholar] [CrossRef]
- Eslam, M.; Sarin, S.K.; Wong, V.W.; Fan, J.G.; Kawaguchi, T.; Ahn, S.H.; Zheng, M.H.; Shiha, G.; Yilmaz, Y.; Gani, R.; et al. The Asian Pacific Association for the Study of the Liver clinical practice guidelines for the diagnosis and management of metabolic associated fatty liver disease. Hepatol. Int. 2020, 14, 889–919. [Google Scholar] [CrossRef] [PubMed]
- Shih, D.M.; Gu, L.; Xia, Y.R.; Navab, M.; Li, W.F.; Hama, S.; Castellani, L.W.; Furlong, C.E.; Costa, L.G.; Fogelman, A.M.; et al. Mice lacking serum paraoxonase are susceptible to organophosphate toxicity and atherosclerosis. Nature 1998, 394, 284–287. [Google Scholar] [CrossRef]
- Givvimani, S.; Kundu, S.; Pushpakumar, S.; Doyle, V.; Narayanan, N.; Winchester, L.J.; Veeranki, S.; Metreveli, N.; Tyagi, S.C. Hyperhomocysteinemia: A missing link to dysfunctional HDL via paraoxanase-1. Can. J. Physiol. Pharmacol. 2015, 93, 755–763. [Google Scholar] [CrossRef]
- Khalaf, F.K.; Mohammed, C.J.; Dube, P.; Connolly, J.A.; Lad, A.; Ashraf, U.M.; Breidenbach, J.D.; Su, R.C.; Kleinhenz, A.L.; Malhotra, D.; et al. Paraoxonase-1 Regulation of Renal Inflammation and Fibrosis in Chronic Kidney Disease. Antioxidants 2022, 11, 900. [Google Scholar] [CrossRef]
- Dube, P.; Khalaf, F.K.; DeRiso, A.; Mohammed, C.J.; Connolly, J.A.; Battepati, D.; Lad, A.; Breidenbach, J.D.; Kleinhenz, A.L.; Khatib-Shahidi, B.; et al. Cardioprotective Role for Paraoxonase-1 in Chronic Kidney Disease. Biomedicines 2022, 10, 2301. [Google Scholar] [CrossRef]
- Aharoni, S.; Aviram, M.; Fuhrman, B. Paraoxonase 1 (PON1) reduces macrophage inflammatory responses. Atherosclerosis 2013, 228, 353–361. [Google Scholar] [CrossRef]
- Yamashita, J.; Iwamura, C.; Ito, T.; Narita, M.; Hara, Y.; Sasaki, T.; Masuda, D.; Takahashi, M.; Tsuchiya, M.; Hada, K.; et al. Paraoxonase-1 Suppresses Experimental Colitis via the Inhibition of IFN-γ Production from CD4 T Cells. J. Immunol. 2013, 191, 949–960. [Google Scholar] [CrossRef] [PubMed]
- Bai, L.; Shi, G.; Ma, Y.; Zhang, L.; Guan, F.; Zhang, X.; Xu, Y.; Chen, H.; Zhang, L. Paraoxonase 1 knockout rats have impaired T cell development at the CD4/CD8 double-negative to double-positive transition stage. Sci. Rep. 2018, 8, 14457. [Google Scholar] [CrossRef] [PubMed]
- Tripi, L.M.; Manzi, S.; Chen, Q.; Kenney, M.; Shaw, P.; Kao, A.; Bontempo, F.; Kammerer, C.; Kamboh, M.I. Relationship of serum paraoxonase 1 activity and paraoxonase 1 genotype to risk of systemic lupus erythematosus. Arthritis Rheum. 2006, 54, 1928–1939. [Google Scholar] [CrossRef]
- Baskol, G.; Demir, H.; Baskol, M.; Kilic, E.; Ates, F.; Kocer, D.; Muhtaroglu, S. Assessment of paraoxonase 1 activity and malondialdehyde levels in patients with rheumatoid arthritis. Clin. Biochem. 2005, 38, 951–955. [Google Scholar] [CrossRef] [PubMed]
- Cervellati, C.; Trentini, A.; Romani, A.; Bellini, T.; Bosi, C.; Ortolani, B.; Zurlo, A.; Passaro, A.; Seripa, D.; Zuliani, G. Serum paraoxonase and arylesterase activities of paraoxonase-1 (PON-1), mild cognitive impairment, and 2-year conversion to dementia: A pilot study. J. Neurochem. 2015, 135, 395–401. [Google Scholar] [CrossRef]
- Erlich, P.M.; Lunetta, K.L.; Cupples, L.A.; Huyck, M.; Green, R.C.; Baldwin, C.T.; Farrer, L.A.; Group, M.S. Polymorphisms in the PON gene cluster are associated with Alzheimer disease. Hum. Mol. Genet. 2006, 15, 77–85. [Google Scholar] [CrossRef]
- Mota, A.; Hemati-Dinarvand, M.; Akbar Taheraghdam, A.; Reza Nejabati, H.; Ahmadi, R.; Ghasemnejad, T.; Hasanpour, M.; Valilo, M. Association of Paraoxonse1 (PON1) Genotypes with the Activity of PON1 in Patients with Parkinson’s Disease. Acta Neurol Taiwan 2019, 28, 66–74. [Google Scholar]
- Medina-Diaz, I.M.; Ponce-Ruiz, N.; Rojas-Garcia, A.E.; Zambrano-Zargoza, J.F.; Bernal-Hernandez, Y.Y.; Gonzalez-Arias, C.A.; Barron-Vivanco, B.S.; Herrera-Moreno, J.F. The Relationship between Cancer and Paraoxonase 1. Antioxidants 2022, 11, 697. [Google Scholar] [CrossRef]
- Aldonza, M.B.D.; Son, Y.S.; Sung, H.J.; Ahn, J.M.; Choi, Y.J.; Kim, Y.I.; Cho, S.; Cho, J.Y. Paraoxonase-1 (PON1) induces metastatic potential and apoptosis escape via its antioxidative function in lung cancer cells. Oncotarget 2017, 8, 42817–42835. [Google Scholar] [CrossRef]
- Liu, P.; Wang, Q.; Cui, Y.; Wang, J. A meta-analysis of the relationship between paraoxonase 1 polymorphisms and cancer. Free Radic. Res. 2019, 53, 1045–1050. [Google Scholar] [CrossRef]
- Sayad, S.; Dastgheib, S.A.; Farbod, M.; Asadian, F.; Karimi-Zarchi, M.; Salari, S.; Shaker, S.H.; Sadeghizadeh-Yazdi, J.; Neamatzadeh, H. Association of PON1, LEP and LEPR Polymorphisms with Susceptibility to Breast Cancer: A Meta-Analysis. Asian Pac. J. Cancer Prev. 2021, 22, 2323–2334. [Google Scholar] [CrossRef]
- Kunachowicz, D.; Sciskalska, M.; Kepinska, M. Modulatory Effect of Lifestyle-Related, Environmental and Genetic Factors on Paraoxonase-1 Activity: A Review. Int. J. Environ. Res. Public Health 2023, 20, 2813. [Google Scholar] [CrossRef]
- Rozenberg, O.; Rosenblat, M.; Coleman, R.; Shih, D.M.; Aviram, M. Paraoxonase (PON1) deficiency is associated with increased macrophage oxidative stress: Studies in PON1-knockout mice. Free Radic. Biol. Med. 2003, 34, 774–784. [Google Scholar] [CrossRef]
- Shih, D.M.; Xia, Y.R.; Wang, X.P.; Miller, E.; Castellani, L.W.; Subbanagounder, G.; Cheroutre, H.; Faull, K.F.; Berliner, J.A.; Witztum, J.L.; et al. Combined serum paraoxonase knockout/apolipoprotein E knockout mice exhibit increased lipoprotein oxidation and atherosclerosis. J. Biol. Chem. 2000, 275, 17527–17535. [Google Scholar] [CrossRef] [PubMed]
- Sikora, M.; Jakubowski, H. Changes in redox plasma proteome of Pon1-/- mice are exacerbated by a hyperhomocysteinemic diet. Free Radic. Biol. Med. 2021, 169, 169–180. [Google Scholar] [CrossRef] [PubMed]
- Ng, C.J.; Bourquard, N.; Grijalva, V.; Hama, S.; Shih, D.M.; Navab, M.; Fogelman, A.M.; Lusis, A.J.; Young, S.; Reddy, S.T. Paraoxonase-2 deficiency aggravates atherosclerosis in mice despite lower apolipoprotein-B-containing lipoproteins: Anti-atherogenic role for paraoxonase-2. J. Biol. Chem. 2006, 281, 29491–29500. [Google Scholar] [CrossRef] [PubMed]
- Meilin, E.; Aviram, M.; Hayek, T. Paraoxonase 2 (PON2) decreases high glucose-induced macrophage triglycerides (TG) accumulation, via inhibition of NADPH-oxidase and DGAT1 activity: Studies in PON2-deficient mice. Atherosclerosis 2010, 208, 390–395. [Google Scholar] [CrossRef]
- Giordano, G.; Cole, T.B.; Furlong, C.E.; Costa, L.G. Paraoxonase 2 (PON2) in the mouse central nervous system: A neuroprotective role? Toxicol. Appl. Pharmacol. 2011, 256, 369–378. [Google Scholar] [CrossRef]
- Bourquard, N.; Ng, C.J.; Reddy, S.T. Impaired hepatic insulin signalling in PON2-deficient mice: A novel role for the PON2/apoE axis on the macrophage inflammatory response. Biochem. J. 2011, 436, 91–100. [Google Scholar] [CrossRef]
- Ebert, J.; Wilgenbus, P.; Teiber, J.F.; Jurk, K.; Schwierczek, K.; Dohrmann, M.; Xia, N.; Li, H.; Spiecker, L.; Ruf, W.; et al. Paraoxonase-2 regulates coagulation activation through endothelial tissue factor. Blood 2018, 131, 2161–2172. [Google Scholar] [CrossRef] [PubMed]
- Sulaiman, D.; Li, J.; Devarajan, A.; Cunningham, C.M.; Li, M.; Fishbein, G.A.; Fogelman, A.M.; Eghbali, M.; Reddy, S.T. Paraoxonase 2 protects against acute myocardial ischemia-reperfusion injury by modulating mitochondrial function and oxidative stress via the PI3K/Akt/GSK-3beta RISK pathway. J. Mol. Cell. Cardiol. 2019, 129, 154–164. [Google Scholar] [CrossRef] [PubMed]
- Shih, D.M.; Meng, Y.; Sallam, T.; Vergnes, L.; Shu, M.L.; Reue, K.; Tontonoz, P.; Fogelman, A.M.; Lusis, A.J.; Reddy, S.T. PON2 Deficiency Leads to Increased Susceptibility to Diet-Induced Obesity. Antioxidants 2019, 8, 19. [Google Scholar] [CrossRef]
- Garrick, J.M.; Cole, T.B.; Bammler, T.K.; MacDonald, J.W.; Marsillach, J.; Furlong, C.E.; Costa, L.G. Paraoxonase 2 deficiency in mice alters motor behavior and causes region-specific transcript changes in the brain. Neurotoxicol. Teratol. 2021, 87, 107010. [Google Scholar] [CrossRef]
- Spiecker, L.; Witte, I.; Mehlig, J.; Shah, V.; Meyerhofer, M.; Haehnel, P.S.; Petermann, V.; Schuler, A.; More, P.; Cabezas-Wallscheid, N.; et al. Deficiency of Antioxidative Paraoxonase 2 (Pon2) Leads to Increased Number of Phenotypic LT-HSCs and Disturbed Erythropoiesis. Oxid. Med. Cell. Longev. 2021, 2021, 3917028. [Google Scholar] [CrossRef] [PubMed]
- Hagmann, H.; Khayyat, N.H.; Oezel, C.; Papadakis, A.; Kuczkowski, A.; Benzing, T.; Gulbins, E.; Dryer, S.; Brinkkoetter, P.T. Paraoxonase 2 (PON2) Deficiency Reproduces Lipid Alterations of Diabetic and Inflammatory Glomerular Disease and Affects TRPC6 Signaling. Cells 2022, 11, 3625. [Google Scholar] [CrossRef]
- Whitt, A.G.; Neely, A.M.; Sarkar, O.S.; Meng, S.; Arumugam, S.; Yaddanapudi, K.; Li, C. Paraoxonase 2 (PON2) plays a limited role in murine lung tumorigenesis. Sci. Rep. 2023, 13, 9929. [Google Scholar] [CrossRef]
- Sreekumar, P.G.; Su, F.; Spee, C.; Hong, E.; Komirisetty, R.; Araujo, E.; Nusinowitz, S.; Reddy, S.T.; Kannan, R. Paraoxonase 2 Deficiency Causes Mitochondrial Dysfunction in Retinal Pigment Epithelial Cells and Retinal Degeneration in Mice. Antioxidants 2023, 12, 1820. [Google Scholar] [CrossRef]
- Kempster, S.L.; Belteki, G.; Licence, D.; Charnock-Jones, D.S.; Smith, G.C. Disruption of paraoxonase 3 impairs proliferation and antioxidant defenses in human A549 cells and causes embryonic lethality in mice. Am. J. Physiol. Endocrinol. Metab. 2012, 302, E103–E107. [Google Scholar] [CrossRef]
- Shih, D.M.; Yu, J.M.; Vergnes, L.; Dali-Youcef, N.; Champion, M.D.; Devarajan, A.; Zhang, P.; Castellani, L.W.; Brindley, D.N.; Jamey, C.; et al. PON3 knockout mice are susceptible to obesity, gallstone formation, and atherosclerosis. FASEB J. 2015, 29, 1185–1197. [Google Scholar] [CrossRef]
- Lamichhane, S.; Mohammed, C.J.; Haller, S.T.; Kennedy, D.J.; Isailovic, D. Quantification of Cardiotonic Steroids Potentially Regulated by Paraoxonase 3 in a Rat Model of Chronic Kidney Disease Using UHPLC-Orbitrap-MS. Int. J. Mol. Sci. 2022, 23, 13565. [Google Scholar] [CrossRef]
- Mutchler, S.M.; Whelan, S.C.M.; Marciszyn, A.; Chen, J.; Kleyman, T.R.; Shi, S. Role of paraoxonase 3 in regulating ENaC-mediated Na(+) transport in the distal nephron. J. Physiol. 2024, 602, 737–757. [Google Scholar] [CrossRef]
- Najafi, M.; Gohari, L.H.; Firoozrai, M. Paraoxonase 1 gene promoter polymorphisms are associated with the extent of stenosis in coronary arteries. Thromb. Res. 2009, 123, 503–510. [Google Scholar] [CrossRef]
- Ponce-Ruiz, N.; Murillo-Gonzalez, F.E.; Rojas-Garcia, A.E.; Mackness, M.; Bernal-Hernandez, Y.Y.; Barron-Vivanco, B.S.; Gonzalez-Arias, C.A.; Medina-Diaz, I.M. Transcriptional regulation of human Paraoxonase 1 by nuclear receptors. Chem. Biol. Interact. 2017, 268, 77–84. [Google Scholar] [CrossRef]
- Humbert, R.; Adler, D.A.; Disteche, C.M.; Hassett, C.; Omiecinski, C.J.; Furlong, C.E. The molecular basis of the human serum paraoxonase activity polymorphism. Nat. Genet. 1993, 3, 73–76. [Google Scholar] [CrossRef]
- Garin, M.C.; James, R.W.; Dussoix, P.; Blanche, H.; Passa, P.; Froguel, P.; Ruiz, J. Paraoxonase polymorphism Met-Leu54 is associated with modified serum concentrations of the enzyme. A possible link between the paraoxonase gene and increased risk of cardiovascular disease in diabetes. J. Clin. Investig. 1997, 99, 62–66. [Google Scholar] [CrossRef]
- Costa, L.G.; Cole, T.B.; Vitalone, A.; Furlong, C.E. Measurement of paraoxonase (PON1) status as a potential biomarker of susceptibility to organophosphate toxicity. Clin. Chim. Acta 2005, 352, 37–47. [Google Scholar] [CrossRef]
- Hassett, C.; Richter, R.J.; Humbert, R.; Chapline, C.; Crabb, J.W.; Omiecinski, C.J.; Furlong, C.E. Characterization of cDNA clones encoding rabbit and human serum paraoxonase: The mature protein retains its signal sequence. Biochemistry 1991, 30, 10141–10149. [Google Scholar] [CrossRef]
- Mochizuki, H.; Scherer, S.W.; Xi, T.; Nickle, D.C.; Majer, M.; Huizenga, J.J.; Tsui, L.C.; Prochazka, M. Human PON2 gene at 7q21.3: Cloning, multiple mRNA forms, and missense polymorphisms in the coding sequence. Gene 1998, 213, 149–157. [Google Scholar] [CrossRef]
- Horke, S.; Witte, I.; Wilgenbus, P.; Kruger, M.; Strand, D.; Forstermann, U. Paraoxonase-2 reduces oxidative stress in vascular cells and decreases endoplasmic reticulum stress-induced caspase activation. Circulation 2007, 115, 2055–2064. [Google Scholar] [CrossRef]
- Stoltz, D.A.; Ozer, E.A.; Recker, T.J.; Estin, M.; Yang, X.; Shih, D.M.; Lusis, A.J.; Zabner, J. A common mutation in paraoxonase-2 results in impaired lactonase activity. J. Biol. Chem. 2009, 284, 35564–35571. [Google Scholar] [CrossRef] [PubMed]
- Altenhofer, S.; Witte, I.; Teiber, J.F.; Wilgenbus, P.; Pautz, A.; Li, H.; Daiber, A.; Witan, H.; Clement, A.M.; Forstermann, U.; et al. One enzyme, two functions: PON2 prevents mitochondrial superoxide formation and apoptosis independent from its lactonase activity. J. Biol. Chem. 2010, 285, 24398–24403. [Google Scholar] [CrossRef]
- Sorenson, R.C.; Bisgaier, C.L.; Aviram, M.; Hsu, C.; Billecke, S.; La Du, B.N. Human serum Paraoxonase/Arylesterase’s retained hydrophobic N-terminal leader sequence associates with HDLs by binding phospholipids: Apolipoprotein A-I stabilizes activity. Arterioscler. Thromb. Vasc. Biol. 1999, 19, 2214–2225. [Google Scholar] [CrossRef]
- Hagmann, H.; Kuczkowski, A.; Ruehl, M.; Lamkemeyer, T.; Brodesser, S.; Horke, S.; Dryer, S.; Schermer, B.; Benzing, T.; Brinkkoetter, P.T. Breaking the chain at the membrane: Paraoxonase 2 counteracts lipid peroxidation at the plasma membrane. FASEB J. 2014, 28, 1769–1779. [Google Scholar] [CrossRef]
- Devarajan, A.; Bourquard, N.; Hama, S.; Navab, M.; Grijalva, V.R.; Morvardi, S.; Clarke, C.F.; Vergnes, L.; Reue, K.; Teiber, J.F.; et al. Paraoxonase 2 deficiency alters mitochondrial function and exacerbates the development of atherosclerosis. Antioxid. Redox Signal. 2011, 14, 341–351. [Google Scholar] [CrossRef]
- Yoshida, H.; Haze, K.; Yanagi, H.; Yura, T.; Mori, K. Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose-regulated proteins. Involvement of basic leucine zipper transcription factors. J. Biol. Chem. 1998, 273, 33741–33749, Erratum in J. Biol. Chem. 1999, 274, 2592. [Google Scholar] [CrossRef]
- Witte, I.; Altenhofer, S.; Wilgenbus, P.; Amort, J.; Clement, A.M.; Pautz, A.; Li, H.; Forstermann, U.; Horke, S. Beyond reduction of atherosclerosis: PON2 provides apoptosis resistance and stabilizes tumor cells. Cell Death Dis. 2011, 2, e112. [Google Scholar] [CrossRef]
- Shin, G.C.; Lee, H.M.; Kim, N.; Yoo, S.K.; Park, H.S.; Choi, L.S.; Kim, K.P.; Lee, A.R.; Seo, S.U.; Kim, K.H. Paraoxonase-2 contributes to promoting lipid metabolism and mitochondrial function via autophagy activation. Sci. Rep. 2022, 12, 21483. [Google Scholar] [CrossRef]
- Shin, G.C.; Lee, H.M.; Kim, N.; Hur, J.; Yoo, S.K.; Park, Y.S.; Park, H.S.; Ryu, D.; Park, M.H.; Park, J.H.; et al. Paraoxonase-2 agonist vutiglabridin promotes autophagy activation and mitochondrial function to alleviate non-alcoholic steatohepatitis. Br. J. Pharmacol. 2024, 181, 3717–3742. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.; Lee, H.; Jang, J.; Kim, S.; Ha, T. Anti-obesity effects of glabridin-rich supercritical carbon dioxide extract of licorice in high-fat-fed obese mice. Food Chem. Toxicol. 2013, 51, 439–445. [Google Scholar] [CrossRef]
- Leus, F.R.; Zwart, M.; Kastelein, J.J.P.; Voorbij, H.A.M. PON gene variants are associated with clinical manifestations of cardiovascular disease in familial hypercholesterolemia patients. Atherosclerosis 2001, 154, 641–649. [Google Scholar] [CrossRef] [PubMed]
- Rosenblat, M.; Draganov, D.; Watson, C.E.; Bisgaier, C.L.; La Du, B.N.; Aviram, M. Mouse macrophage paraoxonase 2 activity is increased whereas cellular paraoxonase 3 activity is decreased under oxidative stress. Arterioscler. Thromb. Vasc. Biol. 2003, 23, 468–474. [Google Scholar] [CrossRef]
- Janka, Z.; Juhasz, A.; Rimanoczy, A.A.; Boda, K.; Marki-Zay, J.; Kalman, J. Codon 311 (Cys → Ser) polymorphism of paraoxonase-2 gene is associated with apolipoprotein E4 allele in both Alzheimer’s and vascular dementias. Mol. Psychiatry 2002, 7, 110–112. [Google Scholar] [CrossRef]
- Yang, J.; Kim, K.S.; Iyirhiaro, G.O.; Marcogliese, P.C.; Callaghan, S.M.; Qu, D.; Kim, W.J.; Slack, R.S.; Park, D.S. DJ-1 modulates the unfolded protein response and cell death via upregulation of ATF4 following ER stress. Cell Death Dis. 2019, 10, 135. [Google Scholar] [CrossRef] [PubMed]
- Aguirre-Vidal, Y.; Morales-Montor, J.; Gomez de Leon, C.T.; Ostoa-Saloma, P.; Diaz-Zaragoza, M.; Montes, S.; Arteaga-Silva, M.; Monroy-Noyola, A. Protection induced by estradiol benzoate in the MPP(+) rat model of Parkinson’s disease is associated with the regulation of the inflammatory cytokine profile in the nigro striatum. J. Neuroimmunol. 2020, 349, 577426. [Google Scholar] [CrossRef]
- Ticozzi, N.; LeClerc, A.L.; Keagle, P.J.; Glass, J.D.; Wills, A.M.; van Blitterswijk, M.; Bosco, D.A.; Rodriguez-Leyva, I.; Gellera, C.; Ratti, A.; et al. Paraoxonase gene mutations in amyotrophic lateral sclerosis. Ann. Neurol. 2010, 68, 102–107. [Google Scholar] [CrossRef]
- Bacchetti, T.; Campagna, R.; Sartini, D.; Cecati, M.; Morresi, C.; Bellachioma, L.; Martinelli, E.; Rocchetti, G.; Lucini, L.; Ferretti, G.; et al. C. spinosa L. subsp. rupestris Phytochemical Profile and Effect on Oxidative Stress in Normal and Cancer Cells. Molecules 2022, 27, 6488. [Google Scholar] [CrossRef]
- Campagna, R.; Bacchetti, T.; Salvolini, E.; Pozzi, V.; Molinelli, E.; Brisigotti, V.; Sartini, D.; Campanati, A.; Ferretti, G.; Offidani, A.; et al. Paraoxonase-2 Silencing Enhances Sensitivity of A375 Melanoma Cells to Treatment with Cisplatin. Antioxidants 2020, 9, 1238. [Google Scholar] [CrossRef]
- Campagna, R.; Belloni, A.; Pozzi, V.; Salvucci, A.; Notarstefano, V.; Togni, L.; Mascitti, M.; Sartini, D.; Giorgini, E.; Salvolini, E.; et al. Role Played by Paraoxonase-2 Enzyme in Cell Viability, Proliferation and Sensitivity to Chemotherapy of Oral Squamous Cell Carcinoma Cell Lines. Int. J. Mol. Sci. 2022, 24, 338. [Google Scholar] [CrossRef]
- Hui, P.Y.; Chen, Y.H.; Qin, J.; Jiang, X.H. PON2 blockade overcomes dexamethasone resistance in acute lymphoblastic leukemia. Hematology 2022, 27, 32–42. [Google Scholar] [CrossRef]
- Bacchetti, T.; Salvolini, E.; Pompei, V.; Campagna, R.; Molinelli, E.; Brisigotti, V.; Togni, L.; Lucarini, G.; Sartini, D.; Campanati, A.; et al. Paraoxonase-2: A potential biomarker for skin cancer aggressiveness. Eur. J. Clin. Investig. 2021, 51, e13452. [Google Scholar] [CrossRef]
- Schiavoni, V.; Emanuelli, M.; Campagna, R.; Cecati, M.; Sartini, D.; Milanese, G.; Galosi, A.B.; Pozzi, V.; Salvolini, E. Paraoxonase-2 shRNA-mediated gene silencing suppresses proliferation and migration, while promotes chemosensitivity in clear cell renal cell carcinoma cell lines. J. Cell. Biochem. 2024, 125, e30572. [Google Scholar] [CrossRef]
- Witte, I.; Foerstermann, U.; Devarajan, A.; Reddy, S.T.; Horke, S. Protectors or Traitors: The Roles of PON2 and PON3 in Atherosclerosis and Cancer. J. Lipids 2012, 2012, 342806. [Google Scholar] [CrossRef]
- Agarwal, V.; Cheesman, M.; Haywood, A.; Khan, S.; Dukie, S.A. Role of paraoxonase 2 (PON2) as a potential biomarker and therapeutic target in cancer treatment. J. Cancer Res. Clin. Oncol. 2025, 151, 229. [Google Scholar] [CrossRef]
- Belloni, A.; Campagna, R.; Notarstefano, V.; Pozzi, V.; Orilisi, G.; Pompei, V.; Togni, L.; Mascitti, M.; Sartini, D.; Giorgini, E.; et al. Deepening Cisplatin sensitivity on Oral Squamous cell Carcinoma cell lines after PON2 knockdown: A FTIRM investigation. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2025, 330, 125726. [Google Scholar] [CrossRef]
- Hegele, R.A.; Harris, S.B.; Connelly, P.W.; Hanley, A.J.; Tsui, L.C.; Zinman, B.; Scherer, S.W. Genetic variation in paraoxonase-2 is associated with variation in plasma lipoproteins in Canadian Oji-Cree. Clin. Genet. 1998, 54, 394–399. [Google Scholar] [CrossRef]
- Shin, B.S.; Oh, S.Y.; Kim, Y.S.; Kim, K.W. The paraoxonase gene polymorphism in stroke patients and lipid profile. Acta Neurol. Scand. 2008, 117, 237–243. [Google Scholar] [CrossRef]
- Porntadavity, S.; Permpongpaiboon, T.; Sukketsiri, W. Human paraoxonase 2. EXCLI J. 2010, 9, 159–172. [Google Scholar] [PubMed]
- Carusone, T.M.; Cardiero, G.; Cerreta, M.; Mandrich, L.; Moran, O.; Porzio, E.; Catara, G.; Lacerra, G.; Manco, G. WTAP and BIRC3 are involved in the posttranscriptional mechanisms that impact on the expression and activity of the human lactonase PON2. Cell Death Dis. 2020, 11, 324. [Google Scholar] [CrossRef]
- Mohammed, C.J.; Lamichhane, S.; Connolly, J.A.; Soehnlen, S.M.; Khalaf, F.K.; Malhotra, D.; Haller, S.T.; Isailovic, D.; Kennedy, D.J. A PON for All Seasons: Comparing Paraoxonase Enzyme Substrates, Activity and Action including the Role of PON3 in Health and Disease. Antioxidants 2022, 11, 590. [Google Scholar] [CrossRef] [PubMed]
- Draganov, D.I.; Stetson, P.L.; Watson, C.E.; Billecke, S.S.; La Du, B.N. Rabbit serum paraoxonase 3 (PON3) is a high density lipoprotein-associated lactonase and protects low density lipoprotein against oxidation. J. Biol. Chem. 2000, 275, 33435–33442. [Google Scholar] [CrossRef]
- Furlong, C.E.; Marsillach, J.; Jarvik, G.P.; Costa, L.G. Paraoxonases-1, -2 and -3: What are their functions? Chem. Biol. Interact. 2016, 259, 51–62. [Google Scholar] [CrossRef]
- Draganov, D.I.; Teiber, J.F.; Speelman, A.; Osawa, Y.; Sunahara, R.; La Du, B.N. Human paraoxonases (PON1, PON2, and PON3) are lactonases with overlapping and distinct substrate specificities. J. Lipid Res. 2005, 46, 1239–1247. [Google Scholar] [CrossRef]
- Peng, W.; Jiang, X.; Haiqin, L.; Zhang, C.; Zhu, J.; Zhang, J.; Zang, Y.; Qin, J. Protective effects of transgene expressed human PON3 against CCl4-induced subacute liver injury in mice. Biomed. Pharmacother. 2009, 63, 592–598. [Google Scholar] [CrossRef]
- Ng, C.J.; Bourquard, N.; Hama, S.Y.; Shih, D.; Grijalva, V.R.; Navab, M.; Fogelman, A.M.; Reddy, S.T. Adenovirus-mediated expression of human paraoxonase 3 protects against the progression of atherosclerosis in apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol. 2007, 27, 1368–1374. [Google Scholar] [CrossRef] [PubMed]
- Shih, D.M.; Xia, Y.R.; Wang, X.P.; Wang, S.S.; Bourquard, N.; Fogelman, A.M.; Lusis, A.J.; Reddy, S.T. Decreased obesity and atherosclerosis in human paraoxonase 3 transgenic mice. Circ. Res. 2007, 100, 1200–1207. [Google Scholar] [CrossRef]
- Marsillach, J.; Becker, J.O.; Vaisar, T.; Hahn, B.H.; Brunzell, J.D.; Furlong, C.E.; de Boer, I.H.; McMahon, M.A.; Hoofnagle, A.N.; Group, D.E.R. Paraoxonase-3 is depleted from the high-density lipoproteins of autoimmune disease patients with subclinical atherosclerosis. J. Proteome Res. 2015, 14, 2046–2054. [Google Scholar] [CrossRef]
- Schweikert, E.M.; Amort, J.; Wilgenbus, P.; Forstermann, U.; Teiber, J.F.; Horke, S. Paraoxonases-2 and -3 Are Important Defense Enzymes against Pseudomonas aeruginosa Virulence Factors due to Their Anti-Oxidative and Anti-Inflammatory Properties. J. Lipids 2012, 2012, 352857. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Heredia, A.; Marsillach, J.; Aragones, G.; Guardiola, M.; Rull, A.; Beltran-Debon, R.; Folch, A.; Mackness, B.; Mackness, M.; Pedro-Botet, J.; et al. Serum paraoxonase-3 concentration is associated with the severity of hepatic impairment in patients with chronic liver disease. Clin. Biochem. 2011, 44, 1320–1324. [Google Scholar] [CrossRef]
- Aragones, G.; Garcia-Heredia, A.; Guardiola, M.; Rull, A.; Beltran-Debon, R.; Marsillach, J.; Alonso-Villaverde, C.; Mackness, B.; Mackness, M.; Pedro-Botet, J.; et al. Serum paraoxonase-3 concentration in HIV-infected patients. Evidence for a protective role against oxidation. J. Lipid Res. 2012, 53, 168–174. [Google Scholar] [CrossRef]
- Rull, A.; Garcia, R.; Fernandez-Sender, L.; Garcia-Heredia, A.; Aragones, G.; Beltran-Debon, R.; Marsillach, J.; Alegret, J.M.; Martin-Paredero, V.; Mackness, B.; et al. Serum paraoxonase-3 concentration is associated with insulin sensitivity in peripheral artery disease and with inflammation in coronary artery disease. Atherosclerosis 2012, 220, 545–551. [Google Scholar] [CrossRef]
- Aragones, G.; Guardiola, M.; Barreda, M.; Marsillach, J.; Beltran-Debon, R.; Rull, A.; Mackness, B.; Mackness, M.; Joven, J.; Simo, J.M.; et al. Measurement of serum PON-3 concentration: Method evaluation, reference values, and influence of genotypes in a population-based study. J. Lipid Res. 2011, 52, 1055–1061. [Google Scholar] [CrossRef]
- Hafez, M.M.; Al-Shabanah, O.A.; Al-Harbi, N.O.; Al-Harbi, M.M.; Al-Rejaie, S.S.; Alsurayea, S.M.; Sayed-Ahmed, M.M. Association between paraoxonases gene expression and oxidative stress in hepatotoxicity induced by CCl4. Oxid. Med. Cell. Longev. 2014, 2014, 893212. [Google Scholar] [CrossRef]
- Riedmaier, S.; Klein, K.; Winter, S.; Hofmann, U.; Schwab, M.; Zanger, U.M. Paraoxonase (PON1 and PON3) Polymorphisms: Impact on Liver Expression and Atorvastatin-Lactone Hydrolysis. Front. Pharmacol. 2011, 2, 41. [Google Scholar] [CrossRef] [PubMed]
- Schweikert, E.M.; Devarajan, A.; Witte, I.; Wilgenbus, P.; Amort, J.; Forstermann, U.; Shabazian, A.; Grijalva, V.; Shih, D.M.; Farias-Eisner, R.; et al. PON3 is upregulated in cancer tissues and protects against mitochondrial superoxide-mediated cell death. Cell Death Differ. 2012, 19, 1549–1560. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Yuan, S.X.; Yang, F.; Tao, Q.F.; Yang, Y.; Xu, Q.G.; Wang, Z.G.; Yu, J.; Lin, K.Y.; Wang, Z.Y.; et al. Paraoxonase 3 inhibits cell proliferation and serves as a prognostic predictor in hepatocellular carcinoma. Oncotarget 2016, 7, 70045–70057. [Google Scholar] [CrossRef]
- Jin, Y.; Li, Q.; Qiu, J.; Zhao, X.; Zheng, C.; Lv, S.; Bai, Y.; Shan, Y.; Ye, L.C. Downregulation of paraoxonase 3 contributes to aggressive human hepatocellular carcinoma progression and associates with poor prognosis. Tumour Biol. 2016, 37, 14193–14203. [Google Scholar] [CrossRef]
- Campo, S.; Sardo, A.M.; Campo, G.M.; Avenoso, A.; Castaldo, M.; D’Ascola, A.; Giunta, E.; Calatroni, A.; Saitta, A. Identification of paraoxonase 3 gene (PON3) missense mutations in a population of southern Italy. Mutat. Res. 2004, 546, 75–80. [Google Scholar] [CrossRef] [PubMed]





| Author | Year | Pon1−/− Model | Modification | Age | Diet | Investigation | Conclusion |
| Shih, D. et al. [41] | 1998 | C57BL/6J mice | Neomycin cassette insertion in exon 1 | Adult | Standard chow | Organophosphate toxicity | PON1-null mice showed dramatic sensitivity to chlorpyrifos oxon toxicity |
| Atherogenic (high-fat, high-cholesterol; 15 weeks) | Atherosclerosis | PON1 deficiency led to impaired protection against LDL oxidation, causing significantly larger aortic atherosclerotic lesions compared to controls | |||||
| Shih, D. et al. [59] | 2000 | Combined PON1 KO/ apoE KO mice (97% C57BL/6J 3% 129/SvJ) | Neomycin cassette insertion in exon 1 | 3 months | Standard chow (6% fat) | Atherosclerosis (increased lipoprotein oxidation and lesion formation) | PON1 deficiency resulted in higher levels of oxidized LDL and accelerates atherosclerosis in the pon1 KO/apoE KO mice |
| Neomycin cassette insertion in exon 1 | 6 months | High-fat “Western” (42% fat, 0.15% cholesterol; 16 weeks) | |||||
| Rozenberg, O. et al. [58] | 2003 | C57BL/6J mice | Neomycin cassette insertion in exon 1 | 4 months | Standard chow | Increased macrophage oxidative stress and atherosclerosis | PON1 deficiency increases oxidative stress in macrophages, contributing to accelerated atherosclerosis |
| Givvimani, S. et al. [42] | 2015 | C57BL/6J mice | Purchased from Jackson Laboratory | 8 weeks | Atherogenic (high-fat, high-cholesterol, cocoa butter; 15 weeks) | Endothelial dysfunction and atherosclerosis | Lack of PON1 leads to dysfunctional HDL, resulting in endothelial impairment and atherosclerosis via MMP-9–induced remodeling |
| Bai, L. et al. [47] | 2018 | Sprague-Dawley rats | 342 bp deletion in exon 4 via CRISPR/Cas9 | 2 months | Standard chow | Impaired T cell development | PON1 deficiency leads to reduced thymocyte numbers and impaired T cell maturation, associated with increased apoptosis and upregulation of p38 MAPK signaling |
| Sikora, M. and Jakubowski, H. [60] | 2021 | C57BL/6J mice | Neomycin cassette insertion in exon 1 | 4 months | Standard chow vs. hyperhomocysteinemic (1% methionine in water) | Redox imbalance and atherogenic cardiovascular risk | Pon1 deficiency dysregulates redox proteins, explaining the pro-oxidant and pro-atherogenic phenotype |
| Khalaf, P. et al. [43] | 2022 | Dahl/SS rat | 7-bp frameshift insertion in exon 4 via CRISPR/Cas9 | 10 weeks | High-salt (8% NaCl; 5 weeks) | CKD (renal inflammation, fibrosis, and hypertensive renal injury) | Loss of PON1 exacerbates renal injury, fibrosis, oxidative stress, and increases mortality, suggesting a protective role in CKD |
| Dube, P. et al. [44] | 2022 | Dahl/SS rat | 7-bp frameshift insertion in exon 4 via CRISPR/Cas9 | 10 weeks | High-salt (8% NaCl; 5 weeks) | Cardiac injury in CKD | Loss of PON1 increases cardiac inflammation, fibrosis, and hypertrophy, indicating a cardioprotective role for PON1 |
| Author | Year | Pon2−/− model | Modification | Age | Diet + Disease induction | Investigation | Conclusion |
| Carey J. Ng et al. [61] | 2006 | C57Bl6/J mice | Insertional mutation in intron 2 | Adult | Atherogenic diet (15.8% fat, 1.25% cholesterol, 0.5% cholic acid) | Atherosclerosis | PON2-deficient mice have lower serum levels of VLDL/LDL cholesterol and developed significantly larger atherosclerotic lesions. |
| Edna Meilin et al. [62] | 2010 | C57Bl6/J mice | Insertional mutation in intron 2 | 8–10 weeks | Standard chow | Macrophage triglycerides accumulation | PON2 has a protective role in reducing macrophage triglyceride accumulation, triglyceride biosynthesis, microsomal DGAT1 activity, and oxidative stress under high glucose conditions in cultured cells from knockout mice. This protective effect is likely mediated through the inhibition of NADPH-oxidase activity. |
| Giordano G. et al. [63] | 2011 | C57Bl6/J mice | Insertional mutation in intron 2 | 1–60 days | Standard chow | PON2 expression and activity in different mouse brain regions | PON2 has the highest expression levels in lung and small intestine, followed by heart and liver. Lower levels were found in testis, kidney and brain. Overall, a higher expression was observed in females. In the brain, PON2 protein levels were highest in nucleus accumbens, substantia nigra and striatum, areas known for high levels of oxidative stress. The pattern of PON2 lactonase activity followed the regional and gender profiles. |
| Noam Bourquard et al. [64] | 2011 | C57Bl6/J mice | Insertional mutation in intron 2 | Adult | Standard chow, Atherogenic diet (15.8% fat, 1.25% cholesterol, 0.5% cholic acid) or Western diet (42% fat and 0.15 % cholesterol) | Hepatic insulin signaling | PON2 deficiency increases atherosclerosis susceptibility and is associated with impaired hepatic insulin signaling, supporting previous epidemiological links between PON2 polymorphisms and diabetic complications. While PON2-deficient mice share several characteristics with PON2-def/apoE−/− mice, such as increased atherosclerotic lesion development, systemic oxidative stress, dyslipidemia, and mitochondrial dysfunction, the latter exhibit improved hepatic insulin signaling compared to apoE−/− controls. |
| Julia Ebert et al. [65] | 2018 | C57Bl6/J mice | Insertional mutation in intron 2 | 8–12 weeks | Standard chow | Coagulation | PON2 deficiency disrupts redox regulation, leading to vascular inflammation and blood coagulation abnormalities. Pon2−/− mice exhibit increased oxidative stress, endothelial dysfunction, elevated IL-6 levels, and heightened tissue factor (TF) activity in endothelial cells. These mice also show shortened coagulation times and increased platelet procoagulant activity. These findings highlight a PON2 redox-dependent mechanism that regulates endothelial TF activity, preventing systemic coagulation activation and inflammation. |
| Sulaiman D. et al. [66] | 2019 | C57Bl6/J mice | PON2 deficient | 8–10 weeks | Standard chow with ischemia–reperfusion injury induction | Acute myocardial ischemia–reperfusion injury | PON2 protects against acute myocardial ischemia–reperfusion injury (IRI) by mitigating mitochondrial dysfunction and oxidative stress in cardiomyocytes through activation of the PI3K/Akt/GSK-3β RISK pathway. |
| Diana M Shih et al. [67] | 2019 | ? | PON2 deficient | 8–16 weeks | Standard chow for control group and an obesifying diet | Diet-induced obesity | Increased ER stress and mitochondrial dysfunction because of PON2 deficiency lead to decreased energy expenditure, increased adipocyte hypertrophy and obesity in PON2 deficient mice. |
| Jacqueline M Garrick et al. [68] | 2021 | C57Bl6/J mice | Insertional mutation in intron 2 | 3–4 months | Standard chow | Motor behavior | PON2 deficiency induces behavioral changes, particularly affecting locomotion, alongside significant transcript-level biochemical alterations. These changes influence a range of molecular functions linked to affective disorders, cellular differentiation, and cancer biology. |
| Lisa Spiecker et al. [69] | 2021 | C57Bl6/J mice | Insertional mutation in intron 2 | Adult | Standard chow | effects of inactivation of PON2 hematopoietic cell differentiation and activity | PON2 plays a key role in regulating HSC functions. The elevated ROS levels in Pon2−/− progenitor cells are associated with an increased frequency of CMPs and GMPs and a shift in the myeloid-to-lymphoid balance in aged mice. Pon2 deficiency activates an anti-apoptotic program in LT-HSCs while also upregulating genes involved in stem cell maintenance, such as Cxcr4, Recql4, and Aatk. We propose that this "maintenance" program compensates for ROS-induced premature aging, ensuring a stable supply of committed progenitor cells in aged mice. |
| Hagmann et al. [70] | 2022 | C57Bl6/J mice | Insertional mutation in intron 2 | Adult | Standard chow Nephropathy induction with Adriamycin | Diabetic and Inflammatory Glomerular Disease | PON2 knockout mice show heightened glomerular damage under oxidative stress conditions, including adriamycin-induced nephropathy. |
| Aaron G. Whitt et al. [71] | 2023 | C57Bl/6/TyrC2J mice | CRISPR/Cas9 single nucleotide insertion in exon 3 | Adult | Standard chow | Lewis Lung carcinoma tumors | PON2 was found to be essential for the growth of murine and human lung tumor cells in vitro, but plays a limited role in murine lung tumorigenesis in vivo. |
| Parameswaran Gangadharan Sreekumar et al. [72] | 2023 | C57Bl6/J mice | Insertional mutation in intron 2 | 6–8 weeks | Standard chow + single dose of 20 mg/kg BW NaIO3 administered via the tail vein for retinal pigment epithelial atrophy induction | Age-related macular degeneration | PON2 deficiency leads to mitochondrial dysfunction in retinal pigment epithelial (RPE) cells and a decline in retinal function. These findings suggest that PON2 plays a protective role in retinal health and pathophysiology. |
| Author | Year | Pon3−/− model | Modification | Age | Diet | Investigation | Conclusion |
| Kempster, S. et al. [73] | 2011 | Sperm from heterozygous Pon3 KO mice were obtained from the Texas A&M Institute for Genomic Medicine | β-geo (lacZ/neo) cassette insertion in first two coding exons | Embryonic and Neonatal | Standard chow | Fetal viability, body and placental weights | PON3 deficiency results in early fetal/neonatal death and reduced fetal growth |
| Shih, D. et al. [74] | 2015 | C57BL/6J mice | Neomycin cassette insertion in exon 4 | 3 months | High-fat “Western” (10 weeks) | Obesity | PON3 KO mice exhibit increased body weight on the high-fat Western diet and altered plasma lipids, increased gallstone weight, enlarged atherosclerotic lesions and higher mortality on the CC diet, indicating that PON3 plays a protective role in metabolic homeostasis |
| CC (15.8% fat, 1.25% cholesterol, 0.5% sodium cholate; 16 weeks) | Lipid metabolism, bile acid synthesis, gallstone formation and atherosclerotic lesion development | ||||||
| Lamichhane, S. et al. [75] | 2022 | Dahl/SS rat | 16 bp frameshift deletion in exon 4 via CRISPR/Cas9 | 10 weeks | Standard chow (8 weeks) vs. High-salt (8% NaCl; 8 weeks) | Salt-induced renal disease | PON3 KO is linked to significantly increased excretion of cardiotonic steroids, indicating a regulatory role in CTS homeostasis under CKD conditions |
| Mutchler, S. et al. [76] | 2024 | B6.129X1-Pon3tm1Lus/J | Neomycin cassette insertion in exon 4 | Adult | Standard chow vs. High K+ (5%) vs. Low K+ (<0,003%) | ENaC-mediated Na⁺ reabsorption, renal Na⁺ and K⁺ homeostasis | Loss of PON3 increases ENaC activity, leading to lower plasma K⁺ and enhanced NCC phosphorylation; these changes are normalized by a high K⁺ diet, underscoring PON3’s critical role in renal electrolyte balance and Na⁺ transport regulation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huybrechts, T.; Franck, K.; Steenackers, E.; Van Hul, W. The Paraoxonase (PON) Gene Family in Health, Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) and Other Diseases. Int. J. Mol. Sci. 2025, 26, 11054. https://doi.org/10.3390/ijms262211054
Huybrechts T, Franck K, Steenackers E, Van Hul W. The Paraoxonase (PON) Gene Family in Health, Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) and Other Diseases. International Journal of Molecular Sciences. 2025; 26(22):11054. https://doi.org/10.3390/ijms262211054
Chicago/Turabian StyleHuybrechts, Tammy, Kristien Franck, Ellen Steenackers, and Wim Van Hul. 2025. "The Paraoxonase (PON) Gene Family in Health, Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) and Other Diseases" International Journal of Molecular Sciences 26, no. 22: 11054. https://doi.org/10.3390/ijms262211054
APA StyleHuybrechts, T., Franck, K., Steenackers, E., & Van Hul, W. (2025). The Paraoxonase (PON) Gene Family in Health, Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) and Other Diseases. International Journal of Molecular Sciences, 26(22), 11054. https://doi.org/10.3390/ijms262211054

