Impact of Anabolic–Androgenic Steroid Abuse on the Cardiovascular System: Molecular Mechanisms and Clinical Implications
Abstract
1. Introduction
2. Epidemiology of AAS Use
3. Molecular Mechanisms of AAS Cardiovascular Toxicity
3.1. Effect of AAS on Androgen Receptors in the Heart and Endothelium
3.2. Effects of AAS on Oxidative Stress and Mitochondrial Dysfunction
3.3. Effects of ASS on Apoptosis and Autophagy
4. Myocardial Remodeling and Fibrosis in AAS Users
5. Effects of Anabolic–Androgenic Steroids on the Coagulation System
6. Effect of AAS on Lipid Metabolism and Blood Pressure Regulation
7. Other Neurohormonal Effects of AAS Use and Their Cardiovascular Implications
8. Arrhythmias and Electrical Remodeling in AAS Users
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Windfeld-Mathiasen, J.; Heerfordt, I.M.; Dalhoff, K.P.; Andersen, J.T.; Andersen, M.A.; Johansson, K.S.; Biering-Sørensen, T.; Olsen, F.J.; Horwitz, H. Cardiovascular Disease in Anabolic Androgenic Steroid Users. Circulation 2025, 151, 828–834. [Google Scholar] [CrossRef]
- Basaria, S.; Wahlstrom, J.T.; Dobs, A.S. Anabolic-Androgenic Steroid Therapy in the Treatment of Chronic Diseases. J. Clin. Endocrinol. Metab. 2001, 86, 5108–5117. [Google Scholar] [CrossRef] [PubMed]
- Bond, P.; Smit, D.L.; de Ronde, W. Anabolic-androgenic steroids: How do they work and what are the risks? Front. Endocrinol. 2022, 13, 1059473. [Google Scholar] [CrossRef] [PubMed]
- Pope, H.G.; Kanayama, G.; Athey, A.; Ryan, E.; Hudson, J.I.; Baggish, A. The lifetime prevalence of anabolic-androgenic steroid use and dependence in Americans: Current best estimates. Am. J. Addict. 2014, 23, 371–377. [Google Scholar] [CrossRef] [PubMed]
- Kanayama, G.; Brower, K.J.; Wood, R.I.; Hudson, J.I.; Pope, H.G., Jr. Anabolic-androgenic steroid dependence: An emerging disorder. Addiction 2009, 104, 1966–1978. [Google Scholar] [CrossRef]
- Hernández-Guerra, A.I.; Tapia, J.; Menéndez-Quintanal, L.M.; Lucena, J.S. Sudden cardiac death in anabolic androgenic steroids abuse: Case report and literature review. Forensic Sci. Res. 2019, 4, 267–273. [Google Scholar] [CrossRef]
- Montisci, M.; El Mazloum, R.; Cecchetto, G.; Terranova, C.; Ferrara, S.D.; Thiene, G.; Basso, C. Anabolic androgenic steroids abuse and cardiac death in athletes: Morphological and toxicological findings in four fatal cases. Forensic Sci. Int. 2012, 217, e13–e18. [Google Scholar] [CrossRef]
- Tungesvik, H.M.; Bjørnebekk, A.; Hisdal, J. Impaired vascular function among young users of anabolic–androgenic steroids. Sci. Rep. 2024, 14, 19201. [Google Scholar] [CrossRef]
- Sagoe, D.; Molde, H.; Andreassen, C.S.; Torsheim, T.; Pallesen, S. The global epidemiology of anabolic-androgenic steroid use: A meta-analysis and meta-regression analysis. Ann. Epidemiol. 2014, 24, 383–398. [Google Scholar] [CrossRef]
- Grant, B.; Hyams, E.; Davies, R.; Minhas, S.; Jayasena, C.N. Androgen abuse: Risks and adverse effects in men. Ann. N. Y. Acad. Sci. 2024, 1538, 56–70. [Google Scholar] [CrossRef]
- Pope, H.G., Jr.; Kanayama, G.; Hudson, J.I. Risk factors for illicit anabolic-androgenic steroid use in male weightlifters: A cross-sectional cohort study. Biol. Psychiatry 2012, 71, 254–261. [Google Scholar] [CrossRef]
- Piacentino, D.; Kotzalidis, G.D.; Del Casale, A.; Aromatario, M.R.; Pomara, C.; Girardi, P.; Sani, G. Anabolic-androgenic steroid use and psychopathology in athletes. A systematic review. Curr. Neuropharmacol. 2015, 13, 101–121. [Google Scholar] [CrossRef]
- Kanayama, G.; Hudson, J.I.; Pope, H.G., Jr. Long-term psychiatric and medical consequences of anabolic-androgenic steroid abuse: A looming public health concern? Drug Alcohol Depend. 2008, 98, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Marsh, J.D.; Lehmann, M.H.; Ritchie, R.H.; Gwathmey, J.K.; Green, G.E.; Schiebinger, R.J. Androgen receptors mediate hypertrophy in cardiac myocytes. Circulation 1998, 98, 256–261. [Google Scholar] [CrossRef] [PubMed]
- Melchert, R.B.; Herron, T.J.; Welder, A.A. The effect of anabolic-androgenic steroids on primary myocardial cell cultures. Med. Sci. Sports Exerc. 1992, 24, 206–212. [Google Scholar] [CrossRef] [PubMed]
- Sachtleben, T.R.; Berg, K.E.; Elias, B.A.; Cheatham, J.P.; Felix, G.L.; Hofschire, P.J. The effects of anabolic steroids on myocardial structure and cardiovascular fitness. Med. Sci. Sports Exerc. 1993, 25, 1240–1245. [Google Scholar] [CrossRef]
- Sivalokanathan, S.; Małek, Ł.A.; Malhotra, A. The Cardiac Effects of Performance-Enhancing Medications: Caffeine vs. Anabolic Androgenic Steroids. Diagnostics 2021, 11, 324. [Google Scholar] [CrossRef] [PubMed]
- Goglia, L.; Tosi, V.; Sanchez, A.M.; Flamini, M.I.; Fu, X.D.; Zullino, S.; Genazzani, A.R.; Simoncini, T. Endothelial regulation of eNOS, PAI-1 and t-PA by testosterone and dihydrotestosterone in vitro and in vivo. Mol. Hum. Reprod. 2010, 16, 761–769. [Google Scholar] [CrossRef]
- Yu, J.; Akishita, M.; Eto, M.; Ogawa, S.; Son, B.-K.; Kato, S.; Ouchi, Y.; Okabe, T. Androgen receptor-dependent activation of endothelial nitric oxide synthase in vascular endothelial cells: Role of phosphatidylinositol 3-kinase/akt pathway. Endocrinology 2010, 151, 1822–1828. [Google Scholar] [CrossRef]
- Cai, J.J.; Wen, J.; Jiang, W.H.; Lin, J.; Hong, Y.; Zhu, Y.S. Androgen actions on endothelium functions and cardiovascular diseases. J. Geriatr. Cardiol. 2016, 13, 183–196. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, L.Y.; Jiang, T.Y.; Zhang, H.P.; Dou, Y.; Zhao, J.H.; Zhao, H.; Qiao, Z.D.; Qiao, J.T. Effects of testosterone and 17-beta-estradiol on TNF-alpha-induced E-selectin and VCAM-1 expression in endothelial cells. Analysis of the underlying receptor pathways. Life Sci. 2002, 71, 15–29. [Google Scholar] [CrossRef]
- Norata, G.D.; Tibolla, G.; Seccomandi, P.M.; Poletti, A.; Catapano, A.L. Dihydrotestosterone decreases tumor necrosis factor-alpha and lipopolysaccharide-induced inflammatory response in human endothelial cells. J. Clin. Endocrinol. Metab. 2006, 91, 546–554. [Google Scholar] [CrossRef]
- Carteri, R.B.; Kopczynski, A.; Rodolphi, M.S.; Strogulski, N.R.; Wannmacher, C.M.D.; Franceschi, I.D.; Hammerschmitt, M.E.; Driemeier, D.; Portela, L.V. Anabolic-androgenic steroids impair mitochondrial function and redox status in the heart and liver of mice. Steroids 2021, 172, 108861. [Google Scholar] [CrossRef] [PubMed]
- Frankenfeld, S.P.; Oliveira, L.P.; Ortenzi, V.H.; Rego-Monteiro, I.C.; Chaves, E.A.; Ferreira, A.C.; Leitão, A.C.; Carvalho, D.P.; Fortunato, R.S. The anabolic androgenic steroid nandrolone decanoate disrupts redox homeostasis in liver, heart and kidney of male Wistar rats. PLoS ONE 2014, 9, e102699. [Google Scholar] [CrossRef] [PubMed]
- Amini, H.; Shirpoor, A.; Naderi, R. Nandrolone decanoate induces heart injury via oxidative damage and mitochondrial apoptotic pathway by regulation of TLR4/NF-κB/NLRP3 axis in male rats: The rescue effect of N-acetylcysteine. Steroids 2025, 214, 109563. [Google Scholar] [CrossRef]
- Memudu, A.E.; Dongo, G.A. A study to demonstrate the potential of Anabolic Androgen Steroid to activate oxidative tissue damage, nephrotoxicity and decline endogenous antioxidant system in renal tissue of Adult Wistar Rats. Toxicol. Rep. 2023, 10, 320–326. [Google Scholar] [CrossRef]
- Fadah, K.; Gopi, G.; Lingireddy, A.; Blumer, V.; Dewald, T.; Mentz, R.J. Anabolic androgenic steroids and cardiomyopathy: An update. Front. Cardiovasc. Med. 2023, 10, 1214374. [Google Scholar] [CrossRef]
- Albano, G.D.; Amico, F.; Cocimano, G.; Liberto, A.; Maglietta, F.; Esposito, M.; Rosi, G.L.; Di Nunno, N.; Salerno, M.; Montana, A. Adverse Effects of Anabolic-Androgenic Steroids: A Literature Review. Healthcare 2021, 9, 97. [Google Scholar] [CrossRef]
- Maior, A.S.; Carvalho, A.R.; Marques-Neto, S.R.; Menezes, P.; Soares, P.P.; Nascimento, J.H. Cardiac autonomic dysfunction in anabolic steroid users. Scand. J. Med. Sci. Sports 2013, 23, 548–555. [Google Scholar] [CrossRef]
- Arazi, H.; Mohammadjafari, H.; Asadi, A. Use of anabolic androgenic steroids produces greater oxidative stress responses to resistance exercise in strength-trained men. Toxicol. Rep. 2017, 4, 282–286. [Google Scholar] [CrossRef]
- Zaugg, M.; Jamali, N.Z.; Lucchinetti, E.; Xu, W.; Alam, M.; Shafiq, S.A.; Siddiqui, M.A. Anabolic-androgenic steroids induce apoptotic cell death in adult rat ventricular myocytes. J. Cell. Physiol. 2001, 187, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Papamitsou, T.; Barlagiannis, D.; Papaliagkas, V.; Kotanidou, E.; Dermentzopoulou-Theodoridou, M. Testosterone-induced hypertrophy, fibrosis and apoptosis of cardiac cells--an ultrastructural and immunohistochemical study. Med. Sci. Monit. 2011, 17, BR266–BR273. [Google Scholar] [CrossRef] [PubMed]
- do Nascimento, A.M.; de Lima, E.M.; Boëchat, G.A.P.; Meyrelles, S.D.S.; Bissoli, N.S.; Lenz, D.; Endringer, D.C.; de Andrade, T.U. Testosterone induces apoptosis in cardiomyocytes by increasing proapoptotic signaling involving tumor necrosis factor-α and renin angiotensin system. Hum. Exp. Toxicol. 2015, 34, 1139–1147. [Google Scholar] [CrossRef] [PubMed]
- Kara, M.; Ozcagli, E.; Kotil, T.; Alpertunga, B. Effects of stanozolol on apoptosis mechanisms and oxidative stress in rat cardiac tissue. Steroids 2018, 134, 96–100. [Google Scholar] [CrossRef]
- Sciarretta, S.; Maejima, Y.; Zablocki, D.; Sadoshima, J. The Role of Autophagy in the Heart. Annu. Rev. Physiol. 2018, 80, 1–26. [Google Scholar] [CrossRef]
- Li, Z.; Wang, J.; Yang, X. Functions of autophagy in pathological cardiac hypertrophy. Int. J. Biol. Sci. 2015, 11, 672–678. [Google Scholar] [CrossRef]
- Ding, W.; Feng, H.; Li, W.J.; Liao, H.H.; Tang, Q.Z. Research Progress on the Interaction Between Autophagy and Energy Homeostasis in Cardiac Remodeling. Front. Pharmacol. 2020, 11, 587438. [Google Scholar] [CrossRef]
- Sciarretta, S.; Volpe, M.; Sadoshima, J. Mammalian target of rapamycin signaling in cardiac physiology and disease. Circ. Res. 2014, 114, 549–564. [Google Scholar] [CrossRef]
- Yang, J.; Xu, J.; Han, X.; Wang, H.; Zhang, Y.; Dong, J.; Deng, Y.; Wang, J. Lysophosphatidic Acid Is Associated with Cardiac Dysfunction and Hypertrophy by Suppressing Autophagy via the LPA3/AKT/mTOR Pathway. Front. Physiol. 2018, 9, 1315. [Google Scholar] [CrossRef]
- Torrisi, M.; Pennisi, G.; Russo, I.; Amico, F.; Esposito, M.; Liberto, A.; Cocimano, G.; Salerno, M.; Li Rosi, G.; Di Nunno, N.; et al. Sudden Cardiac Death in Anabolic-Androgenic Steroid Users: A Literature Review. Medicina 2020, 56, 587. [Google Scholar] [CrossRef]
- Vanberg, P.; Atar, D. Androgenic anabolic steroid abuse and the cardiovascular system. Handb. Exp. Pharmacol. 2010, 195, 411–457. [Google Scholar] [CrossRef]
- Fyksen, T.S.; Gravning, J.; Rossebø, A.; Vanberg, P.; Grøtta, O.J.; Atar, D.; Halvorsen, S. Cardiac structure and function in anabolic-androgenic steroid users: A 16-year follow-up study. Open Heart 2025, 12, e003376. [Google Scholar] [CrossRef] [PubMed]
- Alhusban, Z.; Alaaraj, M.M.; Saimeh, A.R.; Nassar, W.; Awad, A.; Ghanima, K.; Abouelkheir, M.; Hamed, A.M.; Afsa, A.; Morra, M.E. Steroid-Induced Cardiomyopathy: Insights from a Systematic Literature Review and a Case Report. Clin. Case Rep. 2025, 13, e70171. [Google Scholar] [CrossRef] [PubMed]
- Stojko, M.; Nocoń, J.; Piłat, P.; Szpila, G.; Smolarczyk, J.; Żmudka, K.; Moll, M.; Hawranek, M. Innovative Reports on the Effects of Anabolic Androgenic Steroid Abuse-How to Lose Your Mind for the Love of Sport. Medicina 2023, 59, 1439. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.; Rasmussen, J.J.; Frandsen, M.N.; Schou, M.; Johansen, M.L.; Faber, J.; Münster, A.B.; Sidelmann, J.J.; Kistorp, C. Procoagulant State in Current and Former Anabolic Androgenic Steroid Abusers. Thromb. Haemost. 2018, 118, 647–653. [Google Scholar] [CrossRef]
- Gralnick, H.R.; Rick, M.E. Danazol increases factor VIII and factor IX in classic hemophilia and Christmas disease. N. Engl. J. Med. 1983, 308, 1393–1395. [Google Scholar] [CrossRef]
- Christou, G.A.; Christou, K.A.; Nikas, D.N.; Goudevenos, J.A. Acute myocardial infarction in a young bodybuilder taking anabolic androgenic steroids: A case report and critical review of the literature. Eur. J. Prev. Cardiol. 2016, 23, 1785–1796. [Google Scholar] [CrossRef]
- Choulerton, J.; Guha, N.; Squires, R. Anabolic steroid use and ischaemic stroke in a young fitness enthusiast. BMJ Case Rep. 2021, 14, e234241. [Google Scholar] [CrossRef]
- Menakuru, S.R.; Atta, M.; Dhillon, V.S.; Salih, A. Testosterone Usage Leading to Pulmonary Embolisms and Deep Vein Thrombosis: A Case Report and Review of the Literature. Hematol. Rep. 2023, 15, 290–297. [Google Scholar] [CrossRef]
- Camilleri, E.; Smit, D.L.; van Rein, N.; Le Cessie, S.; de Hon, O.; den Heijer, M.; Lisman, T.; Cannegieter, S.C.; de Ronde, W. Coagulation profiles during and after anabolic androgenic steroid use: Data from the HAARLEM study. Res. Pr. Thromb. Haemost. 2023, 7, 102215. [Google Scholar] [CrossRef]
- Sidelmann, J.J.; Gram, J.B.; Rasmussen, J.J.; Kistorp, C. Anabolic-Androgenic Steroid Abuse Impairs Fibrin Clot Lysis. Semin. Thromb. Hemost. 2021, 47, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Bachman, E.; Travison, T.G.; Basaria, S.; Davda, M.N.; Guo, W.; Li, M.; Connor Westfall, J.; Bae, H.; Gordeuk, V.; Bhasin, S. Testosterone induces erythrocytosis via increased erythropoietin and suppressed hepcidin: Evidence for a new erythropoietin/hemoglobin set point. J. Gerontol. A Biol. Sci. Med. Sci. 2014, 69, 725–735. [Google Scholar] [CrossRef] [PubMed]
- Ajayi, A.A.; Mathur, R.; Halushka, P.V. Testosterone increases human platelet thromboxane A2 receptor density and aggregation responses. Circulation 1995, 91, 2742–2747. [Google Scholar] [CrossRef] [PubMed]
- Greer, I.A.; Greaves, M.; Madhok, R.; McLoughlin, K.; Porter, N.; Lowe, G.D.; Preston, F.E.; Forbes, C.D. Effect of stanozolol on factors VIII and IX and serum aminotransferases in haemophilia. Thromb. Haemost. 1985, 53, 386–389. [Google Scholar] [CrossRef]
- Kluft, C.; Preston, F.E.; Malia, R.G.; Bertina, R.M.; Wijngaards, G.; Greaves, M.; Verheijen, J.H.; Dooijewaard, G. Stanozolol-induced changes in fibrinolysis and coagulation in healthy adults. Thromb. Haemost. 1984, 51, 157–164. [Google Scholar] [CrossRef]
- Kahn, N.N.; Sinha, A.K.; Spungen, A.M.; Bauman, W.A. Effects of oxandrolone, an anabolic steroid, on hemostasis. Am. J. Hematol. 2006, 81, 95–100. [Google Scholar] [CrossRef]
- Verheijen, J.H.; Rijken, D.C.; Chang, G.T.; Preston, F.E.; Kluft, C. Modulation of rapid plasminogen activator inhibitor in plasma by stanozolol. Thromb. Haemost. 1984, 51, 396–397. [Google Scholar] [CrossRef]
- Hartgens, F.; Kuipers, H. Effects of androgenic-anabolic steroids in athletes. Sports Med. 2004, 34, 513–554. [Google Scholar] [CrossRef]
- Baldo-Enzi, G.; Giada, F.; Zuliani, G.; Baroni, L.; Vitale, E.; Enzi, G.; Magnanini, P.; Fellin, R. Lipid and apoprotein modifications in body builders during and after self-administration of anabolic steroids. Metabolism 1990, 39, 203–208. [Google Scholar] [CrossRef]
- McCullough, D.; Webb, R.; Enright, K.J.; Lane, K.E.; McVeigh, J.; Stewart, C.E.; Davies, I.G. How the love of muscle can break a heart: Impact of anabolic androgenic steroids on skeletal muscle hypertrophy, metabolic and cardiovascular health. Rev. Endocr. Metab. Disord. 2021, 22, 389–405. [Google Scholar] [CrossRef]
- Hartgens, F.; Rietjens, G.; Keizer, H.A.; Kuipers, H.; Wolffenbuttel, B.H. Effects of androgenic-anabolic steroids on apolipoproteins and lipoprotein (a). Br. J. Sports Med. 2004, 38, 253–259. [Google Scholar] [CrossRef]
- Baggish, A.L.; Weiner, R.B.; Kanayama, G.; Hudson, J.I.; Lu, M.T.; Hoffmann, U.; Pope, H.G., Jr. Cardiovascular Toxicity of Illicit Anabolic-Androgenic Steroid Use. Circulation 2017, 135, 1991–2002. [Google Scholar] [CrossRef] [PubMed]
- de Melo, A.F., Jr.; Escouto, L.; Pimpão, A.B.; Peixoto, P.; Brasil, G.; Ronchi, S.N.; Pereira, S.A.; Bissoli, N.S. Anabolic-androgen steroids: A possible independent risk factor to Cardiovascular, Kidney and Metabolic Syndrome. Toxicol. Appl. Pharmacol. 2025, 495, 117238. [Google Scholar] [CrossRef] [PubMed]
- Kasikcioglu, E.; Oflaz, H.; Umman, B.; Bugra, Z. Androgenic anabolic steroids also impair right ventricular function. Int. J. Cardiol. 2009, 134, 123–125. [Google Scholar] [CrossRef] [PubMed]
- Seara, F.A.C.; Barbosa, R.A.Q.; de Oliveira, D.F.; Gran da Silva, D.L.S.; Carvalho, A.B.; Freitas Ferreira, A.C.; Matheus Nascimento, J.H.; Olivares, E.L. Administration of anabolic steroid during adolescence induces long-term cardiac hypertrophy and increases susceptibility to ischemia/reperfusion injury in adult Wistar rats. J. Steroid Biochem. Mol. Biol. 2017, 171, 34–42. [Google Scholar] [CrossRef]
- Liu, J.D.; Wu, Y.Q. Anabolic-androgenic steroids and cardiovascular risk. Chin. Med. J. 2019, 132, 2229–2236. [Google Scholar] [CrossRef]
- Daly, R.C.; Su, T.P.; Schmidt, P.J.; Pagliaro, M.; Pickar, D.; Rubinow, D.R. Neuroendocrine and behavioral effects of high-dose anabolic steroid administration in male normal volunteers. Psychoneuroendocrinology 2003, 28, 317–331. [Google Scholar] [CrossRef]
- Rahnema, C.D.; Lipshultz, L.I.; Crosnoe, L.E.; Kovac, J.R.; Kim, E.D. Anabolic steroid-induced hypogonadism: Diagnosis and treatment. Fertil. Steril. 2014, 101, 1271–1279. [Google Scholar] [CrossRef]
- Kostic, T.S.; Stojkov, N.J.; Bjelic, M.M.; Mihajlovic, A.I.; Janjic, M.M.; Andric, S.A. Pharmacological doses of testosterone upregulated androgen receptor and 3-Beta-hydroxysteroid dehydrogenase/delta-5-delta-4 isomerase and impaired leydig cells steroidogenesis in adult rats. Toxicol. Sci. 2011, 121, 397–407. [Google Scholar] [CrossRef]
- Desai, A.; Yassin, M.; Cayetano, A.; Tharakan, T.; Jayasena, C.N.; Minhas, S. Understanding and managing the suppression of spermatogenesis caused by testosterone replacement therapy (TRT) and anabolic-androgenic steroids (AAS). Ther. Adv. Urol. 2022, 14, 17562872221105017. [Google Scholar] [CrossRef]
- Wang, J.M.; Li, Z.F.; Yang, W.X.; Tan, F.Q. Follicle-stimulating hormone signaling in Sertoli cells: A licence to the early stages of spermatogenesis. Reprod. Biol. Endocrinol. 2022, 20, 97. [Google Scholar] [CrossRef]
- Deyssig, R.; Weissel, M. Ingestion of androgenic-anabolic steroids induces mild thyroidal impairment in male body builders. J. Clin. Endocrinol. Metab. 1993, 76, 1069–1071. [Google Scholar] [CrossRef]
- Arafah, B.M. Decreased levothyroxine requirement in women with hypothyroidism during androgen therapy for breast cancer. Ann. Intern. Med. 1994, 121, 247–251. [Google Scholar] [CrossRef]
- Zarei, M.; Zaeemi, M.; Rashidlamir, A. Effects of testosterone enanthate treatment in conjunction with resistance training on thyroid hormones and lipid profile in male Wistar rats. Andrologia 2018, 50, e12862. [Google Scholar] [CrossRef]

| Mechanism | Pathophysiological Change | Potential Clinical Consequence |
|---|---|---|
| Atherogenic dyslipidemia | ↑ LDL-C, ↓ HDL-C, ↑ VLDL; inhibition of apoA-I and HDL synthesis; accelerated HDL catabolism | Accelerated atherosclerosis, premature CAD, MI, sudden cardiac death |
| Hypertension | ↑ Sympathetic tone; ↑ renin release; ↑ aldosterone → sodium/water retention, oxidative stress, fibrosis; upregulation of AT1R | Secondary hypertension, LVH, HF, vascular remodeling |
| Prothrombotic state | ↑ Erythropoiesis (↑ EPO, ↓ hepcidin); ↑ hematocrit/viscosity; ↑ platelet TXA2 receptor density and aggregation; ↑ factors II, VIII, IX; ↓ fibrinolysis (↑ PAI-1, fibrinogen, FXIII) | VTE, stroke, MI, pulmonary embolism |
| Endothelial dysfunction | ↓ NO, ↓ prostacyclin, impaired EDHF; ↑ adhesion molecules (VCAM-1, ICAM-1, E-selectin); proinflammatory endothelial phenotype | Vasoconstriction, CAD, hypertension, increased vascular stiffness |
| Oxidative stress and mitochondrial dysfunction | ↑ ROS (H2O2, superoxide); mitochondrial Ca2+ dysregulation; ↓ membrane potential; lipid/protein/DNA oxidation; ↓ antioxidant enzymes; vicious cycle of ROS–mitochondria | LVH, interstitial fibrosis, diastolic dysfunction, arrhythmias |
| Apoptosis | AR overstimulation → cytochrome c release, caspase-3 activation, ↑ p53; TLR4/NF-κB/NLRP3 inflammasome activation → pyroptosis | Cardiomyocyte loss, myocardial thinning, remodeling, cardiomyopathy, SCD |
| Myocardial remodeling | AR activation → hypertrophy; TGF-β/SMAD/CTGF-driven fibroblast activation; ↑ collagen I/III deposition, ↑ MMP/TIMP imbalance | LVH, interstitial fibrosis, ↓ EF, restrictive/dilated cardiomyopathy, HF |
| Systemic inflammation | ↑ TLR4, NF-κB, NLRP3 inflammasome; ↑ cytokines (TNF-α, IL-6, IL-1β); ↑ hs-CRP | Endothelial injury, accelerated atherogenesis, plaque instability |
| Study (Year) | Population/AAS Exposure | Key Cardiovascular Findings |
|---|---|---|
| Windfeld-Mathiasen et al. (2025) Circulation [1] | 1189 male AAS users (sanctioned for doping) vs. 59,450 age-matched controls; ~11-year follow-up (Danish registry cohort) | AAS users had a markedly higher incidence of cardiovascular events vs. controls. AASs were associated with an increased risk of acute myocardial infarction (adjusted hazard ratio [aHR] 3.00 [95% CI, 1.67–5.39]), percutaneous coronary intervention or coronary artery bypass graft (aHR 2.95 [95% CI, 1.68–5.18]), venous thromboembolism (aHR 2.42 [95% CI, 1.54–3.80]), arrhythmias (aHR 2.26 [95% CI, 1.53–3.32]), cardiomyopathy (aHR 8.90 [95% CI, 4.99–15.88]), and heart failure This large study establishes AAS abuse as a significant independent risk factor for premature cardiovascular disease. |
| Baggish et al. (2017) Circulation [62] | Cross-sectional study of 140 male weightlifters (86 long-term AAS users with ≥2 years use vs. 54 non-users); median ~9 years of cumulative AAS exposure | AAS users showed reduced left ventricular ejection fraction (∼52% vs. 63%, p < 0.001) and impaired diastolic function compared to non-user. They also had significantly higher coronary artery plaque volume (median 3 mL vs. 0 mL, p = 0.012). Ongoing AAS users had worse cardiac function than former users of AAS, suggesting partial improvement upon cessation. Cumulative AAS dose/duration correlated positively with coronary atherosclerotic burden, implicating a dose–response relationship in AAS-induced cardiac damage. |
| Fyksen et al. (2025) Open Heart [42] | Prospective cohort of 32 long-term AAS-using athletes (median 16-year follow-up) and 13 non-using controls. Among users, 15 discontinued AAS during follow-up while 17 continued use. | At baseline, AAS users had greater left ventricular mass and lower ejection fraction (LVEF) than control. After 16 years, users who continued AAS had persistently enlarged LV mass and reduced LVEF, whereas those who quit AAS showed significant regression of LV hypertrophy and an improvement in LVEF (median +3% vs. –2% change in LVEF for quitters vs. continuers, p < 0.01). This suggests that some AAS-induced cardiac changes are partially reversible after cessation, although LVEF in former users remained slightly subnormal. No difference in coronary artery disease prevalence was observed between groups. |
| Tungesvik et al. (2024) Sci. Reports [8] | 123 young male strength athletes (56 current AAS users vs. 67 non-user weightlifting controls) | AAS use was associated with significant endothelial dysfunction. AAS users had markedly reduced carotid artery reactivity and flow-mediated dilation compared to controls (both p < 0.001), indicating impaired nitric oxide–mediated vasodilation. These vascular changes provide a link to the heightened risk of acute cardiac events (e.g., myocardial infarction or sudden death) in young AAS users despite often angiographically normal coronary arteries. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borowiec, A.; Waluszewska, I.; Jurkiewicz, M.; Szczurek-Wasilewicz, W. Impact of Anabolic–Androgenic Steroid Abuse on the Cardiovascular System: Molecular Mechanisms and Clinical Implications. Int. J. Mol. Sci. 2025, 26, 11037. https://doi.org/10.3390/ijms262211037
Borowiec A, Waluszewska I, Jurkiewicz M, Szczurek-Wasilewicz W. Impact of Anabolic–Androgenic Steroid Abuse on the Cardiovascular System: Molecular Mechanisms and Clinical Implications. International Journal of Molecular Sciences. 2025; 26(22):11037. https://doi.org/10.3390/ijms262211037
Chicago/Turabian StyleBorowiec, Antoni, Iga Waluszewska, Michał Jurkiewicz, and Wioletta Szczurek-Wasilewicz. 2025. "Impact of Anabolic–Androgenic Steroid Abuse on the Cardiovascular System: Molecular Mechanisms and Clinical Implications" International Journal of Molecular Sciences 26, no. 22: 11037. https://doi.org/10.3390/ijms262211037
APA StyleBorowiec, A., Waluszewska, I., Jurkiewicz, M., & Szczurek-Wasilewicz, W. (2025). Impact of Anabolic–Androgenic Steroid Abuse on the Cardiovascular System: Molecular Mechanisms and Clinical Implications. International Journal of Molecular Sciences, 26(22), 11037. https://doi.org/10.3390/ijms262211037

