Thermodynamic Biomarkers of Neuroinflammation: Nanothermometry, Energy–Stress Dynamics, and Predictive Entropy in Glial–Vascular Networks
Abstract
1. From Inflammation to Entropy: The Thermodynamic Collapse of Neural Predictability
1.1. Experimental Rationale
1.2. Validation of Models
1.3. Implications for Clinical Practice
2. Thermodynamic Architecture of Neuroinflammatory Energy Flow
2.1. Redox Thermodynamics and the Microstructural Origins of Entropy Production
2.2. Validation of Models: Gliovascular Coupling as an Entropic Regulator
2.3. Implications for Clinical Practice: Multiscale Entropy Flux and Diagnostic Application
3. Nanothermometric Framework for Mapping Thermodynamic Biomarkers
4. Perturbational Energy–Stress Phenotyping: Quantifying Neuroenergetic Resilience
Dynamic Recovery Metrics: The Temporal Geometry of Reversibility
5. Thermodynamic Biomarkers of Neuroinflammation: Translating Energetic Disorder into Measurable Signatures
5.1. Entropic Field Biomarkers: Imaging the Spatial Geometry of Disorder
5.2. Molecular Correlates of Energetic Instability: Biofluid Thermodynamics
5.3. Nanothermodynamic Biosensing: Capturing the Invisible Flux
5.4. AI-Integrated Thermodynamic Pattern Recognition: Energetic Connectomics
- Redox–thermal coupling (phase coherence between NADH oscillations and variance of temperature);
- Mechanical–viscous opposition (integration of Θv and χth-μ);
- Entropy diffusion symmetry (correlation of Dth and σt spatially).
- Connectomic Entropy Density (CED)—the global rate of entropy accumulation per edge of network;
- Thermodynamic Clustering Coefficient (TCC)—the degree to which energy fluctuations are retained in a local state;
- Simulation of CED elevation and TCC collapse predicts joint progression toward irreversible energetic decoherence.
5.5. The Thermodynamic Biomarker Atlas: A Unified Framework for Energetic Phenotyping
- Field-level meteorics: Dth, ΔφO2–P, χth–μ—geometric descriptors associating with the distribution of energy;
- Molecular endpoint indices: Credox, Emol, Rpl—biochemical correlates of redox–thermal adaptation;
- Nanoscopic readouts: τR, Θv, NEI, EPC, σt—direct physical measures of micro-scale disorder;
- Network variables: TSV, CED, TCC—system-level descriptors of entropy propagation.
6. Nanothermodynamic Interventions: Restoring Energetic Coherence in Neuroinflammation
6.1. Rebalancing Heat and Redox Fluxes Utilizing Hybrid Nanoparticles
6.2. Entrainment of Temporal Oscillations Using Adaptive Fields
6.3. Reintegrate Glial-Vascular Conductivity
6.4. Closed-Loop Nanotherapeutics: Self-Regulating Thermodynamic Control
- Quantum sensing layer: NV-diamond centers continuously measure sub-mK thermal and magnetochemical readings (τR, σt) [75];
- Cognitive controller: neuromorphic or external AI models estimate deviations from equilibrium and select minimum energy corrections [178];
- Actuation module: plasmonic heaters and redox catalysts deliver millisecond-scale localized stimuli [179].
6.5. Therapeutic Endpoint: Thermodynamic Recovery
7. Translational Integration: From Thermodynamic Metrics to Predictive Neurotherapeutics
7.1. Multiscale Thermodynamic Modeling of the Inflamed Brain
7.2. Personalized Entropy Profiling: A Dynamic Framework for Predictive Medicine
7.3. Closed-Loop Neuroenergetic Therapies: Controlling Entropy in Real Time
7.4. Network Entropy as a Quantitative Marker of Recovery Potential
7.5. Toward Predictive Energetic Medicine: The Future of Translational Neurothermodynamics
7.6. Future Directions and Gaps in Knowledge
8. Conclusions: The Reversible Brain—Toward a Thermodynamic Paradigm of Neurorestoration
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brezzo, G.; Simpson, J.; Ameen-Ali, K.E.; Berwick, J.; Martin, C. Acute Effects of Systemic Inflammation upon the Neuro-Glial-Vascular Unit and Cerebrovascular Function. Brain Behav. Immun.-Health 2020, 5, 100074. [Google Scholar] [CrossRef]
- Song, N.; Mei, S.; Wang, X.; Hu, G.; Lu, M. Focusing on Mitochondria in the Brain: From Biology to Therapeutics. Transl. Neurodegener. 2024, 13, 23. [Google Scholar] [CrossRef]
- Ivanov, A.I.; Malkov, A.E.; Waseem, T.; Mukhtarov, M.; Buldakova, S.; Gubkina, O.; Zilberter, M.; Zilberter, Y. Glycolysis and Oxidative Phosphorylation in Neurons and Astrocytes during Network Activity in Hippocampal Slices. J. Cereb. Blood Flow Metab. 2014, 34, 397–407. [Google Scholar] [CrossRef]
- Steffan, D.; Pezzini, C.; Esposito, M.; Franco-Romero, A. Mitochondrial Aging in the CNS: Unravelling Implications for Neurological Health and Disease. Biomolecules 2025, 15, 1252. [Google Scholar] [CrossRef]
- Voicu, V.; Toader, C.; Șerban, M.; Covache-Busuioc, R.-A.; Ciurea, A.V. Systemic Neurodegeneration and Brain Aging: Multi-Omics Disintegration, Proteostatic Collapse, and Network Failure Across the CNS. Biomedicines 2025, 13, 2025. [Google Scholar] [CrossRef]
- Liu, X.; Jiang, N.; Zhou, W. Various Energetic Metabolism of Microglia in Response to Different Stimulations. Molecules 2023, 28, 4501. [Google Scholar] [CrossRef] [PubMed]
- Terzioglu, M.; Veeroja, K.; Montonen, T.; Ihalainen, T.O.; Salminen, T.S.; Bénit, P.; Rustin, P.; Chang, Y.-T.; Nagai, T.; Jacobs, H.T. Mitochondrial Temperature Homeostasis Resists External Metabolic Stresses. eLife 2023, 12, RP89232. [Google Scholar] [CrossRef] [PubMed]
- Zorova, L.D.; Popkov, V.A.; Plotnikov, E.Y.; Silachev, D.N.; Pevzner, I.B.; Jankauskas, S.S.; Babenko, V.A.; Zorov, S.D.; Balakireva, A.V.; Juhaszova, M.; et al. Mitochondrial Membrane Potential. Anal. Biochem. 2018, 552, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.; Chen, W.; Volkow, N.D.; Koretsky, A.P.; Du, C.; Pan, Y. Synchronized Astrocytic Ca2+ Responses in Neurovascular Coupling during Somatosensory Stimulation and for the Resting State. Cell Rep. 2018, 23, 3878–3890. [Google Scholar] [CrossRef]
- Goyal, M.S.; Snyder, A.Z. Uncoupling in Intrinsic Brain Activity. Proc. Natl. Acad. Sci. USA 2021, 118, e2110556118. [Google Scholar] [CrossRef]
- Yong, C.; Yu, Y.; Wei, Y.; Huang, G.; Shu, L.; Gao, K.; Zhou, E. To Reveal Biomarkers Related to Macrophage and Lactic Acid Metabolism in Renal Fibrosis and Explore Their Mechanisms. Front. Immunol. 2025, 16, 1609903. [Google Scholar] [CrossRef]
- Wang, X.; Song, X.; Feng, W.; Chang, M.; Yang, J.; Chen, Y. Advanced Nanomedicines for Treating Refractory Inflammation-Related Diseases. Nano-Micro Lett. 2025, 17, 323. [Google Scholar] [CrossRef]
- Park, B.; Oh, D.; Kim, J.; Kim, C. Functional Photoacoustic Imaging: From Nano- and Micro- to Macro-Scale. Nano Converg. 2023, 10, 29. [Google Scholar] [CrossRef]
- Aristov, V.V.; Buchelnikov, A.S.; Nechipurenko, Y.D. The Use of the Statistical Entropy in Some New Approaches for the Description of Biosystems. Entropy 2022, 24, 172. [Google Scholar] [CrossRef] [PubMed]
- Hubbard, G.; Musto, A. Neuroinflammation Modulates Pathologic High Frequency Events (S36.003). Neurology 2025, 104, 4679. [Google Scholar] [CrossRef]
- Park, J.H. Neuroprotective Bioactive Compounds from Marine Algae and Their By-Products Against Cerebral Ischemia–Reperfusion Injury: A Comprehensive Review. Appl. Sci. 2025, 15, 10791. [Google Scholar] [CrossRef]
- Ghitani, N.; von Buchholtz, L.J.; MacDonald, D.I.; Falgairolle, M.; Nguyen, M.Q.; Licholai, J.A.; Ryba, N.J.P.; Chesler, A.T. A Distributed Coding Logic for Thermosensation and Inflammatory Pain. Nature 2025, 642, 1016–1023. [Google Scholar] [CrossRef]
- Poljšak, B.; Milisav, I. Decreasing Intracellular Entropy by Increasing Mitochondrial Efficiency and Reducing ROS Formation—The Effect on the Ageing Process and Age-Related Damage. Int. J. Mol. Sci. 2024, 25, 6321. [Google Scholar] [CrossRef]
- Berthiaume, J.M.; Kurdys, J.G.; Muntean, D.M.; Rosca, M.G. Mitochondrial NAD+/NADH Redox State and Diabetic Cardiomyopathy. Antioxid. Redox Signal. 2019, 30, 375–398. [Google Scholar] [CrossRef]
- Gest, A.M.M.; Sahan, A.Z.; Zhong, Y.; Lin, W.; Mehta, S.; Zhang, J. Molecular Spies in Action: Genetically Encoded Fluorescent Biosensors Light up Cellular Signals. Chem. Rev. 2024, 124, 12573–12660. [Google Scholar] [CrossRef]
- Lucia, U.; Grisolia, G. Thermal Resonance and Cell Behavior. Entropy 2020, 22, 774. [Google Scholar] [CrossRef]
- Zivieri, R.; Pacini, N. Entropy Density Acceleration and Minimum Dissipation Principle: Correlation with Heat and Matter Transfer in Glucose Catabolism. Entropy 2018, 20, 929. [Google Scholar] [CrossRef] [PubMed]
- Porras-Gómez, M.; Shoaib, T.; Steer, D.; Espinosa-Marzal, R.M.; Leal, C. Pathological Cardiolipin-Promoted Membrane Hemifusion Stiffens Pulmonary Surfactant Membranes. Biophys. J. 2022, 121, 886–896. [Google Scholar] [CrossRef] [PubMed]
- Boyd, K.J.; Alder, N.N.; May, E.R. Buckling Under Pressure: Curvature-Based Lipid Segregation and Stability Modulation in Cardiolipin-Containing Bilayers. Langmuir ACS J. Surf. Colloids 2017, 33, 6937–6946. [Google Scholar] [CrossRef] [PubMed]
- Vurro, V.; Moschetta, M.; Bondelli, G.; Sardar, S.; Magni, A.; Sesti, V.; Paternò, G.M.; Bertarelli, C.; D’Andrea, C.; Lanzani, G. Membrane Order Effect on the Photoresponse of an Organic Transducer. Membranes 2023, 13, 538. [Google Scholar] [CrossRef]
- Voorsluijs, V.; Avanzini, F.; Falasco, G.; Esposito, M.; Skupin, A. Calcium Oscillations Optimize the Energetic Efficiency of Mitochondrial Metabolism. iScience 2024, 27, 109078. [Google Scholar] [CrossRef]
- Kang, Y.; Kang, B. Drp1-Mediated Mitochondrial Fission Exacerbates Inflammatory Responses in Intestinal Epithelial Cells: A Potential Therapeutic Target for IBD. Biochem. Biophys. Res. Commun. 2025, 781, 152508. [Google Scholar] [CrossRef]
- Chiu-Lam, A.; Rinaldi, C. Nanoscale Thermal Phenomena in the Vicinity of Magnetic Nanoparticles in Alternating Magnetic Fields. Adv. Funct. Mater. 2016, 26, 3933–3941. [Google Scholar] [CrossRef]
- Rossnagel, K.; Bauer, M. Toward Direct Exploration of the Few-Femtosecond Dynamics of Electronic Coherence and Correlation in Quantum Materials Using Time- and Angle-Resolved Photoemission Spectroscopy. Crystals 2024, 14, 404. [Google Scholar] [CrossRef]
- Schiera, G.; Di Liegro, C.M.; Schirò, G.; Sorbello, G.; Di Liegro, I. Involvement of Astrocytes in the Formation, Maintenance, and Function of the Blood–Brain Barrier. Cells 2024, 13, 150. [Google Scholar] [CrossRef]
- Cohen-Salmon, M.; Guille, N.; Boulay, A.-C. Development of Perivascular Astrocyte Processes. Front. Neurosci. 2025, 19, 1585340. [Google Scholar] [CrossRef]
- Shuman, T.; Aharoni, D.; Cai, D.J.; Lee, C.R.; Chavlis, S.; Page-Harley, L.; Vetere, L.M.; Feng, Y.; Yang, C.Y.; Mollinedo-Gajate, I.; et al. Breakdown of Spatial Coding and Interneuron Synchronization in Epileptic Mice. Nat. Neurosci. 2020, 23, 229–238. [Google Scholar] [CrossRef]
- Nolte, D.D. Coherent Light Scattering from Cellular Dynamics in Living Tissues. Rep. Prog. Phys. 2024, 87, 036601. [Google Scholar] [CrossRef]
- Arango-Restrepo, A.; Torrenegra-Rico, J.D.; Rubi, J.M. Entropy Production in a System of Janus Particles. Entropy 2025, 27, 112. [Google Scholar] [CrossRef]
- Rosic, B.; Dukefoss, D.B.; Åbjørsbråten, K.S.; Tang, W.; Jensen, V.; Ottersen, O.P.; Enger, R.; Nagelhus, E.A. Aquaporin-4-independent Volume Dynamics of Astroglial Endfeet during Cortical Spreading Depression. Glia 2019, 67, 1113–1121. [Google Scholar] [CrossRef] [PubMed]
- Han, D.; Chen, R.; Kan, H.; Xu, Y. The Bio-Distribution, Clearance Pathways, and Toxicity Mechanisms of Ambient Ultrafine Particles. Eco-Environ. Health 2023, 2, 95–106. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, A. Dynamic Balance: A Thermodynamic Principle for the Emergence of the Golden Ratio in Open Non-Equilibrium Steady States. Entropy 2025, 27, 745. [Google Scholar] [CrossRef] [PubMed]
- Kuśmierz, Ł.; Dybiec, B.; Gudowska-Nowak, E. Thermodynamics of Superdiffusion Generated by Lévy–Wiener Fluctuating Forces. Entropy 2018, 20, 658. [Google Scholar] [CrossRef]
- Korpyś, M.; Rotkegel, A.; Gancarczyk, A.; Iwaniszyn, M.; Sindera, K.; Suwak, M.; Kołodziej, A. Thermodynamic Irreversibility of the Flow and Transfer Phenomena Within Streamlined Structures of the Catalytic Reactors. Entropy 2025, 27, 675. [Google Scholar] [CrossRef]
- Venegas-Aravena, P.; Cordaro, E.G. The Multiscale Principle in Nature (Principium Luxuriæ): Linking Multiscale Thermodynamics to Living and Non-Living Complex Systems. Fractal Fract. 2024, 8, 35. [Google Scholar] [CrossRef]
- Lei, M.; Zhang, T.; Lu, X.; Zhao, X.; Wang, H.; Long, J.; Lu, Z. Membrane-Mediated Modulation of Mitochondrial Physiology by Terahertz Waves. Biomed. Opt. Express 2024, 15, 4065–4080. [Google Scholar] [CrossRef]
- Wang, H.; Chen, C.; Lin, Y.; Tian, Z.; Yan, Z.; Zeng, X.; Yang, Y.; Lin, M.; Ai, Q.; Liu, X.; et al. Connexin43 and Its Regulation of Astrocyte Gap Junction Function: Influencing Depression Progression by Mediating Electrical and Chemical Signals. CNS Neurosci. Ther. 2025, 31, e70600. [Google Scholar] [CrossRef]
- Gutiérrez, M.; Zhang, Y.; Tan, J.-C. Confinement of Luminescent Guests in Metal–Organic Frameworks: Understanding Pathways from Synthesis and Multimodal Characterization to Potential Applications of LG@MOF Systems. Chem. Rev. 2022, 122, 10438–10483. [Google Scholar] [CrossRef]
- Cruces-Solis, H.; Babaev, O.; Ali, H.; Piletti Chatain, C.; Mykytiuk, V.; Balekoglu, N.; Wenger, S.; Krueger-Burg, D. Altered Theta and Beta Oscillatory Synchrony in a Genetic Mouse Model of Pathological Anxiety. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2021, 35, e21585. [Google Scholar] [CrossRef]
- Pereiro-Morejón, J.A.; Fernandez-de-Cossio-Diaz, J.; Mulet, R. Inference of Metabolic Fluxes in Nutrient-Limited Continuous Cultures: A Maximum Entropy Approach with the Minimum Information. iScience 2022, 25, 105450. [Google Scholar] [CrossRef] [PubMed]
- Sabater, B. Entropy Perspectives of Molecular and Evolutionary Biology. Int. J. Mol. Sci. 2022, 23, 4098. [Google Scholar] [CrossRef] [PubMed]
- Deco, G.; Sanz Perl, Y.; Kringelbach, M.L. Complex Harmonics Reveal Low-Dimensional Manifolds of Critical Brain Dynamics. Phys. Rev. E 2025, 111, 014410. [Google Scholar] [CrossRef] [PubMed]
- Kleeorin, Y.; Thierschmann, H.; Buhmann, H.; Georges, A.; Molenkamp, L.W.; Meir, Y. How to Measure the Entropy of a Mesoscopic System via Thermoelectric Transport. Nat. Commun. 2019, 10, 5801. [Google Scholar] [CrossRef]
- Yao, Y.; Lu, W.L.; Xu, B.; Li, C.B.; Lin, C.P.; Waxman, D.; Feng, J.F. The Increase of the Functional Entropy of the Human Brain with Age. Sci. Rep. 2013, 3, 2853. [Google Scholar] [CrossRef]
- Garg, M.; Martin-Jimenez, A.; Pisarra, M.; Luo, Y.; Martín, F.; Kern, K. Real-Space Subfemtosecond Imaging of Quantum Electronic Coherences in Molecules. Nat. Photonics 2022, 16, 196–202. [Google Scholar] [CrossRef]
- Donnarumma, E.; Kohlhaas, M.; Vimont, E.; Kornobis, E.; Chaze, T.; Gianetto, Q.G.; Matondo, M.; Moya-Nilges, M.; Maack, C.; Wai, T. Mitochondrial Fission Process 1 Controls Inner Membrane Integrity and Protects against Heart Failure. Nat. Commun. 2022, 13, 6634. [Google Scholar] [CrossRef]
- Wen, F.; Gao, J.; Zhang, G.; Guo, S.; Zhang, X.; Han, S.; Feng, X.; Chen, X.; Hu, J. ROS-DRP1-Mediated Excessive Mitochondrial Fission and Autophagic Flux Inhibition Contribute to Heat Stress-Induced Apoptosis in Goat Sertoli Cells. J. Anim. Sci. Biotechnol. 2025, 16, 58. [Google Scholar] [CrossRef]
- Walker, M.; Rizzuto, P.; Godin, M.; Pelling, A.E. Structural and Mechanical Remodeling of the Cytoskeleton Maintains Tensional Homeostasis in 3D Microtissues under Acute Dynamic Stretch. Sci. Rep. 2020, 10, 7696. [Google Scholar] [CrossRef]
- Mishchenko, T.A.; Yarkov, R.S.; Saviuk, M.O.; Krivonosov, M.I.; Perenkov, A.D.; Gudkov, S.V.; Vedunova, M.V. Unravelling Contributions of Astrocytic Connexin 43 to the Functional Activity of Brain Neuron–Glial Networks under Hypoxic State In Vitro. Membranes 2022, 12, 948. [Google Scholar] [CrossRef] [PubMed]
- Banitalebi, S.; Skauli, N.; Geiseler, S.; Ottersen, O.P.; Amiry-Moghaddam, M. Disassembly and Mislocalization of AQP4 in Incipient Scar Formation after Experimental Stroke. Int. J. Mol. Sci. 2022, 23, 1117. [Google Scholar] [CrossRef] [PubMed]
- Simon, M.; Wang, M.X.; Ismail, O.; Braun, M.; Schindler, A.G.; Reemmer, J.; Wang, Z.; Haveliwala, M.A.; O’Boyle, R.P.; Han, W.Y.; et al. Loss of Perivascular Aquaporin-4 Localization Impairs Glymphatic Exchange and Promotes Amyloid β Plaque Formation in Mice. Alzheimer’s Res. Ther. 2022, 14, 59. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Padawer-Curry, J.A.; Bice, A.R.; Kim, B.; Rosenthal, Z.P.; Lee, J.-M.; Goyal, M.S.; Macauley, S.L.; Bauer, A.Q. Spatiotemporal Relationships between Neuronal, Metabolic, and Hemodynamic Signals in the Awake and Anesthetized Mouse Brain. Cell Rep. 2024, 43, 114723. [Google Scholar] [CrossRef]
- Shaw, K.; Bell, L.; Boyd, K.; Grijseels, D.M.; Clarke, D.; Bonnar, O.; Crombag, H.S.; Hall, C.N. Neurovascular Coupling and Oxygenation Are Decreased in Hippocampus Compared to Neocortex Because of Microvascular Differences. Nat. Commun. 2021, 12, 3190, Erratum in Nat. Commun. 2021, 12, 4497. https://doi.org/10.1038/s41467-021-24833-y. [Google Scholar] [CrossRef]
- Duan, J.; Wei, K.; Du, Q.; Ma, L.; Yu, H.; Qi, H.; Tan, Y.; Zhong, G.; Li, H. High-Entropy Superparaelectrics with Locally Diverse Ferroic Distortion for High-Capacitive Energy Storage. Nat. Commun. 2024, 15, 6754. [Google Scholar] [CrossRef]
- Guo, J.; Yu, H.; Ren, Y.; Qi, H.; Yang, X.; Deng, Y.; Zhang, S.-T.; Chen, J. Multi-Symmetry High-Entropy Relaxor Ferroelectric with Giant Capacitive Energy Storage. Nano Energy 2023, 112, 108458. [Google Scholar] [CrossRef]
- Martyushev, L.M. The Significance of the Entropic Measure of Time in Natural Sciences. Entropy 2025, 27, 425. [Google Scholar] [CrossRef]
- Déli, É.; Peters, J.F.; Kisvárday, Z. How the Brain Becomes the Mind: Can Thermodynamics Explain the Emergence and Nature of Emotions? Entropy 2022, 24, 1498. [Google Scholar] [CrossRef] [PubMed]
- Aimet, S.; Tajik, M.; Tournaire, G.; Schüttelkopf, P.; Sabino, J.; Sotiriadis, S.; Guarnieri, G.; Schmiedmayer, J.; Eisert, J. Experimentally Probing Landauer’s Principle in the Quantum Many-Body Regime. Nat. Phys. 2025, 21, 1326–1331. [Google Scholar] [CrossRef]
- Wang, L.; Gunduz, M.A.; Semeano, A.T.; Yılmaz, E.C.; Alanazi, F.A.H.; Imir, O.B.; Yener, U.; Arbelaez, C.A.; Usuga, E.; Teng, Y.D. Coexistence of Chronic Hyperalgesia and Multilevel Neuroinflammatory Responses after Experimental SCI: A Systematic Approach to Profiling Neuropathic Pain. J. Neuroinflamm. 2022, 19, 264. [Google Scholar] [CrossRef] [PubMed]
- Bauer, L.G.; Hirsch, F.; Jones, C.; Hollander, M.; Grohs, P.; Anand, A.; Plant, C.; Wohlschläger, A. Quantification of Kuramoto Coupling Between Intrinsic Brain Networks Applied to fMRI Data in Major Depressive Disorder. Front. Comput. Neurosci. 2022, 16, 729556. [Google Scholar] [CrossRef]
- Muehsam, D.; Ventura, C. Life Rhythm as a Symphony of Oscillatory Patterns: Electromagnetic Energy and Sound Vibration Modulates Gene Expression for Biological Signaling and Healing. Glob. Adv. Health Med. 2014, 3, 40–55. [Google Scholar] [CrossRef]
- Zhang, J.; Ma, L.; Hou, Y.; Ouyang, H.; Hong, H.; Kim, K.; Kang, H.; Chu, Z. Nanodiamond-Based Sensing: A Revolution for Biosensors in Capturing Elusive Bio-Signals in Living Cells. Adv. Drug Deliv. Rev. 2025, 221, 115590. [Google Scholar] [CrossRef]
- Lee, G.; Park, Y.I. Lanthanide-Doped Upconversion Nanocarriers for Drug and Gene Delivery. Nanomaterials 2018, 8, 511. [Google Scholar] [CrossRef]
- Steinegger, A.; Wolfbeis, O.S.; Borisov, S.M. Optical Sensing and Imaging of pH Values: Spectroscopies, Materials, and Applications. Chem. Rev. 2020, 120, 12357–12489. [Google Scholar] [CrossRef]
- Yu, S.; Jang, D.; Yuan, H.; Huang, W.-T.; Kim, M.; Marques Mota, F.; Liu, R.-S.; Lee, H.; Kim, S.; Kim, D.H. Plasmon-Triggered Upconversion Emissions and Hot Carrier Injection for Combinatorial Photothermal and Photodynamic Cancer Therapy. ACS Appl. Mater. Interfaces 2021, 13, 58422–58433. [Google Scholar] [CrossRef]
- Zhang, F.; Oiticica, P.R.A.; Abad-Arredondo, J.; Arai, M.S.; Oliveira, O.N.; Jaque, D.; Fernandez Dominguez, A.I.; de Camargo, A.S.S.; Haro-González, P. Brownian Motion Governs the Plasmonic Enhancement of Colloidal Upconverting Nanoparticles. Nano Lett. 2024, 24, 3785–3792. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.; Silvoni, S.; Desch, S.; Serian, A.; Andoh, J.; Flor, H. Cortical Activity during Painful and Non-Painful Stimulation over Four Lower Limb Body Sites: A Functional near-Infrared Spectroscopy Study. Sci. Rep. 2025, 15, 5070. [Google Scholar] [CrossRef] [PubMed]
- Padova, D.; Faria, A.; Ratnanather, J.T.; So, R.J.; Zhu, S.; Agrawal, Y. Vestibular Function Is Associated with Prefrontal and Sensorimotor Cortical Gray Matter Volumes in a Cross-Sectional Study of Healthy, Older Adults. Aperture Neuro 2024, 4. [Google Scholar] [CrossRef] [PubMed]
- Schirhagl, R.; Chang, K.; Loretz, M.; Degen, C.L. Nitrogen-Vacancy Centers in Diamond: Nanoscale Sensors for Physics and Biology. Annu. Rev. Phys. Chem. 2014, 65, 83–105. [Google Scholar] [CrossRef]
- Zhu, Y.; Cai, M.; Zhang, Q.; Wang, P.; Yang, Y.; Zhao, J.; Zhu, W.; Wang, G. Quantum Sensing of Local Magnetic Phase Transitions and Fluctuations near the Curie Temperature in Tm3Fe5O12 Using NV Centers. Micromachines 2025, 16, 643. [Google Scholar] [CrossRef]
- Szawioła, G.; Mieloch, S.; Stefańska, D.; Głowacki, P.; Frajtak, A.; Michalczyk, J.; Murawski, K.; Pruchlat, A.; Raczyński, J.; Schmidt, M.; et al. Thermal Effects in Optically Detected Magnetic Resonance of Nitrogen Vacancies in Diamond: A Quantum Thermometer for a Graduate Teaching Lab. J. Chem. Educ. 2025, 102, 1949–1959. [Google Scholar] [CrossRef]
- Xiang, B.; Xiong, W. Molecular Polaritons for Chemistry, Photonics and Quantum Technologies. Chem. Rev. 2024, 124, 2512–2552. [Google Scholar] [CrossRef]
- Zhang, Z.; Jin, Y.; Tang, J.; Liu, J. Simultaneously Detecting the Power and Temperature of a Microwave Sensor via the Quantum Technique. Micromachines 2024, 15, 1305. [Google Scholar] [CrossRef]
- Zhang, T.; Pramanik, G.; Zhang, K.; Gulka, M.; Wang, L.; Jing, J.; Xu, F.; Li, Z.; Wei, Q.; Cigler, P.; et al. Toward Quantitative Bio-Sensing with Nitrogen–Vacancy Center in Diamond. ACS Sens. 2021, 6, 2077–2107. [Google Scholar] [CrossRef]
- Gust, A.; Zander, A.; Gietl, A.; Holzmeister, P.; Schulz, S.; Lalkens, B.; Tinnefeld, P.; Grohmann, D. A Starting Point for Fluorescence-Based Single-Molecule Measurements in Biomolecular Research. Molecules 2014, 19, 15824–15865. [Google Scholar] [CrossRef]
- Adeniba, O.O.; Corbin, E.A.; Ganguli, A.; Kim, Y.; Bashir, R. Simultaneous Time-Varying Viscosity, Elasticity, and Mass Measurements of Single Adherent Cancer Cells across Cell Cycle. Sci. Rep. 2020, 10, 12803. [Google Scholar] [CrossRef]
- Hülsemann, M.J.; Naumann, E.; Rasch, B. Quantification of Phase-Amplitude Coupling in Neuronal Oscillations: Comparison of Phase-Locking Value, Mean Vector Length, Modulation Index, and Generalized-Linear-Modeling-Cross-Frequency-Coupling. Front. Neurosci. 2019, 13, 573. [Google Scholar] [CrossRef]
- Yang, D.; Liu, X.; Ma, J.; Cui, B.; Wang, Y.; Xu, J.; Zhang, Y.; Ding, H.; Wang, D.; Liu, Q.; et al. Probing Single-Cell Adhesion Kinetics and Nanomechanical Force with Surface Plasmon Resonance Imaging. ACS Nano 2025, 19, 2651–2664. [Google Scholar] [CrossRef] [PubMed]
- Veselá, P.; Hlubučková, M.; Kanclíř, V.; Václavík, J.; Žídek, K. The Effect of Aging in Thin Films in the Picosecond Sonar Experiment. Sci. Rep. 2025, 15, 29145. [Google Scholar] [CrossRef] [PubMed]
- Richter, M.; Güttler, A.; Pauli, J.; Vogel, K.; Homann, C.; Würth, C.; Resch-Genger, U. Extending Certified Spectral Fluorescence Standards for the Calibration and Performance Validation of Fluorescence Instruments to the NIR—Closing the Gap from 750 to 940 Nm with Two Novel NIR Dyes. Anal. Bioanal. Chem. 2025, 417, 2563–2577. [Google Scholar] [CrossRef]
- Latychevskaia, T.; Mancini, G.F.; Carbone, F. The Role of the Coherence in the Cross-Correlation Analysis of Diffraction Patterns from Two-Dimensional Dense Mono-Disperse Systems. Sci. Rep. 2015, 5, 16573. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, Z.; Wu, M.; Zhu, Z. A Thermodynamic Based Constitutive Model Considering the Mutual Influence of Multiple Physical Fields. Sci. Rep. 2024, 14, 26417. [Google Scholar] [CrossRef]
- Zou, H.; Zhao, H.; Lu, M.; Wang, J.; Deng, Z.; Wang, J. Predicting Thermodynamic Stability of Inorganic Compounds Using Ensemble Machine Learning Based on Electron Configuration. Nat. Commun. 2025, 16, 203. [Google Scholar] [CrossRef]
- Alkahtani, M.; Alzahrani, Y.A.; Alromaeh, A.; Hemmer, P. Novel Nanocomposites for Luminescent Thermometry with Two Different Modalities. Molecules 2024, 29, 1350. [Google Scholar] [CrossRef]
- Revete, A.; Aparicio, A.; Cisterna, B.A.; Revete, J.; Luis, L.; Ibarra, E.; Segura González, E.A.; Molino, J.; Reginensi, D. Advancements in the Use of Hydrogels for Regenerative Medicine: Properties and Biomedical Applications. Int. J. Biomater. 2022, 2022, 3606765. [Google Scholar] [CrossRef]
- Bock, M.; Reichenbach, J.R. Quantum Physics at a Historic Milestone: How Has It Shaped Medical Physics? Z. Med. Phys. 2025, 35, 123–126. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Li, F.; Wu, Y.; Wang, H.; Gu, L.; Zhang, J.; Qi, Y.; Meng, L.; Kong, N.; Chai, Y.; et al. Lanthanide Luminescence Nanothermometer with Working Wavelength beyond 1500 Nm for Cerebrovascular Temperature Imaging in Vivo. Nat. Commun. 2024, 15, 2341. [Google Scholar] [CrossRef] [PubMed]
- Jabbari, M.B.; Karamati, M.R. The Effects of Temperature on the Dynamics of the Biological Neural Network. J. Biol. Phys. 2022, 48, 111–126. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Q.; Xie, W.; Lückemeyer, D.D.; Lay, M.; Wang, X.-W.; Dong, X.; Limjunyawong, N.; Ye, Y.; Zhou, F.-Q.; Strong, J.A.; et al. Synchronized Cluster Firing, a Distinct Form of Sensory Neuron Activation, Drives Spontaneous Pain. Neuron 2022, 110, 209–220.e6. [Google Scholar] [CrossRef]
- Dienel, G.A.; Rothman, D.L.; Mangia, S. A Bird’s-Eye View of Glycolytic Upregulation in Activated Brain: The Major Fate of Lactate Is Release From Activated Tissue, Not Shuttling to Nearby Neurons. J. Neurochem. 2025, 169, e70111. [Google Scholar] [CrossRef]
- Tsukamoto, M.; Ito, S.; Ogawa, K.; Ashida, Y.; Sasaki, K.; Kobayashi, K. Accurate Magnetic Field Imaging Using Nanodiamond Quantum Sensors Enhanced by Machine Learning. Sci. Rep. 2022, 12, 13942. [Google Scholar] [CrossRef]
- Sung, D.; Risk, B.B.; Kottke, P.A.; Allen, J.W.; Nahab, F.; Fedorov, A.G.; Fleischer, C.C. Comparisons of Healthy Human Brain Temperature Predicted from Biophysical Modeling and Measured with Whole Brain MR Thermometry. Sci. Rep. 2022, 12, 19285. [Google Scholar] [CrossRef]
- Villareal, J.A.B.; Bathe, T.; Hery, G.P.; Phillips, J.L.; Tsering, W.; Prokop, S. Deterioration of Neuroimmune Homeostasis in Alzheimer’s Disease Patients Who Survive a COVID-19 Infection. J. Neuroinflamm. 2024, 21, 202. [Google Scholar] [CrossRef]
- Coomer, C.A.; Carlon-Andres, I.; Iliopoulou, M.; Dustin, M.L.; Compeer, E.B.; Compton, A.A.; Padilla-Parra, S. Single-Cell Glycolytic Activity Regulates Membrane Tension and HIV-1 Fusion. PLoS Pathog. 2020, 16, e1008359, Erratum in PLoS Pathog. 2021, 17, e1009584. https://doi.org/10.1371/journal.ppat.1009584. [Google Scholar] [CrossRef]
- Alipour, M.; Abdolmaleki, M.; Shabanpour, Y.; Zali, A.; Ashrafi, F.; Nohesara, S.; Hajipour-Verdom, B. Advances in Magnetic Field Approaches for Non-Invasive Targeting Neuromodulation. Front. Hum. Neurosci. 2025, 19, 1489940. [Google Scholar] [CrossRef]
- Naveed, M.; Kim, M.-H. Nanoparticle-Mediated Magnetic Hyperthermia in the Treatment of Neurological Disorders. Nanomed. 2025, 438, 1–13. [Google Scholar] [CrossRef]
- Vangijzegem, T.; Lecomte, V.; Ternad, I.; Van Leuven, L.; Muller, R.N.; Stanicki, D.; Laurent, S. Superparamagnetic Iron Oxide Nanoparticles (SPION): From Fundamentals to State-of-the-Art Innovative Applications for Cancer Therapy. Pharmaceutics 2023, 15, 236. [Google Scholar] [CrossRef]
- Attaluri, A.; Kandala, S.K.; Zhou, H.; Wabler, M.; DeWeese, T.L.; Ivkov, R. Magnetic Nanoparticle Hyperthermia for Treating Locally Advanced Unresectable and Borderline Resectable Pancreatic Cancers: The Role of Tumor Size and Eddy-Current Heating. Int. J. Hyperth. Off. J. Eur. Soc. Hyperthermic Oncol. N. Am. Hyperth. Group 2020, 37, 108–119. [Google Scholar] [CrossRef]
- Feng, W.; Hussin, T.A.R.; Yang, X. A Temperature-Indexed Concrete Damage Plasticity Framework for Thermomechanical Analysis of Concrete Structures. J. Eng. Appl. Sci. 2025, 72, 177. [Google Scholar] [CrossRef]
- Finkelstein-Shapiro, D.; Mante, P.-A.; Sarisozen, S.; Wittenbecher, L.; Minda, I.; Balci, S.; Pullerits, T.; Zigmantas, D. Understanding Radiative Transitions and Relaxation Pathways in Plexcitons. Chem 2021, 7, 1092–1107. [Google Scholar] [CrossRef]
- Pliouta, L.; Lampsas, S.; Kountouri, A.; Korakas, E.; Thymis, J.; Kassi, E.; Oikonomou, E.; Ikonomidis, I.; Lambadiari, V. Mitochondrial Dysfunction in the Development and Progression of Cardiometabolic Diseases: A Narrative Review. J. Clin. Med. 2025, 14, 3706. [Google Scholar] [CrossRef] [PubMed]
- Jiracheewanun, S.; Cortie, M.B.; Pissuwan, D. Thermal Effect during Laser-Induced Plasmonic Heating of Polyelectrolyte-Coated Gold Nanorods in Well Plates. Nanomaterials 2023, 13, 845. [Google Scholar] [CrossRef] [PubMed]
- Schawe, J.E.K. Correction of Thermal Inertia on Scanning Calorimetry. Thermochim. Acta 2025, 751, 180062. [Google Scholar] [CrossRef]
- Tsubouchi, M.; Hoshina, H.; Nagai, M.; Isoyama, G. Plane Photoacoustic Wave Generation in Liquid Water Using Irradiation of Terahertz Pulses. Sci. Rep. 2020, 10, 18537. [Google Scholar] [CrossRef]
- Cui, X.; Ruan, Q.; Zhuo, X.; Xia, X.; Hu, J.; Fu, R.; Li, Y.; Wang, J.; Xu, H. Photothermal Nanomaterials: A Powerful Light-to-Heat Converter. Chem. Rev. 2023, 123, 6891–6952. [Google Scholar] [CrossRef]
- Bonvento, G.; Bolaños, J.P. Astrocyte-Neuron Metabolic Cooperation Shapes Brain Activity. Cell Metab. 2021, 33, 1546–1564. [Google Scholar] [CrossRef]
- Burmistrov, I.; Khanna, R.; Gorshkov, N.; Kiselev, N.; Artyukhov, D.; Boychenko, E.; Yudin, A.; Konyukhov, Y.; Kravchenko, M.; Gorokhovsky, A.; et al. Advances in Thermo-Electrochemical (TEC) Cell Performances for Harvesting Low-Grade Heat Energy: A Review. Sustainability 2022, 14, 9483. [Google Scholar] [CrossRef]
- Ndrepepa, G.; Kastrati, A. Coronary No-Reflow after Primary Percutaneous Coronary Intervention—Current Knowledge on Pathophysiology, Diagnosis, Clinical Impact and Therapy. J. Clin. Med. 2023, 12, 5592. [Google Scholar] [CrossRef]
- Tashiro, E.; Kozono, N.; Higaki, H.; Shimoto, T.; Nakashima, Y. In Vivo Shoulder Kinematic Changes and Rotator Cuff Healing after Surgical Repair of Large-to-Massive Rotator Cuff Tears. J. Orthop. Surg. 2024, 19, 801. [Google Scholar] [CrossRef] [PubMed]
- Manu, D.R.; Slevin, M.; Barcutean, L.; Forro, T.; Boghitoiu, T.; Balasa, R. Astrocyte Involvement in Blood–Brain Barrier Function: A Critical Update Highlighting Novel, Complex, Neurovascular Interactions. Int. J. Mol. Sci. 2023, 24, 17146. [Google Scholar] [CrossRef] [PubMed]
- Costa, F.P.; Wiedenmann, B.; Schöll, E.; Tuszynski, J. Emerging Cancer Therapies: Targeting Physiological Networks and Cellular Bioelectrical Differences with Non-Thermal Systemic Electromagnetic Fields in the Human Body—A Comprehensive Review. Front. Netw. Physiol. 2024, 4, 1483401. [Google Scholar] [CrossRef] [PubMed]
- Bertsch, P.; Diba, M.; Mooney, D.J.; Leeuwenburgh, S.C.G. Self-Healing Injectable Hydrogels for Tissue Regeneration. Chem. Rev. 2023, 123, 834–873. [Google Scholar] [CrossRef]
- Nesci, S.; Trombetti, F.; Pagliarani, A.; Ventrella, V.; Algieri, C.; Tioli, G.; Lenaz, G. Molecular and Supramolecular Structure of the Mitochondrial Oxidative Phosphorylation System: Implications for Pathology. Life 2021, 11, 242. [Google Scholar] [CrossRef]
- Ruta, S.; Hovorka, O.; Huang, P.-W.; Wang, K.; Ju, G.; Chantrell, R. First Order Reversal Curves and Intrinsic Parameter Determination for Magnetic Materials; Limitations of Hysteron-Based Approaches in Correlated Systems. Sci. Rep. 2017, 7, 45218. [Google Scholar] [CrossRef]
- Potokar, M.; Morita, M.; Wiche, G.; Jorgačevski, J. The Diversity of Intermediate Filaments in Astrocytes. Cells 2020, 9, 1604. [Google Scholar] [CrossRef]
- Wang, X.; Chen, H.; Xuan, F. Neural Network-Assisted Probabilistic Creep-Fatigue Assessment of Hydrogenation Reactor with Physics-Based Surrogate Model. Int. J. Press. Vessels Pip. 2023, 206, 105051. [Google Scholar] [CrossRef]
- Flandoli, F.; Pappalettera, U. Stochastic Modelling of Small-Scale Perturbation. Water 2020, 12, 2950. [Google Scholar] [CrossRef]
- Yoshida, E.; Kondo, M.; Nakae, K.; Ako, R.; Terada, S.; Hatano, N.; Liu, L.; Kobayashi, K.; Ishii, S.; Matsuzaki, M. Whether or Not to Act Is Determined by Distinct Signals from Motor Thalamus and Orbitofrontal Cortex to Secondary Motor Cortex. Nat. Commun. 2025, 16, 3106. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Song, S.; Tian, X.; Wang, Y.; Qi, X. Machine Learning-Based Prediction and Interpretation of Decomposition Temperatures of Energetic Materials. Energ. Mater. Front. 2023, 4, 254–261. [Google Scholar] [CrossRef]
- Jawad, H.J.; Yadem, A.C.; Menyaev, Y.A.; Sarimollaoglu, M.; Armstrong, J.N.; Watanabe, F.; Biris, A.S.; Stumhofer, J.S.; Nedosekin, D.; Suen, J.Y.; et al. Towards Rainbow Portable Cytophone with Laser Diodes for Global Disease Diagnostics. Sci. Rep. 2022, 12, 8671. [Google Scholar] [CrossRef]
- Schreglmann, S.R.; Wang, D.; Peach, R.L.; Li, J.; Zhang, X.; Latorre, A.; Rhodes, E.; Panella, E.; Cassara, A.M.; Boyden, E.S.; et al. Non-Invasive Suppression of Essential Tremor via Phase-Locked Disruption of Its Temporal Coherence. Nat. Commun. 2021, 12, 363. [Google Scholar] [CrossRef]
- Tang, M.; Tang, K.; Zhang, Y.; Qiu, J.; Chen, X. Motion/Force Coordinated Trajectory Tracking Control of Nonholonomic Wheeled Mobile Robot via LMPC-AISMC Strategy. Sci. Rep. 2024, 14, 18504. [Google Scholar] [CrossRef]
- Klemenc, J.; Šeruga, D.; Nagode, A.; Nagode, M. Comprehensive Modelling of the Hysteresis Loops and Strain–Energy Density for Low-Cycle Fatigue-Life Predictions of the AZ31 Magnesium Alloy. Materials 2019, 12, 3692. [Google Scholar] [CrossRef]
- Ren, J.; Kloker, M. Non-Ideal Gas Behavior Matters in Hydrodynamic Instability. Sci. Rep. 2022, 12, 22089. [Google Scholar] [CrossRef]
- Ismail, M.R.M.; Thangaraj, M.; Karmiris-Obratański, P.; Papazoglou, E.; Karkalos, N. Design of Real-Time Extremum-Seeking Controller-Based Modelling for Optimizing MRR in Low Power EDM. Materials 2023, 16, 434. [Google Scholar] [CrossRef]
- Li, P.; Lee, G.-H.; Kim, S.Y.; Kwon, S.Y.; Kim, H.-R.; Park, S. From Diagnosis to Treatment: Recent Advances in Patient-Friendly Biosensors and Implantable Devices. ACS Nano 2021, 15, 1960–2004. [Google Scholar] [CrossRef]
- Zhu, Y.; Tang, S.; Wang, C.; Jiang, W.; Zhao, J.; Li, G. Absolute Stability Condition Derivation for Position Closed-Loop System in Hydraulic Automatic Gauge Control. Processes 2019, 7, 766. [Google Scholar] [CrossRef]
- Werner, C.; Sauer, M.; Geis, C. Super-Resolving Microscopy in Neuroscience. Chem. Rev. 2021, 121, 11971–12015. [Google Scholar] [CrossRef] [PubMed]
- García-Domínguez, M. Neuroinflammation: Mechanisms, Dual Roles, and Therapeutic Strategies in Neurological Disorders. Curr. Issues Mol. Biol. 2025, 47, 417. [Google Scholar] [CrossRef] [PubMed]
- Mattay, R.R.; Kim, K.; Shah, L.; Shah, B.; Sugrue, L.; Safoora, F.; Ozhinsky, E.; Narsinh, K.H. MR Thermometry during Transcranial MR Imaging–Guided Focused Ultrasound Procedures: A Review. AJNR Am. J. Neuroradiol. 2024, 45, 1–8. [Google Scholar] [CrossRef]
- Abouelregal, A.E.; Alharb, R.A.; Yaylacı, M.; Mohamed, B.O.; Megahid, S.F. Analysis of Temperature Changes in Living Tissue Using the Modified Fractional Thermal Conduction Model under Laser Heat Flux on the Skin Surface. Contin. Mech. Thermodyn. 2024, 37, 13. [Google Scholar] [CrossRef]
- Leng, F.; Edison, P. Neuroinflammation and Microglial Activation in Alzheimer Disease: Where Do We Go from Here? Nat. Rev. Neurol. 2021, 17, 157–172. [Google Scholar] [CrossRef]
- Toader, C.; Dumitru, A.V.; Eva, L.; Serban, M.; Covache-Busuioc, R.-A.; Ciurea, A.V. Nanoparticle Strategies for Treating CNS Disorders: A Comprehensive Review of Drug Delivery and Theranostic Applications. Int. J. Mol. Sci. 2024, 25, 13302. [Google Scholar] [CrossRef]
- Sack, I. Magnetic Resonance Elastography from Fundamental Soft-Tissue Mechanics to Diagnostic Imaging. Nat. Rev. Phys. 2023, 5, 25–42. [Google Scholar] [CrossRef]
- Lu, Y.; Kundu, M.; Zhong, D. Effects of Nonequilibrium Fluctuations on Ultrafast Short-Range Electron Transfer Dynamics. Nat. Commun. 2020, 11, 2822. [Google Scholar] [CrossRef]
- Laquatra, C.; Magro, A.; Guarra, F.; Lambrughi, M.; Ferrone, L.; Fracasso, G.; Bacchin, M.; La Spina, M.; Moroni, E.; Papaleo, E.; et al. Point Mutations of the Mitochondrial Chaperone TRAP1 Affect Its Functions and Pro-Neoplastic Activity. Cell Death Dis. 2025, 16, 172. [Google Scholar] [CrossRef] [PubMed]
- Du, S.; Guan, Y.; Xie, A.; Yan, Z.; Gao, S.; Li, W.; Rao, L.; Chen, X.; Chen, T. Extracellular Vesicles: A Rising Star for Therapeutics and Drug Delivery. J. Nanobiotechnol. 2023, 21, 231. [Google Scholar] [CrossRef] [PubMed]
- Noh, M.-Y.; Kwon, H.S.; Kwon, M.-S.; Nahm, M.; Jin, H.K.; Bae, J.; Kim, S.H. Biomarkers and Therapeutic Strategies Targeting Microglia in Neurodegenerative Diseases: Current Status and Future Directions. Mol. Neurodegener. 2025, 20, 82. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, W.; Razak, N.N.A.N.A.; Dheyab, M.A.; Salem, F.; Aziz, A.A.; Alanezi, S.T.; Oladzadabbasabadi, N.; Ghasemlou, M. Melanin-Driven Green Synthesis and Surface Modification of Metal and Metal-Oxide Nanoparticles for Biomedical Applications. Adv. Funct. Mater. 2025, 35, 2503017. [Google Scholar] [CrossRef]
- Stec-Martyna, E.; Wojtczak, K.; Nowak, D.; Stawski, R. Battle of the Biomarkers of Systemic Inflammation. Biology 2025, 14, 438. [Google Scholar] [CrossRef]
- Lee, S.Y.; Lin, M.; Lee, A.; Park, Y.I. Lanthanide-Doped Nanoparticles for Diagnostic Sensing. Nanomaterials 2017, 7, 411. [Google Scholar] [CrossRef]
- Vogel, K.; Greinert, T.; Reichard, M.; Held, C.; Harms, H.; Maskow, T. Thermodynamics and Kinetics of Glycolytic Reactions. Part I: Kinetic Modeling Based on Irreversible Thermodynamics and Validation by Calorimetry. Int. J. Mol. Sci. 2020, 21, 8341. [Google Scholar] [CrossRef]
- Hernandez, J.A.; Ruiz, A.; Fonseca, L.F.; Pettes, M.T.; Jose-Yacaman, M.; Benitez, A. Thermoelectric Properties of SnSe Nanowires with Different Diameters. Sci. Rep. 2018, 8, 11966. [Google Scholar] [CrossRef]
- Ahmed, F.; Muzammal Hussain, M.; Ullah Khan, W.; Xiong, H. Exploring Recent Advancements and Future Prospects on Coordination Self-Assembly of the Regulated Lanthanide-Doped Luminescent Supramolecular Hydrogels. Coord. Chem. Rev. 2024, 499, 215486. [Google Scholar] [CrossRef]
- Parvin, N.; Joo, S.W.; Jung, J.H.; Mandal, T.K. Multimodal AI in Biomedicine: Pioneering the Future of Biomaterials, Diagnostics, and Personalized Healthcare. Nanomaterials 2025, 15, 895. [Google Scholar] [CrossRef]
- Massaro, D.; Rezaeiravesh, S.; Schlatter, P. On the Potential of Transfer Entropy in Turbulent Dynamical Systems. Sci. Rep. 2023, 13, 22344. [Google Scholar] [CrossRef]
- Martínez Lozada, P.S.; Pozo Neira, J.; Leon-Rojas, J.E. From Tumor to Network: Functional Connectome Heterogeneity and Alterations in Brain Tumors—A Multimodal Neuroimaging Narrative Review. Cancers 2025, 17, 2174. [Google Scholar] [CrossRef]
- Šimić, I.; Veas, E.; Sabol, V. A Comprehensive Analysis of Perturbation Methods in Explainable AI Feature Attribution Validation for Neural Time Series Classifiers. Sci. Rep. 2025, 15, 26607. [Google Scholar] [CrossRef]
- Onciul, R.; Tataru, C.-I.; Dumitru, A.V.; Crivoi, C.; Serban, M.; Covache-Busuioc, R.-A.; Radoi, M.P.; Toader, C. Artificial Intelligence and Neuroscience: Transformative Synergies in Brain Research and Clinical Applications. J. Clin. Med. 2025, 14, 550. [Google Scholar] [CrossRef]
- Yu, Y.; Akif, A.; Herman, P.; Cao, M.; Rothman, D.L.; Carson, R.E.; Agarwal, D.; Evans, A.C.; Hyder, F. A 3D Atlas of Functional Human Brain Energetic Connectome Based on Neuropil Distribution. Cereb. Cortex N. Y. N 1991 2023, 33, 3996–4012. [Google Scholar] [CrossRef] [PubMed]
- Joo, J.I.; Zhou, J.X.; Huang, S.; Cho, K.-H. Determining Relative Dynamic Stability of Cell States Using Boolean Network Model. Sci. Rep. 2018, 8, 12077. [Google Scholar] [CrossRef] [PubMed]
- Chmiel, J.; Kurpas, D. Burnout and the Brain—A Mechanistic Review of Magnetic Resonance Imaging (MRI) Studies. Int. J. Mol. Sci. 2025, 26, 8379. [Google Scholar] [CrossRef]
- Kölliker-Frers, R.; Udovin, L.; Otero-Losada, M.; Kobiec, T.; Herrera, M.I.; Palacios, J.; Razzitte, G.; Capani, F. Neuroinflammation: An Integrating Overview of Reactive-Neuroimmune Cell Interactions in Health and Disease. Mediators Inflamm. 2021, 2021, 9999146. [Google Scholar] [CrossRef]
- Jang, H.; Yoon, D.; Nam, Y. Enhancement of Thermoplasmonic Neural Modulation Using a Gold Nanorod-Immobilized Polydopamine Film. ACS Appl. Mater. Interfaces 2022, 14, 24122–24132. [Google Scholar] [CrossRef]
- Brandão Da Silva Assis, M.; Nestal De Moraes, G.; De Souza, K.R. Cerium Oxide Nanoparticles: Chemical Properties, Biological Effects and Potential Therapeutic Opportunities. Biomed. Rep. 2024, 20, 48. [Google Scholar] [CrossRef]
- Honciuc, M.; Honciuc, A. Scaling Amphiphilicity with Janus Nanoparticles: A New Frontier in Nanomaterials and Interface Science. Nanomaterials 2025, 15, 1079. [Google Scholar] [CrossRef]
- Madadi, M.; Khoee, S. Magnetite-Based Janus Nanoparticles, Their Synthesis and Biomedical Applications. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2023, 15, e1908. [Google Scholar] [CrossRef]
- Dimov, I.B.; Moser, M.; Malliaras, G.G.; McCulloch, I. Semiconducting Polymers for Neural Applications. Chem. Rev. 2022, 122, 4356–4396. [Google Scholar] [CrossRef]
- Mohsin, M.; Shams, F.; Li, H.; Alam, A.; Xia, C.; Fan, L.; Cao, Y.; Jiang, W.; Nasir, A.; Khan, S.; et al. Nanozymes in Neuropathic Pain: Strategies Bridging Oxidative Stress, Mitochondrial Repair, and Neuroimmune Modulation for Targeted Therapy. J. Neuroinflamm. 2025, 22, 156. [Google Scholar] [CrossRef] [PubMed]
- Martin, D.R.; Matyushov, D.V. Electron-Transfer Chain in Respiratory Complex I. Sci. Rep. 2017, 7, 5495. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, F.d.S.; Barrett, D.W.; Wade, Z.; Gomes da Silva, S.; Gonzalez-Lima, F. Photobiomodulation of Cytochrome c Oxidase by Chronic Transcranial Laser in Young and Aged Brains. Front. Neurosci. 2022, 16, 818005. [Google Scholar] [CrossRef] [PubMed]
- Quirk, B.J.; Whelan, H.T. What Lies at the Heart of Photobiomodulation: Light, Cytochrome C Oxidase, and Nitric Oxide-Review of the Evidence. Photobiomodulation Photomed. Laser Surg. 2020, 38, 527–530. [Google Scholar] [CrossRef]
- Zhou, H.; Auerbach, N.; Uzan, M.; Zhou, Y.; Banu, N.; Zhi, W.; Huber, M.E.; Watanabe, K.; Taniguchi, T.; Myasoedov, Y.; et al. Imaging Quantum Oscillations and Millitesla Pseudomagnetic Fields in Graphene. Nature 2023, 624, 275–281. [Google Scholar] [CrossRef]
- Cuadra, L.; Salcedo-Sanz, S.; Nieto-Borge, J.C. Carrier Transport in Colloidal Quantum Dot Intermediate Band Solar Cell Materials Using Network Science. Int. J. Mol. Sci. 2023, 24, 3797. [Google Scholar] [CrossRef]
- Zhang, Z.; Dreon, D.; Esslinger, T.; Jaksch, D.; Buca, B.; Donner, T. Dissipation-Induced Non-Equilibrium Phases with Temporal and Spatial Order. Commun. Phys. 2025, 8, 211. [Google Scholar] [CrossRef]
- Freire, M.A.M.; Lima, R.R.; Bittencourt, L.O.; Guimaraes, J.S.; Falcao, D.; Gomes-Leal, W. Astrocytosis, Inflammation, Axonal Damage and Myelin Impairment in the Internal Capsule Following Striatal Ischemic Injury. Cells 2023, 12, 457. [Google Scholar] [CrossRef]
- Bojarskaite, L.; Nafari, S.; Ravnanger, A.K.; Frey, M.M.; Skauli, N.; Åbjørsbråten, K.S.; Roth, L.C.; Amiry-Moghaddam, M.; Nagelhus, E.A.; Ottersen, O.P.; et al. Role of Aquaporin-4 Polarization in Extracellular Solute Clearance. Fluids Barriers CNS 2024, 21, 28. [Google Scholar] [CrossRef]
- Tian, J.; Zhang, Y.; Liu, L.; Li, C.; Hao, X. Deciphering Aquaporin-4′s Influence on Perivascular Diffusion Indices Using DTI in Rat Stroke Studies. Front. Neurosci. 2025, 19, 1566957. [Google Scholar] [CrossRef] [PubMed]
- Fazio, A.; Neri, I.; Koufi, F.-D.; Marvi, M.V.; Galvani, A.; Evangelisti, C.; McCubrey, J.A.; Cocco, L.; Manzoli, L.; Ratti, S. Signaling Role of Pericytes in Vascular Health and Tissue Homeostasis. Int. J. Mol. Sci. 2024, 25, 6592. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, D.; Hamid, I.; Vanhollebeke, B.; Martin, M. Microtubules and Mechanosensing: Key Players in Endothelial Responses to Mechanical Stimuli. Cell. Mol. Life Sci. 2025, 82, 317. [Google Scholar] [CrossRef] [PubMed]
- Dong, R.; Han, Y.; Jiang, L.; Liu, S.; Zhang, F.; Peng, L.; Wang, Z.; Ma, Z.; Xia, T.; Gu, X. Connexin 43 Gap Junction-Mediated Astrocytic Network Reconstruction Attenuates Isoflurane-Induced Cognitive Dysfunction in Mice. J. Neuroinflamm. 2022, 19, 64. [Google Scholar] [CrossRef]
- Abhinav, V.; Basu, P.; Verma, S.S.; Verma, J.; Das, A.; Kumari, S.; Yadav, P.R.; Kumar, V. Advancements in Wearable and Implantable BioMEMS Devices: Transforming Healthcare Through Technology. Micromachines 2025, 16, 522. [Google Scholar] [CrossRef]
- Șerban, M.; Toader, C.; Covache-Busuioc, R.-A. CRISPR and Artificial Intelligence in Neuroregeneration: Closed-Loop Strategies for Precision Medicine, Spinal Cord Repair, and Adaptive Neuro-Oncology. Int. J. Mol. Sci. 2025, 26, 9409. [Google Scholar] [CrossRef]
- Sun, M.; Chen, Y.; Fan, X.; Li, D.; Song, J.; Yu, K.; Zhao, Z. Electronic Asymmetry of Lattice Oxygen Sites in ZnO Promotes the Photocatalytic Oxidative Coupling of Methane. Nat. Commun. 2024, 15, 9900. [Google Scholar] [CrossRef]
- Sawada, Y.; Daigaku, Y.; Toma, K. Maximum Entropy Production Principle of Thermodynamics for the Birth and Evolution of Life. Entropy 2025, 27, 449. [Google Scholar] [CrossRef]
- Pinardi, M.; Longo, M.R.; Formica, D.; Strbac, M.; Mehring, C.; Burdet, E.; Di Pino, G. Impact of Supplementary Sensory Feedback on the Control and Embodiment in Human Movement Augmentation. Commun. Eng. 2023, 2, 64. [Google Scholar] [CrossRef]
- Hoffmann, M.H.; Kirchner, H.; Krönke, G.; Riemekasten, G.; Bonelli, M. Inflammatory Tissue Priming: Novel Insights and Therapeutic Opportunities for Inflammatory Rheumatic Diseases. Ann. Rheum. Dis. 2024, 83, 1233–1253. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.; Matta, M.; Paulsen, B.D.; Rivnay, J. Operando Characterization of Organic Mixed Ionic/Electronic Conducting Materials. Chem. Rev. 2022, 122, 4493–4551. [Google Scholar] [CrossRef] [PubMed]
- Ohkawara, B.; Ito, M.; Ohno, K. Secreted Signaling Molecules at the Neuromuscular Junction in Physiology and Pathology. Int. J. Mol. Sci. 2021, 22, 2455. [Google Scholar] [CrossRef]
- Müller, L.; Di Benedetto, S.; Müller, V. From Homeostasis to Neuroinflammation: Insights into Cellular and Molecular Interactions and Network Dynamics. Cells 2025, 14, 54. [Google Scholar] [CrossRef]
- Bao, Y.; Hu, C.; Wang, B.; Liu, X.; Wu, Q.; Xu, D.; Shi, Z.; Sun, C. Mitochondrial Reverse Electron Transport: Mechanisms, Pathophysiological Roles, and Therapeutic Potential. Biology 2025, 14, 1140. [Google Scholar] [CrossRef]
- Tang, G.; Yang, G.-Y. Aquaporin-4: A Potential Therapeutic Target for Cerebral Edema. Int. J. Mol. Sci. 2016, 17, 1413. [Google Scholar] [CrossRef]
- Clark, K.B. Neural Field Continuum Limits and the Structure–Function Partitioning of Cognitive–Emotional Brain Networks. Biology 2023, 12, 352. [Google Scholar] [CrossRef]
- van Merode, F.; Boersma, H.; Tournois, F.; Winasti, W.; Reis de Almeida Passos, N.A.; Ham, A. van der Using Entropy Metrics to Analyze Information Processing Within Production Systems: The Role of Organizational Constraints. Logistics 2025, 9, 46. [Google Scholar] [CrossRef]
- Rué-Queralt, J.; Stevner, A.; Tagliazucchi, E.; Laufs, H.; Kringelbach, M.L.; Deco, G.; Atasoy, S. Decoding Brain States on the Intrinsic Manifold of Human Brain Dynamics across Wakefulness and Sleep. Commun. Biol. 2021, 4, 854. [Google Scholar] [CrossRef]
- Qiu, H.; Luo, L.; Su, Z.; Zhou, L.; Wang, L.; Chen, Y. Machine Learning Approaches to Predict Peak Demand Days of Cardiovascular Admissions Considering Environmental Exposure. BMC Med. Inform. Decis. Mak. 2020, 20, 83. [Google Scholar] [CrossRef] [PubMed]
- Kaushal, J.B.; Raut, P.; Kumar, S. Organic Electronics in Biosensing: A Promising Frontier for Medical and Environmental Applications. Biosensors 2023, 13, 976. [Google Scholar] [CrossRef] [PubMed]
- Al Abdul Wahid, S.; Asad, A.; Mohammadi, F. A Survey on Neuromorphic Architectures for Running Artificial Intelligence Algorithms. Electronics 2024, 13, 2963. [Google Scholar] [CrossRef]
- Abid, I.; González-Colsa, J.; Naveaux, C.; Campu, A.; Arib, C.; Focsan, M.; Albella, P.; Edely, M.; Lamy de La Chapelle, M. Correlation between Plasmonic and Thermal Properties of Metallic Nanoparticles. Nanomaterials 2024, 14, 820. [Google Scholar] [CrossRef]
- Mas-Bargues, C.; Huete-Acevedo, J.; Arnal-Forné, M.; Sireno, L.; Pérez, V.; Borrás, C. Extracellular Vesicles as Epigenetic Regulators of Redox Homeostasis: A Systematic Review and Meta-Analysis. Antioxidants 2025, 14, 532. [Google Scholar] [CrossRef]
- Gao, W.; Yan, Z.; Zhou, H.; Xie, Y.; Wang, H.; Yang, J.; Yu, J.; Ni, C.; Liu, P.; Xie, M.; et al. Revolutionizing Brain–computer Interfaces: Overcoming Biocompatibility Challenges in Implantable Neural Interfaces. J. Nanobiotechnol. 2025, 23, 498. [Google Scholar] [CrossRef]
- Vecchio, F.; Miraglia, F.; Pappalettera, C.; Orticoni, A.; Alù, F.; Judica, E.; Cotelli, M.; Rossini, P.M. Entropy as Measure of Brain Networks’ Complexity in Eyes Open and Closed Conditions. Symmetry 2021, 13, 2178. [Google Scholar] [CrossRef]
- Schneider, D.M.; Zanette, D.H. The Structure of Bit-String Similarity Networks. Entropy 2025, 27, 57. [Google Scholar] [CrossRef]
- Truong, N.C.D.; Wang, X.; Wanniarachchi, H.; Liu, H. Enhancement of Frequency-Specific Hemodynamic Power and Functional Connectivity by Transcranial Photobiomodulation in Healthy Humans. Front. Neurosci. 2022, 16, 896502. [Google Scholar] [CrossRef]
- Loeb, G.E. Remembrance of Things Perceived: Adding Thalamocortical Function to Artificial Neural Networks. Front. Integr. Neurosci. 2023, 17, 1108271. [Google Scholar] [CrossRef]
- Rad, D.; Maier, M.; Triff, Z.; Marcu, R. Entangled Autopoiesis: Reframing Psychotherapy and Neuroscience Through Cognitive Science and Systems Engineering. Brain Sci. 2025, 15, 1032. [Google Scholar] [CrossRef]
- Karalis, V.D. The Integration of Artificial Intelligence into Clinical Practice. Appl. Biosci. 2024, 3, 14–44. [Google Scholar] [CrossRef]
- Murman, D.L. The Impact of Age on Cognition. Semin. Hear. 2015, 36, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Walzik, D.; Wences Chirino, T.Y.; Zimmer, P.; Joisten, N. Molecular Insights of Exercise Therapy in Disease Prevention and Treatment. Signal Transduct. Target. Ther. 2024, 9, 138. [Google Scholar] [CrossRef] [PubMed]
- Matarèse, B.F.E.; Rusin, A.; Seymour, C.; Mothersill, C. Quantum Biology and the Potential Role of Entanglement and Tunneling in Non-Targeted Effects of Ionizing Radiation: A Review and Proposed Model. Int. J. Mol. Sci. 2023, 24, 16464. [Google Scholar] [CrossRef] [PubMed]
- Naser, M.Z. Intuitive Tests to Validate Machine Learning Models against Physics and Domain Knowledge. Digit. Eng. 2025, 7, 100057. [Google Scholar] [CrossRef]
- Mamoudou, H.; Mune, M.A.M. AI-Driven Bioactive Peptide Discovery of next-Generation Metabolic Biotherapeutics. Appl. Food Res. 2025, 5, 101291. [Google Scholar] [CrossRef]
- Zanin, M.; Aitya, N.A.A.; Basilio, J.; Baumbach, J.; Benis, A.; Behera, C.K.; Bucholc, M.; Castiglione, F.; Chouvarda, I.; Comte, B.; et al. An Early Stage Researcher’s Primer on Systems Medicine Terminology. Netw. Syst. Med. 2021, 4, 2–50. [Google Scholar] [CrossRef]




| Scale/Domain | Primary Thermodynamic Perturbation | Dominant Mechanistic Source of Entropy (σ) | Biophysical Manifestation/Observable Signature | Quantitative Metric or Parameter | Thermodynamic Descriptor/Analytical Construct | References |
|---|---|---|---|---|---|---|
| Quantum–Electronic (10−15–10−12 s) | Collapse of redox coherence in electron transport | ROS/RNS-induced Fe–S cluster distortion; stochastic tunneling interruptions | Sub-femtosecond decoherence; nanoscopic heat quanta release | Coherence time τ_c ↓ 300 → 40 fs; NADH lifetime variance ↑ 4–6× | Δσₑ = k_B ln(Ω1/Ω0); Q_ℏ (coherence entropy flux) | [48,49,50] |
| Molecular–Mitochondrial (10−9–10−3 s) | Fractal thermal turbulence in inner membrane | Cardiolipin oxidation; proton-leak microbursts; DRP1-driven fission | Non-ergodic “thermal grains”; intermittent Δψ_m collapse | ΔT_micro ≈ 0.2–0.4 mK; Δψ_m oscillation 0.1–1 Hz | σₘᵢₜ = ∑ J_q · ∇(1/T); D_f (fractal heat dimension ≈ 2.4) | [51,52] |
| Sub-cellular–Cytoskeletal (10−6–10−2 s) | Piezo-thermomechanical conversion of intracellular noise | Actin filament deformation; microtubule–ion coupling; Ca2+ piezo-resonance | Nanometer membrane oscillations; viscoelastic noise amplification | Oscillation amplitude ↑ 250%; spectral broadening 0.1–60 Hz | σa = ∫ ζ (∂x/∂t)2 dt; η_eff (viscoelastic dissipation) | [53] |
| Cellular–Glial (ms–s) | Loss of astrocytic Ca2+ coherence and gap-junction symmetry | Cytokine-driven gliosis; connexin-43 fragmentation; ROS modulation | Breakdown of self-similar Ca2+ waves; formation of “thermal islands” | Coherence length ξ_c ↓ 300 → 60 µm; 1/f → exponential spectrum | H = ½ log (P_entropy); σ_glia (1/f entropy-power index) | [54] |
| Perivascular–Vascular (s–min) | Resonant vasomotor instability and thermofluidic friction | NO/ET-1 phase collapse; AQP4 mislocalization; viscosity gain | Microthermal standing waves; slowed convective clearance | Perivascular viscosity ↑ 55%; ΔT_PVS +0.3 °C | σ(gv) = ρ c_p ⟨(∇T)2⟩; Re_eff < 0.05 (laminar→chaotic) | [55,56] |
| Mesoscale–Network (min–h) | Phase dispersion between metabolic and electrical oscillators | NADH–BOLD desynchronization; incoherent oxygen coupling | Reduced predictive entropy; recurrent hyperemia–hypoxia cycles | Cross-freq. coherence ↓ 65%; entropy index ↑ 2.5× | S_pred = −∑ p log p; ρ_phase (phase-dispersion ratio) | [57,58] |
| Macroscopic–Systemic (h–days) | Flattening of hierarchical energy coupling | Spatial decoherence of entropy flux Js; vascular thermal flattening | Transition to diffusion-dominated regime; cortical spectral flattening | Fractal dimension Dt ↓ 2.6 → 2.0; 1/f slope → 0 | σ_sys = ∂S/∂t; Λ_ETF (Entropy-Transfer Function) | [59,60] |
| Resilience Dimension | Experimental Probe/Perturbation | Measured Recovery Behavior | Key Metric or Descriptor | Interpretive Insight | References |
|---|---|---|---|---|---|
| Energetic Elasticity (capacity to absorb disturbance) | Magnetothermal SPION pulses (1–5 µJ) and plasmonic photothermal bursts (~808 nm, <1 ms) | Single → multi-exponential relaxation of temperature, viscosity, redox potential | κ (thermal conductance), τR (recovery half-time), EEI = κ/τR | Rapid, coherent decay of local gradients; decline = network stiffening | [125] |
| Temporal Coherence (phase alignment across domains) | Sequential optical + magnetic perturbations with cross-domain recovery tracing | Phase-lag increase between τ_redox, τ_vaso, τ_elec; loss of scaling | RAI = Var(τi)/⟨τi⟩2, Δϕ (phase dispersion) | Indicates desynchronization of metabolic, vascular, and electrical feedback loops | [126] |
| Reversibility Geometry (shape of return in energy space) | Local photothermal perturbations mapped by nanothermometry | Asymmetric trajectories; non-linear equilibrium drift | ΔS_rev = ∫(δQ/T), A_r = τ+/τ− | Larger A_r denotes partial loss of energetic reversibility | [127] |
| Energetic Memory (hysteretic fatigue) | Repetitive magnetothermal cycles at fixed duty ratios | Stepwise baseline shift (ΔT0 ↑) and cumulative energy loss (ΔQh) | EFC = ΔQh·N−1, ΔS/Δt (entropy rate) | Quantifies irreversible dissipation; analog of material fatigue | [128] |
| Predictive Stability (capacity to maintain forecastable energy flow) | Finite element thermodynamic modeling with experimental input | ERR ↓, Ds ↓ → diffusion-dominant flow | ERR (Energy Restitution Ratio), Ds (entropy diffusion coefficient), DTI = f(ERR,Ds,RAI) | Integrates multiscale reversibility; loss = onset of chaotic dissipation | [129] |
| Closed-Loop Adaptivity (real-time self-regulation) | Quantum-plasmonic implants with feedback micro-perturbations | Continuous modulation of τR, κ, ERR; self-corrective pulses | PRB (Predictive Resilience Boundary), ΔE/Δt control gain | Demonstrates active learning of thermodynamic resilience; early fatigue detection | [130] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grigorean, V.T.; Dumitru, A.V.; Tataru, C.-I.; Serban, M.; Ciurea, A.V.; Munteanu, O.; Radoi, M.P.; Covache-Busuioc, R.-A.; Cosac, A.-S.; Pariza, G. Thermodynamic Biomarkers of Neuroinflammation: Nanothermometry, Energy–Stress Dynamics, and Predictive Entropy in Glial–Vascular Networks. Int. J. Mol. Sci. 2025, 26, 11022. https://doi.org/10.3390/ijms262211022
Grigorean VT, Dumitru AV, Tataru C-I, Serban M, Ciurea AV, Munteanu O, Radoi MP, Covache-Busuioc R-A, Cosac A-S, Pariza G. Thermodynamic Biomarkers of Neuroinflammation: Nanothermometry, Energy–Stress Dynamics, and Predictive Entropy in Glial–Vascular Networks. International Journal of Molecular Sciences. 2025; 26(22):11022. https://doi.org/10.3390/ijms262211022
Chicago/Turabian StyleGrigorean, Valentin Titus, Adrian Vasile Dumitru, Catalina-Ioana Tataru, Matei Serban, Alexandru Vlad Ciurea, Octavian Munteanu, Mugurel Petrinel Radoi, Razvan-Adrian Covache-Busuioc, Ariana-Stefana Cosac, and George Pariza. 2025. "Thermodynamic Biomarkers of Neuroinflammation: Nanothermometry, Energy–Stress Dynamics, and Predictive Entropy in Glial–Vascular Networks" International Journal of Molecular Sciences 26, no. 22: 11022. https://doi.org/10.3390/ijms262211022
APA StyleGrigorean, V. T., Dumitru, A. V., Tataru, C.-I., Serban, M., Ciurea, A. V., Munteanu, O., Radoi, M. P., Covache-Busuioc, R.-A., Cosac, A.-S., & Pariza, G. (2025). Thermodynamic Biomarkers of Neuroinflammation: Nanothermometry, Energy–Stress Dynamics, and Predictive Entropy in Glial–Vascular Networks. International Journal of Molecular Sciences, 26(22), 11022. https://doi.org/10.3390/ijms262211022
