Expression of Putative Cancer Stem Cell Markers in Oral Squamous Cell Carcinoma: Correlation with Clinicopathological Features
Abstract
1. Introduction
2. Results
2.1. Clinicopathological Characteristics of the Patients
2.2. Primary Tumor Cells in Culture
2.3. Expression of Putative Cancer Stem Cell Markers
2.4. Correlation of Sialometry, Depth of Invasion, Tumor Size and Stage with Expression Putative Cancer Stem Cell Markers
3. Discussion
4. Materials and Methods
4.1. Study Design and Ethical Approval
4.2. Clinical and Histopathological Evaluation
4.3. Tumor Sample Collection and Processing
4.4. Enzymatic Digestion, Cell Isolation, and Primary Culture
4.5. Flow Cytometric Analysis of Putative Cancer Stem Cell Markers Expression
- Rabbit anti-human CD133 (ab19898, Abcam, Cambridge, UK);
- Mouse anti-human CD166-PE (BZ-343904, BioLegend, San Diego, CA, USA);
- Mouse anti-human CD44-PE-Cy7 (ab46793, Abcam, Cambridge, UK).
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ALCAM | Activated leukocyte cell adhesion molecule |
| CSCs | Cancer stem cells |
| DOI | Depth of invasion |
| OSCC | Oral squamous cell carcinoma |
| TNM | Tumor node metastasis |
References
- Tranby, E.P.; Heaton, L.J.; Tomar, S.L.; Kelly, A.L.; Fager, G.L.; Backley, M.; Frantsve Hawley, J. Oral Cancer Prevalence, Mortality, and Costs in Medicaid and Commercial Insurance Claims Data. Cancer Epidemiol. Biomark. Prev. 2022, 31, 1849–1857. [Google Scholar] [CrossRef]
- Dhanuthai, K.; Rojanawatsirivej, S.; Thosaporn, W.; Kintarak, S.; Subarnbhesaj, A.; Darling, M.; Kryshtalskyj, E.; Chiang, C.P.; Shin, H.I.; Choi, S.Y.; et al. Oral Cancer: A Multicenter Study. Med. Oral Patol. Oral Cir. Bucal 2018, 23, e23. [Google Scholar] [CrossRef] [PubMed]
- Petrović, A.; Čanković, M.; Avramov, M.; Popović, Ž.D.; Janković, S.; Mojsilović, S. High-Risk Human Papillomavirus in Patients with Oral Carcinoma and Oral Potentially Malignant Disorders in Serbia—A Pilot Study. Medicina 2023, 59, 1843. [Google Scholar] [CrossRef]
- Fukumoto, C.; Uchida, D.; Kawamata, H. Diversity of the Origin of Cancer Stem Cells in Oral Squamous Cell Carcinoma and Its Clinical Implications. Cancers 2022, 14, 3588. [Google Scholar] [CrossRef]
- Montero, P.H.; Patel, S.G. Cancer of the Oral Cavity. Surg. Oncol. Clin. N. Am. 2015, 24, 491–508. [Google Scholar] [CrossRef]
- Da Silva, S.D.; Ferlito, A.; Takes, R.P.; Brakenhoff, R.H.; Valentin, M.D.; Woolgar, J.A.; Bradford, C.R.; Rodrigo, J.P.; Rinaldo, A.; Hier, M.P.; et al. Advances and Applications of Oral Cancer Basic Research. Oral Oncol. 2011, 47, 783–791. [Google Scholar] [CrossRef]
- Varela Centelles, P. Early Diagnosis and Diagnostic Delay in Oral Cancer. Cancers 2022, 14, 1758. [Google Scholar] [CrossRef]
- González Moles, M.Á.; Aguilar Ruiz, M.; Ramos García, P. Challenges in the Early Diagnosis of Oral Cancer, Evidence Gaps and Strategies for Improvement: A Scoping Review of Systematic Reviews. Cancers 2022, 14, 4967. [Google Scholar] [CrossRef]
- Shahoumi, L.A. Oral Cancer Stem Cells: Therapeutic Implications and Challenges. Front. Oral Health 2021, 2, 685236. [Google Scholar] [CrossRef] [PubMed]
- Chu, X.; Tian, W.; Ning, J.; Xiao, G.; Zhou, Y.; Wang, Z.; Zhai, Z.; Tanzhu, G.; Yang, J.; Zhou, R. Cancer Stem Cells: Advances in Knowledge and Implications for Cancer Therapy. Signal Transduct. Target. Ther. 2024, 9, 170. [Google Scholar] [CrossRef] [PubMed]
- Baillie, R.; Tan, S.T.; Itinteang, T. Cancer Stem Cells in Oral Cavity Squamous Cell Carcinoma: A Review. Front. Oncol. 2017, 7, 112. [Google Scholar] [CrossRef]
- Iorgulescu, G. Saliva between Normal and Pathological. Important Factors in Determining Systemic and Oral Health. J. Med. Life 2009, 2, 303. [Google Scholar]
- Shiboski, C.H.; Shiboski, S.C.; Seror, R.; Criswell, L.A.; Labetoulle, M.; Lietman, T.M.; Rasmussen, A.; Scofield, H.; Vitali, C.; Bowman, S.J.; et al. 2016 ACR/EULAR Classification Criteria for Primary Sjögren’s Syndrome: A Consensus and Data-Driven Methodology Involving Three International Patient Cohorts. Arthritis Rheumatol. 2017, 69, 35–45. [Google Scholar] [CrossRef]
- Tripathi, A.; Singh, M.; Mishra, P.; Fatima, N.; Kumar, V. Meta Analysis of Prognostic Significance of Cancer Stem Cell Markers in Oral Squamous Cell Carcinoma. Asian Pac. J. Cancer Prev. 2024, 25, 3597–3607. [Google Scholar] [CrossRef]
- Das, S.; Basak, S.; Sarkar, S. Decoding Salivary ncRNAomes as Novel Biomarkers for Oral Cancer Detection and Prognosis. Noncoding RNA 2025, 11, 28. [Google Scholar] [CrossRef]
- Ashwini, R.; Narayan, M.; Rajkumar, K. Diagnostic and Prognostic Markers of Oral Squamous Cell Carcinoma—A Detailed Review. Oral Oncol. Rep. 2024, 10, 100321. [Google Scholar] [CrossRef]
- Rivera, C.; Oliveira, A.K.; Costa, R.A.; De Rossi, T.; Leme, A.F. Prognostic Biomarkers in Oral Squamous Cell Carcinoma: A Systematic Review. Oral Oncol. 2017, 72, 38–47. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Sun, B. The Prognostic Role of the Cancer Stem Cell Marker Aldehyde Dehydrogenase 1 in Head and Neck Squamous Cell Carcinomas: A Meta Analysis. Oral Oncol. 2014, 50, 1144–1148. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Niu, M.; Yuan, X.; Wu, K.; Liu, A. CD44 as a Tumor Biomarker and Therapeutic Target. Exp. Hematol. Oncol. 2020, 9, 36. [Google Scholar] [CrossRef] [PubMed]
- Irollo, E.; Pirozzi, G. CD133: To Be or Not To Be, Is This the Real Question? Am. J. Transl. Res. 2013, 5, 563–581. [Google Scholar]
- Swart, G.W. Activated Leukocyte Cell Adhesion Molecule (CD166/ALCAM): Developmental and Mechanistic Aspects of Cell Clustering and Cell Migration. Eur. J. Cell Biol. 2002, 81, 313–321. [Google Scholar] [CrossRef]
- Varun, B.R.; Jayanthi, P.; Ramani, P. Cancer Stem Cells: A Comprehensive Review on Identification and Therapeutic Implications. J. Oral Maxillofac. Pathol. 2020, 24, 190. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Zhou, X.K.; Wu, M.; Kang, F.W.; Wang, Z.L.; Zhu, Y. Role of CD133+ Cells in Tongue Squamous Carcinomas: Characteristics of ‘Stemness’ In Vivo and In Vitro. Oncol. Lett. 2016, 12, 863–870. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Shi, S.; Yen, Y.; Brown, J.; Ta, J.Q.; Le, A.D. A Subpopulation of CD133(+) Cancer Stem Like Cells Characterized in Human Oral Squamous Cell Carcinoma Confer Resistance to Chemotherapy. Cancer Lett. 2010, 289, 151–160. [Google Scholar] [CrossRef] [PubMed]
- Kang, F.W.; Wang, K.; Wu, M.; Wang, Z.L.; Zhu, Y.; Min, R. Biological Characteristics of CD133+ Subpopulation in Tongue Squamous Cell Carcinoma Tca8113 Cell Line. West China J. Stomatol. 2010, 28, 560–564. [Google Scholar]
- Ma, Z.; Zhang, C.; Liu, X.; Fang, F.; Liu, S.; Liao, X.; Tao, S.; Mai, H. Characterisation of a Subpopulation of CD133+ Cancer Stem Cells from Chinese Patients with Oral Squamous Cell Carcinoma. Sci. Rep. 2020, 10, 8875. [Google Scholar] [CrossRef]
- Acharya, S.K.; Shai, S.; Choon, Y.F.; Gunardi, I.; Hartanto, F.K.; Kadir, K.; Roychoudhury, A.; Amtha, R.; Vincent-Chong, V.K. Cancer Stem Cells in Oral Squamous Cell Carcinoma: A Narrative Review on Experimental Characteristics and Methodological Challenges. Biomedicines 2024, 12, 2111. [Google Scholar] [CrossRef]
- Dhumal, S.N.; Choudhari, S.K.; Patankar, S.; Ghule, S.S.; Jadhav, Y.B.; Masne, S. Cancer Stem Cell Markers, CD44 and ALDH1, for Assessment of Cancer Risk in OPMDs and Lymph Node Metastasis in Oral Squamous Cell Carcinoma. Head Neck Pathol. 2022, 16, 453–465. [Google Scholar] [CrossRef]
- Ludwig, N.; Szczepanski, M.J.; Gluszko, A.; Szafarowski, T.; Azambuja, J.H.; Dolg, L.; Gellrich, N.C.; Kampmann, A.; Whiteside, T.L.; Zimmerer, R.M. CD44+ Tumor Cells Promote Early Angiogenesis in Head and Neck Squamous Cell Carcinoma. Cancer Lett. 2019, 467, 85–95. [Google Scholar] [CrossRef]
- Krump, M.; Ehrmann, J. Differences in CD44s Expression in HNSCC Tumours of Different Areas within the Oral Cavity. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 2013, 157, 280–283. [Google Scholar] [CrossRef]
- Yang, Y.; Sanders, A.J.; Ruge, F.; Dong, X.; Cui, Y.; Dou, Q.P.; Jia, S.; Hao, C.; Ji, J.; Jiang, W.G. Activated Leukocyte Cell Adhesion Molecule (ALCAM)/CD166 in Pancreatic Cancer, a Pivotal Link to Clinical Outcome and Vascular Embolism. Am. J. Cancer Res. 2021, 11, 5917–5932. [Google Scholar] [PubMed]
- Yang, Y.; Sanders, A.J.; Dou, Q.P.; Jiang, D.G.; Li, A.X.; Jiang, W.G. The Clinical and Theranostic Values of Activated Leukocyte Cell Adhesion Molecule (ALCAM)/CD166 in Human Solid Cancers. Cancers 2021, 13, 5187. [Google Scholar] [CrossRef]
- Yan, M.; Yang, X.; Wang, L.; Clark, D.; Zuo, H.; Ye, D.; Chen, W.; Zhang, P. Plasma Membrane Proteomics of Tumor Spheres Identify CD166 as a Novel Marker for Cancer Stem Like Cells in Head and Neck Squamous Cell Carcinoma. Mol. Cell. Proteom. 2013, 12, 3271–3284. [Google Scholar] [CrossRef]
- Saluja, T.S.; Kumar, V.; Agrawal, M.; Tripathi, A.; Meher, R.K.; Srivastava, K.; Gupta, A.; Singh, A.; Chaturvedi, A.; Singh, S.K. Mitochondrial Stress–Mediated Targeting of Quiescent Cancer Stem Cells in Oral Squamous Cell Carcinoma. Cancer Manag. Res. 2020, 12, 4519–4530. [Google Scholar] [CrossRef]
- Adnan, Y.; Ali, S.M.A.; Farooqui, H.A.; Kayani, H.A.; Idrees, R.; Awan, M.S. High CD44 Immunoexpression Correlates with Poor Overall Survival: Assessing the Role of Cancer Stem Cell Markers in Oral Squamous Cell Carcinoma Patients from the High Risk Population of Pakistan. Int. J. Surg. Oncol. 2022, 2022, 9990489. [Google Scholar] [CrossRef]
- Wu, V.W.C.; Leung, K.Y. A Review on the Assessment of Radiation Induced Salivary Gland Damage after Radiotherapy. Front. Oncol. 2019, 9, 1090. [Google Scholar] [CrossRef]
- Fujii, K.; Kumagai, K.; Hamada, Y.; Suzuki, R. Clinicopathological Significance and Prognostic Value of CD133 Expression in Oral Squamous Cell Carcinoma. J. Oral Maxillofac. Surg. Med. Pathol. 2015, 27, 176–182. [Google Scholar] [CrossRef]
- Sawhney, M.; Matta, A.; Macha, M.A.; Kaur, J.; DattaGupta, S.; Shukla, N.K.; Ralhan, R. Cytoplasmic Accumulation of Activated Leukocyte Cell Adhesion Molecule Is a Predictor of Disease Progression and Reduced Survival in Oral Cancer Patients. Int. J. Cancer 2009, 124, 2098–2105. [Google Scholar] [CrossRef]
- Hema, K.; Rao, K.; Devi, H.U.; Priya, N.; Smitha, T.; Sheethal, H. Immunohistochemical Study of CD44s Expression in Oral Squamous Cell Carcinoma—Its Correlation with Prognostic Parameters. J. Oral Maxillofac. Pathol. 2014, 18, 162–168. [Google Scholar] [PubMed]
- Hendawy, H.; Esmail, A.D.; Zahani, A.M.N.; Elmahdi, A.H.; Ibrahiem, A. Clinicopathological Correlation of Stem Cell Markers Expression in Oral Squamous Cell Carcinoma; Relation to Patients’ Outcome. J. Immunoass. Immunochem. 2021, 42, 571–595. [Google Scholar] [CrossRef] [PubMed]
- Kaur, J.; Sawhney, M.; DattaGupta, S.; Shukla, N.K.; Srivastava, A.; Walfish, P.G.; Ralhan, R. Clinical Significance of Altered Expression of β-Catenin and E-Cadherin in Oral Dysplasia and Cancer: Potential Link with ALCAM Expression. PLoS ONE 2013, 8, e67361. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.H.; O’Sullivan, B. Overview of the 8th Edition TNM Classification for Head and Neck Cancer. Curr. Treat. Options Oncol. 2017, 18, 40. [Google Scholar] [CrossRef] [PubMed]



| Patient | Stage | D1 (cm) | D2 (cm) | DOI | Sialometry (mL/min) |
|---|---|---|---|---|---|
| 1 | IV | 3.2 | 2.7 | 2 | 0.3 |
| 2 | III | 4.5 | 2.9 | 1 | 0.4 |
| 3 | I | 2 | 1 | 1 | 0.3 |
| 4 | III | 3 | 2 | 1 | 1 |
| 5 | IV | 3 | 2 | 2 | 0.2 |
| 6 | III | 4.5 | 3 | 1 | 0.1 |
| 7 | IV | 5 | 3 | 1 | 0.4 |
| 8 | III | 4.2 | 3 | 2 | 0.4 |
| 9 | IV | 6 | 5 | 1 | 0.5 |
| 10 | III | 6 | 4 | 1 | 0.2 |
| 11 | III | 3.5 | 3 | 1 | 0.5 |
| 12 | III | 3.1 | 3 | 1 | 0.3 |
| Patient | Ca planocell. | CD44+ | CD133+ | CD166+ |
|---|---|---|---|---|
| 1 | linguae | 98.0 | 55.4 | 93.0 |
| 2 | linguae | 97.28 | 1.2 | 53.11 |
| 3 | linguae | 99.02 | 1.73 | 85.08 |
| 4 | linguae | 99.04 | 1.3 | 64.26 |
| 5 | linguae | 88.78 | 0.66 | 96.06 |
| 6 | gingivae maxillae | 94.38 | 0.25 | 99.03 |
| 7 | baseos oris | 89.62 | 8.2 | 88.79 |
| 8 | linguae | 83.81 | 11.02 | 75.95 |
| 9 | linguae et baseos oris | 95.89 | 1.36 | 85.24 |
| 10 | linguae | 96.91 | 1.92 | 85.79 |
| 11 | linguae | 87.41 | 10.49 | 81.61 |
| 12 | linguae | 98.79 | 0.77 | 96.7 |
| Patient | Ca planocell. | CD44+/ CD133+ | CD166+/ CD133+ | CD44+/ CD166+ | CD133+/ CD166+/ CD44+ |
|---|---|---|---|---|---|
| 1 | linguae | 55.2 | 53.6 | 93.1 | 53.6 |
| 2 | linguae | 1.63 | 0.85 | 54 | 0.51 |
| 3 | linguae | 1.74 | 1.36 | 86.89 | 2.85 |
| 4 | linguae | 1.18 | 0.8 | 64.51 | 0.73 |
| 5 | linguae | 0.71 | 1.03 | 87.78 | 0.57 |
| 6 | gingivae maxillae | 0.21 | 0.19 | 94.39 | 1.15 |
| 7 | baseos oris | 8.64 | 8.58 | 88.29 | 8.12 |
| 8 | linguae | 6.08 | 4.18 | 74.01 | 3.80 |
| 9 | linguae et baseos oris | 1.1 | 0.95 | 85.02 | 1.17 |
| 10 | linguae | 1.83 | 1.27 | 86.24 | 1.55 |
| 11 | linguae | 6.06 | 4.96 | 79.76 | 3.63 |
| 12 | linguae | 0.9 | 1.08 | 96.55 | 2.40 |
| CD44+ | CD133+ | CD166+ | CD44+/ CD133+ | CD166+/ CD133+ | CD44+/ CD166+ | CD133+/ CD166+/ CD44+ | |
|---|---|---|---|---|---|---|---|
| Sialometry | 0.113 | −0.070 | −0.861 ** | −0.089 | −0.097 | −0.825 ** | −0.115 |
| DOI | −0.375 | 0.675 * | 0.039 | 0.642 * | 0.635 * | −0.076 | 0.614 * |
| D1 | −0.153 | −0.164 | 0.046 | −0.162 | −0.164 | 0.066 | −0.175 |
| D2 | −0.082 | −0.038 | 0.097 | −0.048 | −0.050 | 0.132 | −0.060 |
| Stage | −0.287 | 0.326 | 0.203 | 0.340 | 0.350 | 0.132 | 0.324 |
| Control | Antibody |
| Unstained control | Alexa Fluor 488 secondary antibody only (non-specific binding and autofluorescence control) |
| Compensation control 1 | Only CD133 and secondary Alexa Fluor 488 antibody |
| Compensation control 2 | Only CD166-PE antibody |
| Compensation control 3 | Only CD44-PC7 antibody |
| Control FMO (Fluorescence Minus One) 1 | CD133, secondary Alexa Fluor 488 and CD166-PE antibodies |
| Control of FMO 2 | CD133, secondary Alexa Fluor 488 and CD44-PC7 antibodies |
| Control of FMO 3 | CD166-PE and CD44-PC7 antibodies |
| Combination of all three antibodies | CD133 with secondary Alexa Fluor 488, CD166-PE and CD44-PC7 antibodies |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrović, A.; Mojsilović, S.; Bugarski, D.; Jauković, A.; Pokimica, B.; Ilić, M.P. Expression of Putative Cancer Stem Cell Markers in Oral Squamous Cell Carcinoma: Correlation with Clinicopathological Features. Int. J. Mol. Sci. 2025, 26, 10939. https://doi.org/10.3390/ijms262210939
Petrović A, Mojsilović S, Bugarski D, Jauković A, Pokimica B, Ilić MP. Expression of Putative Cancer Stem Cell Markers in Oral Squamous Cell Carcinoma: Correlation with Clinicopathological Features. International Journal of Molecular Sciences. 2025; 26(22):10939. https://doi.org/10.3390/ijms262210939
Chicago/Turabian StylePetrović, Anđelija, Slavko Mojsilović, Diana Bugarski, Aleksandra Jauković, Biljana Pokimica, and Miroslav P. Ilić. 2025. "Expression of Putative Cancer Stem Cell Markers in Oral Squamous Cell Carcinoma: Correlation with Clinicopathological Features" International Journal of Molecular Sciences 26, no. 22: 10939. https://doi.org/10.3390/ijms262210939
APA StylePetrović, A., Mojsilović, S., Bugarski, D., Jauković, A., Pokimica, B., & Ilić, M. P. (2025). Expression of Putative Cancer Stem Cell Markers in Oral Squamous Cell Carcinoma: Correlation with Clinicopathological Features. International Journal of Molecular Sciences, 26(22), 10939. https://doi.org/10.3390/ijms262210939

