From Biocontrol to Synthesis: Innovative Progress of Paenibacillus in Mechanism Analysis, Gene Editing and Platform Construction
Abstract
1. Introduction
2. Analysis of the Biocontrol Mechanism of Paenibacillus
2.1. Synthesis and Regulation of Antibacterial Active Substances
2.2. Competitive Effect
2.3. Induction of System Resistance
2.4. Promote Plant Growth
3. Genetic Editing of Paenibacillus
3.1. The Gene Editing Technology of Paenibacillus
3.2. Functional Gene Knockout and Metabolic Flux Redirection
4. Construction of Synthetic Biology Platform for Paenibacillus and Improvement of Product Yield
4.1. Construction Strategy of the Synthetic Biology Platform
4.2. Design of Dynamic Regulation Systems
4.3. Product Diversification and Chassis Strain Enhancement
5. Challenges and Frontier Strategies: Towards Precise Design and Efficient Application of Paenibacillus
5.1. Current Challenges
5.2. Cutting-Edge Technologies and Solutions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ryba, Š.; Píchová, A.; Mráz, P.; Hoštičková, I.; Horčičková, M. Development of an algae extract-based culture medium for Paenibacillus larvae without animal-derived components. MethodsX 2025, 15, 103638. [Google Scholar] [CrossRef]
- Zhao, N.; Huang, M.; Yang, Y.; Cai, R.; Peng, J.; Guo, G. Characterization of the antagonistic secondary metabolites of Paenibacillus polymyxa MEZ6 against Staphylococcus aureus. Front. Microbiol. 2025, 16, 1617807. [Google Scholar] [CrossRef] [PubMed]
- Songnaka, N.; Ratanaphan, A.; Sermkaew, N.; Sawatdee, S.; Krobthong, S.; Aonbangkhen, C.; Yingchutrakul, Y.; Atipairin, A. Discovery of a novel antimicrobial peptide from Paenibacillus sp. Na14 with potent activity against Gram-negative bacteria and genomic insights into its biosynthetic pathway. Antibiotics 2025, 14, 805. [Google Scholar] [CrossRef]
- Mateus, J.R.; Dal’Rio, I.; Ferreira, A.P.; Cypriano, J.B.S.; Abreu, F.; Seldin, L. Genomic insights into the antagonistic activity of Paenibacillus brasilensis PB24 against Fusarium oxysporum: Implications for biocontrol and plant growth promotion strategies. Funct. Integr. Genom. 2025, 25, 177. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Wang, Y.; Cui, Y.; Sun, R.; Zhang, B.; Qu, J.; Cai, H.; Zhang, Y. Bioenhanced remediation of dibutyl phthalate contaminated black soil by immobilized biochar microbiota. J. Environ. Manag. 2025, 373, 123317. [Google Scholar] [CrossRef]
- Gao, W.; Zhu, K.; Zhang, X.; Saren, G.; Zhang, Y.; Gan, J.; Hou, S.; Gui, L. Exploring the effects of resveratrol and β-hydroxy-β-methylbutyric acid under different protein levels on the ileal health of tibetan sheep. Front. Microbiol. 2025, 16, 1612170. [Google Scholar] [CrossRef] [PubMed]
- Schilling, C.; Klau, L.J.; Aachmann, F.L.; Rühmann, B.; Schmid, J.; Sieber, V. CRISPR-Cas9 driven structural elucidation of the heteroexopolysaccharides from Paenibacillus polymyxa DSM 365. Carbohydr. Polym. 2023, 312, 120763. [Google Scholar] [CrossRef]
- Zhang, W.; Ding, Y.; Yao, L.; Liu, K.; Du, B. Construction of gene knock-out system for Paenibacillus polymyxa SC2. Acta Microbiol. Sin. 2013, 53, 1258–1266. [Google Scholar]
- Ravagnan, G.; Lesemann, J.; Müller, M.F.; Poehlein, A.; Daniel, R.; Noack, S.; Kabisch, J.; Schmid, J. Genome reduction in Paenibacillus polymyxa DSM 365 for chassis development. Front. Bioeng. Biotechnol. 2024, 12, 1378873. [Google Scholar]
- Wang, Z.; Fang, Y.; Shi, Y.; Xin, Y.; Gu, Z.; Yang, T.; Li, Y.; Ding, Z.; Shi, G.; Zhang, L. Analysis of xylose operon from Paenibacillus polymyxa ATCC842 and development of tools for gene expression. Int. J. Mol. Sci. 2022, 23, 5024. [Google Scholar] [CrossRef]
- Li, S.; Zhang, R.; Wang, Y.; Zhang, N.; Shao, J.; Qiu, M.; Shen, B.; Yin, X.; Shen, Q. Promoter analysis and transcription regulation of fus gene cluster responsible for fusaricidin synthesis of Paenibacillus polymyxa SQR-21. Appl. Microbiol. Biotechnol. 2013, 97, 9479. [Google Scholar] [CrossRef]
- Senger, J.; Seitl, I.; Pross, E.; Fischer, L. Secretion of the cytoplasmic and high molecular weight β-galactosidase of Paenibacillus wynnii with Bacillus subtilis. Microb. Cell Fact. 2024, 23, 170. [Google Scholar] [CrossRef]
- Joshi, J.; Langwald, S.V.; Kruse, O.; Patel, A. Immobilization of Paenibacillus polymyxa with biopolymers to enhance the production of 2,3-butanediol. Microb. Cell Fact. 2025, 24, 15. [Google Scholar] [CrossRef]
- Li, X.; Wang, J.; Lv, Y.; Zhao, L.; Jiang, W.; Lv, J.; Xu, X.; Yu, Y.; Liu, Y.; Chen, X.; et al. Screening and identification of Paenibacillus polymyxa GRY-11 and its biological control potential against apple replant disease. Folia Microbiol. 2025, 70, 475–487. [Google Scholar] [CrossRef]
- Salam, L.B. Metagenomic insights into the microbial community structure and resistomes of a tropical agricultural soil persistently inundated with pesticide and animal manure use. Folia Microbiol. 2022, 67, 707–719. [Google Scholar] [CrossRef] [PubMed]
- Reda, F.M.; Alagawany, M.; Salah, A.S.; Almutairi, L.A.; Alqahtani, M.A.; Alamoudi, S.A.; Altuwaijri, S.; El-Tarabily, K.A.; El-Saadony, M.T. Harnessing functional feed additives for sustainable production: The role of Bacillus coagulans and Paenibacillus polymyxa mixture in improving production and health of meat-type quails. Front. Vet. Sci. 2025, 12, 1639681. [Google Scholar] [CrossRef] [PubMed]
- Ding, N.; Dong, H.; Ongena, M. Bacterial cyclic lipopeptides as triggers of plant immunity and systemic resistance against pathogens. Plants 2025, 14, 2644. [Google Scholar] [CrossRef]
- Koller, T.O.; Berger, M.J.; Morici, M.; Paternoga, H.; Bulatov, T.; Di Stasi, A.; Dang, T.; Mainz, A.; Raulf, K.; Crowe-McAuliffe, C.; et al. Paenilamicins are context-specific translocation inhibitors of protein synthesis. Nat. Chem. Biol. 2024, 20, 1691–1700. [Google Scholar] [CrossRef]
- Li, P.; Wang, C.; Li, L.; Zheng, T. Bioaerosols and VOC emissions from landfill leachate treatment processes: Regional differences and health risks. J. Hazard. Mater. 2024, 480, 136232. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Dai, W.; Xue, H.; Chen, W.; Liu, C.; Tian, Y.; Cheng, W.; Zhang, J. Efficacy of 2-undecanol produced by Paenibacillus polymyxa KM2501-1 in controlling Meloidogyne incognita. Microbiol. Spectr. 2025, 13, e0306224. [Google Scholar] [CrossRef]
- Eastman, A.W.; Heinrichs, D.E.; Yuan, Z.C. Comparative and genetic analysis of the four sequenced Paenibacillus polymyxa genomes reveals a diverse metabolism and conservation of genes relevant to plant-growth promotion and competitiveness. BMC Genom. 2014, 15, 851. [Google Scholar] [CrossRef]
- Couvert, O.; Koullen, L.; Lochardet, A.; Huchet, V.; Thevenot, J.; Le Marc, Y. Effects of carbon dioxide and oxygen on the growth rate of various food spoilage bacteria. Food Microbiol. 2023, 114, 104289. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.; Hussain, A.; Dar, A.; Luqman, M.; Ditta, A.; Iqbal, Z.; Ahmad, H.T.; Nazli, F.; Soufan, W.; Almutairi, K.; et al. Combating iron and zinc malnutrition through mineral biofortification in maize through plant growth promoting Bacillus and Paenibacillus species. Front. Plant Sci. 2022, 13, 1094551. [Google Scholar] [CrossRef]
- Fünfhaus, A.; Göbel, J.; Ebeling, J.; Knispel, H.; Garcia-Gonzalez, E.; Genersch, E. Swarming motility and biofilm formation of Paenibacillus larvae, the etiological agent of American Foulbrood of honey bees (Apis mellifera). Sci. Rep. 2018, 8, 8840. [Google Scholar] [CrossRef]
- Panichikkal, J.; Jose, A.; Sreekumaran, S.; Ashokan, A.K.; Baby, C.S.; Krishnankutty, R.E. Biofilm and biocontrol modulation of Paenibacillus sp. CCB36 by supplementation with zinc oxide nanoparticles and chitosan nanoparticles. Appl. Biochem. Biotechnol. 2022, 194, 1606–1620. [Google Scholar] [CrossRef] [PubMed]
- Yi, J.; Zhang, D.; Cheng, Y.; Tan, J.; Luo, Y. The impact of Paenibacillus polymyxa HY96-2 luxS on biofilm formation and control of tomato bacterial wilt. Appl. Microbiol. Biotechnol. 2019, 103, 9643–9657. [Google Scholar] [CrossRef] [PubMed]
- Yadav, M.; Dubey, M.K.; Upadhyay, R.S. Systemic Resistance in chilli pepper against anthracnose (caused by colletotrichum truncatum) induced by trichoderma harzianum, trichoderma asperellum and Paenibacillus dendritiformis. J. Fungi 2021, 7, 307. [Google Scholar] [CrossRef]
- Mülner, P.; Schwarz, E.; Dietel, K.; Herfort, S.; Jähne, J.; Lasch, P.; Cernava, T.; Berg, G.; Vater, J. Fusaricidins, polymyxins and volatiles produced by Paenibacillus polymyxa strains DSM 32871 and M1. Pathogens 2021, 10, 1485. [Google Scholar] [CrossRef]
- Gkizi, D.; Lehmann, S.; L’Haridon, F.; Serrano, M.; Paplomatas, E.J.; Métraux, J.P.; Tjamos, S.E. The innate immune signaling system as a regulator of disease resistance and induced systemic resistance activity against verticillium dahliae. Mol. Plant Microbe Interact. 2016, 29, 313–323. [Google Scholar] [CrossRef]
- Charpe, A.M.; Aglave, B.; Ghosh, D.K. Microbial-mediated induced resistance: Interactive effects for improving crop health. Front. Microbiol. 2025, 16, 1660944. [Google Scholar] [CrossRef]
- Wang, K.; Lin, Z.; Dou, J.; Jiang, M.; Shen, N.; Feng, J. Identification and surveys of promoting plant growth VOCs from biocontrol bacteria Paenibacillus peoriae GXUN15128. Microbiol. Spectr. 2023, 11, e0434622. [Google Scholar] [CrossRef] [PubMed]
- Karuriya, S.; Choudhary, S. Simultaneous heterotrophic nitrification and aerobic denitrification potential of Paenibacillus sp. strain GLM-08 isolated from lignite mine waste and its role ammonia removal from mine waste water. Water Sci. Technol. 2022, 86, 3223–3235. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, J.; Zhang, J.; Xu, W.; Mou, Z. Characteristics of inorganic phosphate-solubilizing bacteria from the sediments of a eutrophic lake. Int. J. Environ. Res. Public Health 2019, 16, 2141. [Google Scholar] [CrossRef]
- Özdoğan, D.K.; Akçelik, N.; Akçelik, M. Genetic diversity and characterization of plant growth-promoting effects of bacteria isolated from rhizospheric soils. Curr. Microbiol. 2022, 79, 132. [Google Scholar] [CrossRef]
- Meliawati, M.; Teckentrup, C.; Schmid, J. CRISPR-Cas9-mediated large cluster deletion and multiplex genome editing in Paenibacillus polymyxa. ACS Synth. Biol. 2022, 11, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Cao, C.; Jiang, R.; Xu, H.; Xue, F.; Huang, W.; Ni, H.; Gao, J. Production of R,R-2,3-butanediol of ultra-high optical purity from Paenibacillus polymyxa ZJ-9 using homologous recombination. Bioresour. Technol. 2018, 261, 272–278. [Google Scholar] [CrossRef]
- Galea, C.A.; Han, M.; Zhu, Y.; Roberts, K.; Wang, J.; Thompson, P.E.; Jian, L.; Velkov, T. Characterization of the polymyxin d synthetase biosynthetic cluster and product profile of Paenibacillus polymyxa ATCC 10401. J. Nat. Prod. 2017, 80, 1264–1274. [Google Scholar] [CrossRef]
- Eduardo-Correia, B.; Morales-Filloy, H.; Abad, J.P. Bacteria from the multi-contaminated tinto river estuary (SW, Spain) show high multi-resistance to antibiotics and point to Paenibacillus spp. as antibiotic-resistance-dissemination players. Front. Microbiol. 2019, 10, 3071. [Google Scholar] [CrossRef]
- Ravagnan, G.; Meliawati, M.; Schmid, J. CRISPR-Cas9-mediated genome editing in Paenibacillus polymyxa. Methods Mol. Biol. 2024, 2760, 267–280. [Google Scholar]
- Brito, L.F.; Schultenkämper, K.; Passaglia, L.M.P.; Wendisch, V.F. CRISPR interference-based gene repression in the plant growth promoter Paenibacillus sonchi genomovar Riograndensis SBR5. Appl. Microbiol. Biotechnol. 2020, 104, 5095–5106. [Google Scholar] [CrossRef]
- Schilling, C.; Koffas, M.A.G.; Sieber, V.; Schmid, J. Novel prokaryotic CRISPR-Cas12a-based tool for programmable transcriptional activation and repression. ACS Synth. Biol. 2020, 9, 3353–3363. [Google Scholar] [CrossRef] [PubMed]
- Phi, Q.T.; Oh, S.H.; Park, Y.M.; Park, S.H.; Ryu, C.M.; Ghim, S.Y. Isolation and characterization of transposon-insertional mutants from Paenibacillus polymyxa E681 altering the biosynthesis of indole-3-acetic acid. Curr. Microbiol. 2008, 56, 524–530. [Google Scholar] [CrossRef] [PubMed]
- Stoffer-Bittner, A.J.; Alexander, C.R.; Dingman, D.W.; Mourad, G.S.; Schultes, N.P. Functional characterization of the uracil transporter from honeybee pathogen Paenibacillus larvae. Microb. Pathog. 2018, 124, 305–310. [Google Scholar] [CrossRef]
- Kim, M.S.; Kim, H.R.; Jeong, D.E.; Choi, S.K. Cytosine Base Editor-Mediated Multiplex genome editing to accelerate discovery of novel antibiotics in Bacillus subtilis and Paenibacillus polymyxa. Front. Microbiol. 2021, 12, 691839. [Google Scholar] [CrossRef]
- Kim, S.B.; Timmusk, S. A simplified method for gene knockout and direct screening of recombinant clones for application in Paenibacillus polymyxa. PLoS ONE 2013, 8, e68092. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Xu, Y.; Gao, J.; Xu, H.; Cao, C.; Xue, F.; Ding, G.; Peng, Y. Introduction of the exogenous NADH coenzyme regeneration system and its influence on intracellular metabolic flux of Paenibacillus polymyxa. Bioresour. Technol. 2016, 201, 319–328. [Google Scholar] [CrossRef]
- Okonkwo, C.C.; Ujor, V.; Cornish, K.; Ezeji, T.C. Inactivation of the levansucrase gene in Paenibacillus polymyxa DSM 365 diminishes exopolysaccharide biosynthesis during 2,3-Butanediol fermentation. Appl. Environ. Microbiol. 2020, 86, e00196-20. [Google Scholar] [CrossRef]
- Gao, J.; Yang, H.H.; Feng, X.H.; Li, S.; Xu, H. A 2,3-butanediol dehydrogenase from Paenibacillus polymyxa ZJ-9 for mainly producing R,R-2,3-butanediol: Purification, characterization and cloning. J. Basic Microb. 2013, 53, 733–741. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, J.; Fu, Q.; Liu, H.; Li, M.; Wang, Z.; Gu, W.; Zhu, X.; Lin, R.; Dai, L.; et al. Metabolic engineering of Paenibacillus polymyxa for effective production of 2,3-butanediol from poplar hydrolysate. Bioresour. Technol. 2024, 392, 130002. [Google Scholar] [CrossRef]
- Li, X.X.; Liu, Q.; Liu, X.M.; Shi, H.W.; Chen, S.F. Using synthetic biology to increase nitrogenase activity. Microb. Cell Fact. 2016, 15, 43. [Google Scholar] [CrossRef]
- Tamang, J.P.; Das, S.; Kharnaior, P.; Pariyar, P.; Thapa, N.; Jo, S.W.; Yim, E.J.; Shin, D.H. Shotgun metagenomics of Cheonggukjang, a fermented soybean food of Korea: Community structure, predictive functionalities and amino acids profile. Food Res. Int. 2022, 151, 110904. [Google Scholar] [CrossRef]
- Liao, F.; Yu, G.; Zhang, C.; Liu, Z.; Li, X.; He, Q.; Yin, H.; Liu, X.; Li, Z.; Zhang, H. Structural basis for the concerted antiphage activity in the SIR2-HerA system. Nucleic Acids Res. 2024, 52, 11336–11348. [Google Scholar] [CrossRef]
- Spence, E.M.; Calvo-Bado, L.; Mines, P.; Bugg, T.D.H. Metabolic engineering of Rhodococcus jostii RHA1 for production of pyridine-dicarboxylic acids from lignin. Microb. Cell Fact. 2021, 20, 15. [Google Scholar] [CrossRef]
- Yuan, P.; Chen, Z.; Xu, M.; Cai, W.; Liu, Z.; Sun, D. Microbial cell factories using Paenibacillus: Status and perspectives. Crit. Rev. Biotechnol. 2024, 44, 1386–1402. [Google Scholar] [CrossRef] [PubMed]
- Stoklosa, R.J.; García-Negrón, V.; Latona, R.J.; Toht, M. Limiting acetoin generation during 2,3-butanediol fermentation with Paenibacillus polymyxa using lignocellulosic hydrolysates. Bioresour. Technol. 2024, 393, 130053. [Google Scholar] [CrossRef]
- Dias, B.D.C.; Lima, M.; Vollú, R.E.; da Mota, F.F.; da Silva, A.J.R.; de Castro, A.M.; Freire, D.M.G.; Seldin, L. 2,3-Butanediol production by the non-pathogenic bacterium Paenibacillus brasilensis. Appl. Microbiol. Biotechnol. 2018, 102, 8773–8782. [Google Scholar] [CrossRef]
- Wang, Z.; Guo, Z.; Xin, Y.; Gu, Z.; Shi, Y.; Yang, T.; Li, Y.; Shi, G.; Ding, Z.; Zhang, L. Exploration of the native sucrose operon enables the development of an inducible T7 expression system in Paenibacillus polymyxa. ACS Synth. Biol. 2024, 13, 658–668. [Google Scholar] [CrossRef]
- Kim, M.J.; Kim, J.; Lee, H.Y.; Noh, H.J.; Lee, K.H.; Park, S.J. Role of AcsR in expression of the acetyl-CoA synthetase gene in Vibrio vulnificus. BMC Microbiol. 2015, 15, 86. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Zhang, J.; Liu, W.; Wenhui, E.; Wang, X.; Li, H.; Cui, Y.; Zhao, D.; Liu, K.; Du, B.; et al. Identification and combinatorial engineering of indole-3-acetic acid synthetic pathways in Paenibacillus polymyxa. Biotechnol. Biofuels Bioprod. 2022, 15, 81. [Google Scholar] [CrossRef] [PubMed]
- Yuan, C.; Ruan, L.; Yang, Y.; Wang, L.; Ke, Z.; He, J. Paenibacillus wuxiensis sp. nov., a novel bacterium capable of producing Indole-3-Acetic Acid (IAA) and inhibiting rhizoctonia solani kühn isolated from agricultural soil. Curr. Microbiol. 2025, 82, 514. [Google Scholar] [CrossRef]
- Liu, K.; He, L.; Li, S.; Tian, F.; Sun, Z.; Li, C. Draft genome sequence of Paenibacillus strain LK1, a phytohormone producing bacterium. 3 Biotech 2018, 8, 85. [Google Scholar] [CrossRef]
- Richter, A.A.; Mais, C.N.; Czech, L.; Geyer, K.; Hoeppner, A.; Smits, S.H.J.; Erb, T.J.; Bange, G.; Bremer, E. Biosynthesis of the stress-protectant and chemical chaperon ectoine: Biochemistry of the transaminase EctB. Front. Microbiol. 2019, 10, 2811. [Google Scholar] [CrossRef]
- Oyewale, A.T.; Odetoyin, B.W.; Oluduro, A.O.; Adeniyi, I.F. Occurrence of coliforms and biofilm-forming bacteria in raw, treated, and distributed water from two waterwork systems in Osun State, Southwestern Nigeria. J. Water Health 2024, 22, 673–688. [Google Scholar] [CrossRef]
- Mangwani, N.; Kumari, S.; Shukla, S.K.; Rao, T.S.; Das, S. Phenotypic switching in biofilm-forming marine bacterium Paenibacillus lautus NE3B01. Curr. Microbiol. 2014, 68, 648–656. [Google Scholar] [CrossRef]
- Bielik, B.; Molnár, L.; Vrabec, V.; Andrášiová, R.; Maruščáková, I.C.; Nemcová, R.; Toporčák, J.; Mudroňová, D. Biofilm-forming lactic acid bacteria of honey bee origin intended for potential probiotic use. Acta Vet. Hung. 2021, 68, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Mejia, M.P.; Rojas, C.A.; Curd, E.; Renshaw, M.A.; Edalati, K.; Shih, B.; Vincent, N.; Lin, M.; Nguyen, P.H.; Wayne, R.; et al. Soil microbial community composition and tolerance to contaminants in an urban brownfield site. Microb. Ecol. 2023, 85, 998–1012. [Google Scholar] [CrossRef]
- Hefetz, I.; Israeli, O.; Bilinsky, G.; Plaschkes, I.; Hazkani-Covo, E.; Hayouka, Z.; Lampert, A.; Helman, Y. A reversible mutation in a genomic hotspot saves bacterial swarms from extinction. iScience 2023, 26, 106043. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Song, C.; Liu, Y.; Wu, X.; Dong, W.; Zhu, H.; Xiang, Z.; Qin, C. Characteristics of gut microbiota in representative mice strains: Implications for biological research. Anim. Models Exp. Med. 2022, 5, 337–349. [Google Scholar] [CrossRef]
- Cochrane, S.A.; Vederas, J.C. Lipopeptides from Bacillus and Paenibacillus spp.: A gold mine of antibiotic candidates. Med. Res. Rev. 2016, 36, 4–31. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Liu, H.; Zhou, L.; Cheng, Z.; Wan, J.; Pan, Y.; Xu, G.; Huang, F.; Wang, M.; Xiong, Y.; et al. Enhancement of antibacterial and growth-promoting effects of Paenibacillus polymyxa by optimizing its fermentation process. J. Appl. Microbiol. 2022, 133, 2954–2965. [Google Scholar] [CrossRef]
- Singh, T.; Bisht, N.; Ansari, M.M.; Mishra, S.K.; Chauhan, P.S. Paenibacillus lentimorbus alleviates nutrient deficiency-induced stress in Zea mays by modulating root system architecture, auxin signaling, and metabolic pathways. Plant Cell Rep. 2024, 43, 49. [Google Scholar] [CrossRef]
- Adlakha, N.; Pfau, T.; Ebenhöh, O.; Yazdani, S.S. Insight into metabolic pathways of the potential biofuel producer, Paenibacillus polymyxa ICGEB2008. Biotechnol. Biofuels 2015, 8, 159. [Google Scholar] [CrossRef] [PubMed]
- Du, N.; Shi, L.; Yuan, Y.; Sun, J.; Shu, S.; Guo, S. Isolation of a potential biocontrol agent Paenibacillus polymyxa NSY50 from vinegar waste compost and its induction of host defense responses against Fusarium wilt of cucumber. Microbiol. Res. 2017, 202, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Kämpfer, P.; Lipski, A.; McInroy, J.A.; Clermont, D.; Lamothe, L.; Glaeser, S.P.; Criscuolo, A. Paenibacillus auburnensis sp. nov. and Paenibacillus pseudetheri sp. nov., isolated from the rhizosphere of Zea mays. Int. J. Syst. Evol. Microbiol. 2023, 73, 4. [Google Scholar] [CrossRef]
- Lee, H.; Chaudhary, D.K.; Lim, O.B.; Kim, D.U. Paenibacillus silvisoli sp. nov. and Paenibacillus humicola sp. nov., isolated from forest soil. Arch. Microbiol. 2023, 206, 42. [Google Scholar] [CrossRef] [PubMed]
- Hassan, S.; Ganai, B.A. Deciphering the recent trends in pesticide bioremediation using genome editing and multi-omics approaches: A review. World J. Microbiol. Biotechnol. 2023, 39, 151. [Google Scholar] [CrossRef]
- Sun, T.; Liu, H.; Wang, N.; Huang, M.; Banerjee, S.; Jousset, A.; Xu, Y.; Shen, Q.; Wang, S.; Wang, X.; et al. Interactions with native microbial keystone taxa enhance the biocontrol efficiency of Streptomyces. Microbiome 2025, 13, 126. [Google Scholar]
- Nassar, H.N.; Abu Amr, S.S.; El-Gendy, N.S. Biodesulfurization of refractory sulfur compounds in petro-diesel by a novel hydrocarbon tolerable strain Paenibacillus glucanolyticus HN4. Environ. Sci. Pollut. Res. Int. 2021, 28, 8102–8116. [Google Scholar] [CrossRef]
- Kang, H.; Fan, T.; Lin, Z.; Shi, Y.; Xie, X.; Li, L.; Xiang, S.; Yuan, X.; Li, X.; Li, B.; et al. Development of chitosan/carrageenan macrobeads for encapsulation of Paenibacillus polymyxa and its biocontrol efficiency against clubroot disease in Brassica crops. Int. J. Biol. Macromol. 2024, 264, 130323. [Google Scholar] [CrossRef]
- Ma, J.; Liu, J.; Shi, Y.; Xie, X.; Chai, A.; Xiang, S.; Sun, X.; Li, L.; Li, B.; Fan, T. Coating seeds with Paenibacillus polymyxa ZF129 microcapsule suspension enhanced control effect on fusarium root rot and promoted seedling growth in cucumber. Biology 2025, 14, 375. [Google Scholar] [CrossRef]


Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, P.; Zhu, L.; Song, Z.; Wang, Y.; Chen, X. From Biocontrol to Synthesis: Innovative Progress of Paenibacillus in Mechanism Analysis, Gene Editing and Platform Construction. Int. J. Mol. Sci. 2025, 26, 10886. https://doi.org/10.3390/ijms262210886
Yuan P, Zhu L, Song Z, Wang Y, Chen X. From Biocontrol to Synthesis: Innovative Progress of Paenibacillus in Mechanism Analysis, Gene Editing and Platform Construction. International Journal of Molecular Sciences. 2025; 26(22):10886. https://doi.org/10.3390/ijms262210886
Chicago/Turabian StyleYuan, Panhong, Linjiang Zhu, Zonghui Song, Yasi Wang, and Xiaolong Chen. 2025. "From Biocontrol to Synthesis: Innovative Progress of Paenibacillus in Mechanism Analysis, Gene Editing and Platform Construction" International Journal of Molecular Sciences 26, no. 22: 10886. https://doi.org/10.3390/ijms262210886
APA StyleYuan, P., Zhu, L., Song, Z., Wang, Y., & Chen, X. (2025). From Biocontrol to Synthesis: Innovative Progress of Paenibacillus in Mechanism Analysis, Gene Editing and Platform Construction. International Journal of Molecular Sciences, 26(22), 10886. https://doi.org/10.3390/ijms262210886

