Perturbations of Zinc Homeostasis and Onset of Neuropsychiatric Disorders
Abstract
1. Introduction
2. Methods
3. The Role and Zn2+ Levels in Neurodevelopmental Disorders
3.1. The Role and Level of Zn2+ in ADHD
3.2. The Role and Level of Zn2+ in ASD
4. Zn2+ Levels and Parkinson’s Disease
5. Alzheimer’s Disease
6. Schizophrenia
7. Bipolar Disorder
8. Major Depressive Disorder
9. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Kiouri, D.P.; Tsoupra, E.; Peana, M.; Perlepes, S.P.; Stefanidou, M.E.; Chasapis, C.T. Multifunctional Role of Zinc in Human Health: An Update. EXCLI J. 2023, 22, 809–827. [Google Scholar] [CrossRef]
- Moretti, A.I.S.; Baksheeva, V.E.; Roman, A.Y.; De Bessa, T.C.; Devred, F.; Kovacic, H.; Tsvetkov, P.O. Exploring the Influence of Zinc Ions on the Conformational Stability and Activity of Protein Disulfide Isomerase. Int. J. Mol. Sci. 2024, 25, 2095. [Google Scholar] [CrossRef]
- Wessels, I.; Maywald, M.; Rink, L. Zinc as a Gatekeeper of Immune Function. Nutrients 2017, 9, 1286. [Google Scholar] [CrossRef]
- Cheng, Y.; Chen, H. Aberrance of Zinc Metalloenzymes-Induced Human Diseases and Its Potential Mechanisms. Nutrients 2021, 13, 4456. [Google Scholar] [CrossRef]
- Osterman, A.L.; Grishin, N.V.; Smulevitch, S.V.; Matz, M.V.; Zagnitko, O.P.; Revina, L.P.; Stepanov, V.M. Primary Structure of Carboxypeptidase T: Delineation of Functionally Relevant Features in Zn-Carboxypeptidase Family. J. Protein Chem. 1992, 11, 561–570. [Google Scholar] [CrossRef]
- Lanningham-Foster, L.; Green, C.L.; Langkamp-Henken, B.; Davis, B.A.; Nguyen, K.T.; Bender, B.S.; Cousins, R.J. Overexpression of CRIP in Transgenic Mice Alters Cytokine Patterns and the Immune Response. Am. J. Physiol. Endocrinol. Metab. 2002, 282, E1197–E1203. [Google Scholar] [CrossRef]
- Wu, F.Y.; Wu, C.W. Zinc in DNA Replication and Transcription. Annu. Rev. Nutr. 1987, 7, 251–272. [Google Scholar] [CrossRef]
- Blakemore, L.J.; Trombley, P.Q. Zinc as a Neuromodulator in the Central Nervous System with a Focus on the Olfactory Bulb. Front. Cell. Neurosci. 2017, 11, 297. [Google Scholar] [CrossRef]
- Frederickson, C.J.; Suh, S.W.; Silva, D.; Frederickson, C.J.; Thompson, R.B. Importance of Zinc in the Central Nervous System: The Zinc-Containing Neuron. J. Nutr. 2000, 130, 1471S–1483S. [Google Scholar] [CrossRef]
- Sensi, S.L.; Paoletti, P.; Bush, A.I.; Sekler, I. Zinc in the Physiology and Pathology of the CNS. Nat. Rev. Neurosci. 2009, 10, 780–791. [Google Scholar] [CrossRef]
- Choi, S.; Hong, D.K.; Choi, B.Y.; Suh, S.W. Zinc in the Brain: Friend or Foe? Int. J. Mol. Sci. 2020, 21, 8941. [Google Scholar] [CrossRef]
- Root, A.W.; Duckett, G.; Sweetland, M.; Reiter, E.O. Effects of Zinc Deficiency Upon Pituitary Function in Sexually Mature and Immature Male Rats. J. Nutr. 1979, 109, 958–964. [Google Scholar] [CrossRef]
- Tabatadze, T.; Kherkheulidze, M.; Kandelaki, E.; Kavlashvili, N.; Ivanashvili, T. Attention deficit hyperactivity disorder and hair heavy metal and essential trace element concentrations. Is there a link? Georgian Med. News 2018, 284, 88–92. [Google Scholar]
- Ghoreishy, S.M.; Ebrahimi Mousavi, S.; Asoudeh, F.; Mohammadi, H. Zinc Status in Attention-Deficit/Hyperactivity Disorder: A Systematic Review and Meta-Analysis of Observational Studies. Sci. Rep. 2021, 11, 14612. [Google Scholar] [CrossRef]
- Shen, Y.; Jin, H.; Guo, F.; Zhang, W.; Fu, H.; Jin, M.; Chen, G. Association of Magnesium, Iron, Copper, and Zinc Levels with the Prevalence of Behavior Problems in Children and Adolescents. Biol. Trace Elem. Res. 2024, 202, 5356–5365. [Google Scholar] [CrossRef]
- Zhai, R.; Zhang, M.; Liu, J.; Guang, H.; Li, B.; Chen, D.; Zhang, S. Reference Intervals of and Relationships among Essential Trace Elements in Whole Blood of Children Aged 0–14 Years. J. Clin. Lab. Anal. 2017, 31, e22043. [Google Scholar] [CrossRef]
- Toren, P.; Eldar, S.; Sela, B.A.; Wolmer, L.; Weitz, R.; Inbar, D.; Koren, S.; Reiss, A.; Weizman, R.; Laor, N. Zinc Deficiency in Attention-Deficit Hyperactivity Disorder. Biol. Psychiatry 1996, 40, 1308–1310. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Zhang, Y.; Gao, W.; Lin, N.; Li, R.; Zhao, Z. Blood Levels of Trace Elements in Children with Attention-Deficit Hyperactivity Disorder: Results from a Case-Control Study. Biol. Trace Elem. Res. 2019, 187, 376–382. [Google Scholar] [CrossRef]
- Tippairote, T.; Temviriyanukul, P.; Benjapong, W.; Trachootham, D. Hair Zinc and Severity of Symptoms Are Increased in Children with Attention Deficit and Hyperactivity Disorder: A Hair Multi-Element Profile Study. Biol. Trace Elem. Res. 2017, 179, 185–194. [Google Scholar] [CrossRef]
- Rosenau, P.T.; van den Hoofdakker, B.J.; Matthijssen, A.-F.M.; van de Loo-Neus, G.H.H.; Buitelaar, J.K.; Hoekstra, P.J.; Dietrich, A. Withdrawing Methylphenidate in Relation to Serum Levels of Ferritin and Zinc in Children and Adolescents with Attention-Deficit/Hyperactivity Disorder. J. Psychiatr. Res. 2022, 152, 31–37. [Google Scholar] [CrossRef]
- Sakhr, H.M.; Hassan, M.H.; Desoky, T. Possible Associations of Disturbed Neurometals and Ammonia with Glycaemic Control in Type 1 Diabetic Children with Attention Deficit Hyperactivity Disorder. Biol. Trace Elem. Res. 2020, 198, 68–76. [Google Scholar] [CrossRef]
- Salvat, H.; Mohammadi, M.N.; Molavi, P.; Mostafavi, S.A.; Rostami, R.; Salehinejad, M.A. Nutrient Intake, Dietary Patterns, and Anthropometric Variables of Children with ADHD in Comparison to Healthy Controls: A Case-Control Study. BMC Pediatr. 2022, 22, 70. [Google Scholar] [CrossRef]
- Robinson, D.M.; Edwards, K.L.; Willoughby, M.T.; Hamilton, K.R.; Blair, C.B.; Granger, D.A.; Thomas, E.A. Increased Risk of Attention-Deficit/Hyperactivity Disorder in Adolescents with High Salivary Levels of Copper, Manganese, and Zinc. Eur. Child Adolesc. Psychiatry 2024, 33, 3091–3099. [Google Scholar] [CrossRef]
- Bilici, M.; Yildirim, F.; Kandil, S.; Bekaroğlu, M.; Yildirmiş, S.; Değer, O.; Ulgen, M.; Yildiran, A.; Aksu, H. Double-Blind, Placebo-Controlled Study of Zinc Sulfate in the Treatment of Attention Deficit Hyperactivity Disorder. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2004, 28, 181–190. [Google Scholar] [CrossRef]
- Akhondzadeh, S.; Mohammadi, M.-R.; Khademi, M. Zinc Sulfate as an Adjunct to Methylphenidate for the Treatment of Attention Deficit Hyperactivity Disorder in Children: A Double Blind and Randomized Trial [ISRCTN64132371]. BMC Psychiatry 2004, 4, 9. [Google Scholar] [CrossRef]
- Arnold, L.E.; Disilvestro, R.A.; Bozzolo, D.; Bozzolo, H.; Crowl, L.; Fernandez, S.; Ramadan, Y.; Thompson, S.; Mo, X.; Abdel-Rasoul, M.; et al. Zinc for Attention-Deficit/Hyperactivity Disorder: Placebo-Controlled Double-Blind Pilot Trial Alone and Combined with Amphetamine. J. Child Adolesc. Psychopharmacol. 2011, 21, 1–19. [Google Scholar] [CrossRef]
- Noorazar, S.G.; Malek, A.; Aghaei, S.M.; Yasamineh, N.; Kalejahi, P. The Efficacy of Zinc Augmentation in Children with Attention Deficit Hyperactivity Disorder under Treatment with Methylphenidate: A Randomized Controlled Trial. Asian J. Psychiatr. 2020, 48, 101868. [Google Scholar] [CrossRef]
- Tabatadze, T.; Zhorzholiani, L.; Kherkheulidze, M.; Kandelaki, E.; Ivanashvili, T. Hair heavy metal and essential trace element concentration in children with autism spectrum disorder. Georgian Med. News 2015, 248, 77–82. [Google Scholar]
- Lakshmi Priya, M.D.; Geetha, A. Level of Trace Elements (Copper, Zinc, Magnesium and Selenium) and Toxic Elements (Lead and Mercury) in the Hair and Nail of Children with Autism. Biol. Trace Elem. Res. 2011, 142, 148–158. [Google Scholar] [CrossRef]
- Li, S.; Wang, J.; Bjørklund, G.; Zhao, W.; Yin, C. Serum Copper and Zinc Levels in Individuals with Autism Spectrum Disorders. Neuroreport 2014, 25, 1216–1220. [Google Scholar] [CrossRef]
- Macedoni-Lukšič, M.; Gosar, D.; Bjørklund, G.; Oražem, J.; Kodrič, J.; Lešnik-Musek, P.; Zupančič, M.; France-Štiglic, A.; Sešek-Briški, A.; Neubauer, D.; et al. Levels of Metals in the Blood and Specific Porphyrins in the Urine in Children with Autism Spectrum Disorders. Biol. Trace Elem. Res. 2015, 163, 2–10. [Google Scholar] [CrossRef]
- Sikora, J.; Ouagazzal, A.-M. Synaptic Zinc: An Emerging Player in Parkinson’s Disease. Int. J. Mol. Sci. 2021, 22, 4724. [Google Scholar] [CrossRef]
- Pochwat, B.; Nowak, G.; Szewczyk, B. Relationship between Zinc (Zn2+) and Glutamate Receptors in the Processes Underlying Neurodegeneration. Neural Plast. 2015, 2015, 591563. [Google Scholar] [CrossRef]
- Lee, K.; Mills, Z.; Cheung, P.; Cheyne, J.E.; Montgomery, J.M. The Role of Zinc and NMDA Receptors in Autism Spectrum Disorders. Pharmaceuticals 2022, 16, 1. [Google Scholar] [CrossRef]
- Forsleff, L.; Schauss, A.G.; Bier, I.D.; Stuart, S. Evidence of functional zinc deficiency in Parkinson’s disease. J. Altern. Complement Med. 1999, 5, 57–64. [Google Scholar] [CrossRef]
- Sun, H.; Liu, X.; Ge, H.; Wang, T.; Wang, Y.; Li, W. Association Between Serum Zinc Levels and the Risk of Parkinson’s Disease: A Meta-Analysis. Biol. Trace Elem. Res. 2017, 179, 45–51. [Google Scholar] [CrossRef]
- Zhao, Y.; Ray, A.; Portengen, L.; Vermeulen, R.; Peters, S. Metal Exposure and Risk of Parkinson Disease: A Systematic Review and Meta-Analysis. Am. J. Epidemiol. 2023, 192, 1207–1223. [Google Scholar] [CrossRef]
- Zhao, H.-W.; Lin, J.; Wang, X.-B.; Cheng, X.; Wang, J.-Y.; Hu, B.-L.; Zhang, Y.; Zhang, X.; Zhu, J.-H. Assessing Plasma Levels of Selenium, Copper, Iron and Zinc in Patients of Parkinson’s Disease. PLoS ONE 2013, 8, e83060. [Google Scholar] [CrossRef]
- Stelmashook, E.V.; Isaev, N.K.; Genrikhs, E.E.; Amelkina, G.A.; Khaspekov, L.G.; Skrebitsky, V.G.; Illarioshkin, S.N. Role of Zinc and Copper Ions in the Pathogenetic Mechanisms of Alzheimer’s and Parkinson’s Diseases. Biochemistry 2014, 79, 391–396. [Google Scholar] [CrossRef]
- Brewer, G.J. Issues Raised Involving the Copper Hypotheses in the Causation of Alzheimer’s Disease. Int. J. Alzheimer’s Dis. 2011, 2011, 537528. [Google Scholar] [CrossRef]
- Qing, Y.; Zheng, J.; Qin, M.; Liu, X.; Dai, Z.; Xu, X.; Luo, Y.; Li, S.; Wang, L.; Yang, S.; et al. Circulatory Trace Element Variations in Alzheimer’s Disease: A Systematic Review and Meta-Analysis. Environ. Sci. Eur. 2024, 36, 148. [Google Scholar] [CrossRef]
- Shippy, D.C.; Oliai, S.F.; Ulland, T.K. Zinc Utilization by Microglia in Alzheimer’s Disease. J. Biol. Chem. 2024, 300, 107306. [Google Scholar] [CrossRef]
- Whitfield, D.R.; Vallortigara, J.; Alghamdi, A.; Hortobágyi, T.; Ballard, C.; Thomas, A.J.; O’Brien, J.T.; Aarsland, D.; Francis, P.T. Depression and Synaptic Zinc Regulation in Alzheimer Disease, Dementia with Lewy Bodies, and Parkinson Disease Dementia. Am. J. Geriatr. Psychiatry 2015, 23, 141–148. [Google Scholar] [CrossRef]
- Rembach, A.; Hare, D.J.; Doecke, J.D.; Burnham, S.C.; Volitakis, I.; Fowler, C.J.; Cherny, R.A.; McLean, C.; Grimm, R.; Martins, R.; et al. Decreased Serum Zinc Is an Effect of Ageing and Not Alzheimer’s Disease. Metallomics 2014, 6, 1216–1219. [Google Scholar] [CrossRef]
- Xu, J.; Church, S.J.; Patassini, S.; Begley, P.; Kellett, K.A.B.; Vardy, E.R.L.C.; Unwin, R.D.; Hooper, N.M.; Cooper, G.J.S. Plasma Metals as Potential Biomarkers in Dementia: A Case-Control Study in Patients with Sporadic Alzheimer’s Disease. Biometals 2018, 31, 267–276. [Google Scholar] [CrossRef]
- Liu, T.; Lu, Q.-B.; Yan, L.; Guo, J.; Feng, F.; Qiu, J.; Wang, J. Comparative Study on Serum Levels of 10 Trace Elements in Schizophrenia. PLoS ONE 2015, 10, e0133622. [Google Scholar] [CrossRef]
- Siwek, M.; Sowa-Kućma, M.; Styczeń, K.; Szewczyk, B.; Reczyński, W.; Misztak, P.; Topór-Mądry, R.; Nowak, G.; Dudek, D.; Rybakowski, J.K. Decreased Serum Zinc Concentration during Depressive Episode in Patients with Bipolar Disorder. J. Affect. Disord. 2016, 190, 272–277. [Google Scholar] [CrossRef]
- Jonsson, B.H.; Orhan, F.; Bruno, S.; Oliveira, A.O.; Sparding, T.; Landen, M.; Sellgren, C.M. Serum Concentration of Zinc Is Elevated in Clinically Stable Bipolar Disorder Patients. Brain Behav. 2022, 12, e2472. [Google Scholar] [CrossRef] [PubMed]
- Chebieb, I.; Medjati, N.D.; Harek, Y.; Guermouche, B.; Dali-Sahi, M.; Kachekouche, Y.; Benosman, C. Imbalance of Plasma Copper and Zinc Levels and the Association Between the Cu/Zn Ratio and Lipid Peroxidation in Algerian Bipolar Patients. Biol. Trace Elem. Res. 2024, 202, 2450–2456. [Google Scholar] [CrossRef]
- Nowak, G.; Siwek, M.; Dudek, D.; Zieba, A.; Pilc, A. Effect of Zinc Supplementation on Antidepressant Therapy in Unipolar Depression: A Preliminary Placebo-Controlled Study. Pol. J. Pharmacol. 2003, 55, 1143–1147. [Google Scholar]
- Siwek, M.; Dudek, D.; Paul, I.A.; Sowa-Kućma, M.; Zieba, A.; Popik, P.; Pilc, A.; Nowak, G. Zinc Supplementation Augments Efficacy of Imipramine in Treatment Resistant Patients: A Double Blind, Placebo-Controlled Study. J. Affect. Disord. 2009, 118, 187–195. [Google Scholar] [CrossRef]
- Sawada, T.; Yokoi, K. Effect of Zinc Supplementation on Mood States in Young Women: A Pilot Study. Eur. J. Clin. Nutr. 2010, 64, 331–333. [Google Scholar] [CrossRef]
- Ranjbar, E.; Kasaei, M.S.; Mohammad-Shirazi, M.; Nasrollahzadeh, J.; Rashidkhani, B.; Shams, J.; Mostafavi, S.-A.; Mohammadi, M.R. Effects of Zinc Supplementation in Patients with Major Depression: A Randomized Clinical Trial. Iran J. Psychiatry 2013, 8, 73–79. [Google Scholar]
- Ranjbar, E.; Shams, J.; Sabetkasaei, M.; M-Shirazi, M.; Rashidkhani, B.; Mostafavi, A.; Bornak, E.; Nasrollahzadeh, J. Effects of Zinc Supplementation on Efficacy of Antidepressant Therapy, Inflammatory Cytokines, and Brain-Derived Neurotrophic Factor in Patients with Major Depression. Nutr. Neurosci. 2014, 17, 65–71. [Google Scholar] [CrossRef]
- Salari, S.; Khomand, P.; Arasteh, M.; Yousefzamani, B.; Hassanzadeh, K. Zinc Sulphate: A Reasonable Choice for Depression Management in Patients with Multiple Sclerosis: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Pharmacol. Rep. 2015, 67, 606–609. [Google Scholar] [CrossRef]
- Solati, Z.; Jazayeri, S.; Tehrani-Doost, M.; Mahmoodianfard, S.; Gohari, M.R. Zinc Monotherapy Increases Serum Brain-Derived Neurotrophic Factor (BDNF) Levels and Decreases Depressive Symptoms in Overweight or Obese Subjects: A Double-Blind, Randomized, Placebo-Controlled Trial. Nutr. Neurosci. 2015, 18, 162–168. [Google Scholar] [CrossRef]
- Yosaee, S.; Soltani, S.; Esteghamati, A.; Motevalian, S.A.; Tehrani-Doost, M.; Clark, C.C.T.; Jazayeri, S. Effects of Zinc, Vitamin D, and Their Co-Supplementation on Mood, Serum Cortisol, and Brain-Derived Neurotrophic Factor in Patients with Obesity and Mild to Moderate Depressive Symptoms: A Phase II, 12-Wk, 2 × 2 Factorial Design, Double-Blind, Randomized, Placebo-Controlled Trial. Nutrition 2020, 71, 110601. [Google Scholar] [CrossRef] [PubMed]
- Maes, M.; De Vos, N.; Demedts, P.; Wauters, A.; Neels, H. Lower Serum Zinc in Major Depression in Relation to Changes in Serum Acute Phase Proteins. J. Affect. Disord. 1999, 56, 189–194. [Google Scholar] [CrossRef]
- Maserejian, N.N.; Hall, S.A.; McKinlay, J.B. Low Dietary or Supplemental Zinc Is Associated with Depression Symptoms among Women, but Not Men, in a Population-Based Epidemiological Survey. J. Affect. Disord. 2012, 136, 781–788. [Google Scholar] [CrossRef]
- Lehto, S.M.; Ruusunen, A.; Tolmunen, T.; Voutilainen, S.; Tuomainen, T.-P.; Kauhanen, J. Dietary Zinc Intake and the Risk of Depression in Middle-Aged Men: A 20-Year Prospective Follow-up Study. J. Affect. Disord. 2013, 150, 682–685. [Google Scholar] [CrossRef]
- Styczeń, K.; Sowa-Kućma, M.; Siwek, M.; Dudek, D.; Reczyński, W.; Szewczyk, B.; Misztak, P.; Topór-Mądry, R.; Opoka, W.; Nowak, G. The Serum Zinc Concentration as a Potential Biological Marker in Patients with Major Depressive Disorder. Metab. Brain Dis. 2017, 32, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.R.; Islam, M.R.; Shalahuddin Qusar, M.M.A.; Islam, M.S.; Kabir, M.H.; Mustafizur Rahman, G.K.M.; Islam, M.S.; Hasnat, A. Alterations of Serum Macro-Minerals and Trace Elements Are Associated with Major Depressive Disorder: A Case-Control Study. BMC Psychiatry 2018, 18, 94. [Google Scholar] [CrossRef]
- Swardfager, W.; Herrmann, N.; Mazereeuw, G.; Goldberger, K.; Harimoto, T.; Lanctôt, K.L. Zinc in Depression: A Meta-Analysis. Biol. Psychiatry 2013, 74, 872–878. [Google Scholar] [CrossRef]
- Wang, G.; Aguado, M.; Spear, M.A.; Alphs, L.; Chen, C.; Huang, H.; Lu, X.-X.; Doostzadeh, J.; Wu, S.; Wang, S.; et al. ANK3 as a Novel Genetic Biomarker for Liafensine in Treatment-Resistant Depression: The ENLIGHTEN Randomized Clinical Trial. JAMA Psychiatry 2025. [Google Scholar] [CrossRef]
- Gibson, R.S.; King, J.C.; Lowe, N. A Review of Dietary Zinc Recommendations. Food Nutr. Bull. 2016, 37, 443–460. [Google Scholar] [CrossRef]
- Sarris, J.; Ravindran, A.; Yatham, L.N.; Marx, W.; Rucklidge, J.J.; McIntyre, R.S.; Akhondzadeh, S.; Benedetti, F.; Caneo, C.; Cramer, H.; et al. Clinician Guidelines for the Treatment of Psychiatric Disorders with Nutraceuticals and Phytoceuticals: The World Federation of Societies of Biological Psychiatry (WFSBP) and Canadian Network for Mood and Anxiety Treatments (CANMAT) Taskforce. World J. Biol. Psychiatry 2022, 23, 424–455. [Google Scholar] [CrossRef]
- Temnik, M.; Rudyk, M.; Balakin, A.; Gurin, S.; Dovbynchuk, T.; Byshovets, R.; Dzubenko, N.; Tolstanova, G.; Skivka, L. Anti-Inflammatory Effects of 64Zn-Aspartate Is Accompanied by Cognitive Improvements in Rats with Aβ1-40-Induced Alzheimer Disease. Sci. Rep. 2025, 15, 14272. [Google Scholar] [CrossRef]
| Author, Year | Country | Sample Features (Mean Age—Range, % Female) | Design | Reported Outcomes | Results |
|---|---|---|---|---|---|
| Toren et al., 1996 [17] | Israel | ADHD N = 43, mean age 10.1 ± 2.4 y.o., female 9.3% (21 with methylphenidate treatment 5–20 mg per day); Controls n = 28, mean age 11.3 ± 3.2 y.o., female 14.3% | Case–control | Exploring serum Zn2+ between cases and controls | Lower serum Zn2+ in ADHD vs. controls. No association with methylphenidate treatment |
| Yang et al., 2019 [18] | China | ADHD N = 419, mean age 8.8 ± 2.1 y.o., female 7.9%;Controls n = 395, mean age 8.9 ± 1.7 y.o., female 8.9% | Case–control | Exploring serum Zn2+ between ADHD cases and controls; evaluating potential associations of Zn2+ levels and ADHD symptoms | Lower serum Zn2+ in ADHD vs. controls. Zn2+ levels correlated negatively with Swanson, Nolan, and Pelham Rating Scale (SNAP-IV) inattentive subscale (r = −0.40) and total score (r = −0.24). |
| Tippairote et al., 2017 [19] | Thailand | ADHD n = 45, mean age 5.56 ± 1.34 y.o., female 31%; Controls n = 66, mean age 5.26 ± 1.29 y.o., female 39% | Cross-sectional | Whole blood/serum trace elements incl. Zn2+; symptoms | Increased hair Zn2+ with more symptoms of inattention, hyperactivity and total ADHD symptoms. |
| Rosenau et al., 2022 [20] | Netherlands | Children/adolescents with stimulant withdrawal n = 33, mean age 13.9 ± 2.19 y.o., female 24.2% Stimulant continuation group n = 30, mean age 14.1 ± 1.93 y.o., female 20.0% | Observational biomarker analysis of methylphenidate withdrawal on Zn2+ levels within a randomised controlled trial | Exploring whether Zn2+ may help identify 1) children requiring ongoing methylphenidate treatment 2) exploring Zn2+ worth as a viable biomarker 3) the association of Zn2+ with ADHD symptoms | Higher baseline Zn2+ levels correlated with larger number of errors on the working memory task after withdrawal |
| Sakhr et al., 2020 [21] | Egypt | Type 1 diabetes + ADHD paediatric cohort n = 60, mean age 10.29 ± 2.99 y.o., female 50%; Controls n = 60, mean age 10.85 ± 2.72 y.o., female 51.7% | Prospective case–control | Exploring the levels of ammonia and various other substances comprising Zn2+ in patients with type 1 diabetes mellitus with and without ADHD | Positive correlation between glycosylated haemoglobin and copper/Zn2+ ratio in children with type 1 diabetes and ADHD |
| Salvat et al., 2022 [22] | Spain | ADHD children n = 100 mean age 8.33 ± 2.08 y.o., female 28%; Controls n = 100, mean age 8.26 ± 2.08 y.o., female 28% | Case–control | Explore the pattern of nutrient intake, diets, and anthropometric variables in children with ADHD compared with age-matched controls | Zn2+ abnormalities linked with ADHD in T1D |
| Robinson et al., 2024 [23] | USA | ADHD n = 110, mean age 13.13 ± 0.50 y.o., female 29.1%; Controls n = 173, mean age 13.20 ± 0.60 y.o., female 51.5% | Nested case–control study | Exploring salivary metals in ADHD (comprising Zn2+) and in ADHD subtypes—hyperactive, inattentive, combined | Salivary Zn2+ levels were associated with higher risk for ADHD combined subtype |
| Author, Year | Country | Sample Features (Mean Age—Range, % Female) | Intervention | Reported Outcomes | Results |
|---|---|---|---|---|---|
| Bilici et al., 2004 [24] | Turkey | n = 400, mean age 9.6 ± 1.7 y.o.; 18% female | Zn2+ sulphate 150 mg/day, 12 weeks duration—monotherapy | ADHD Scale, Conners Teacher Questionnaire, and DuPaul Parent Ratings of ADHD; serum Zn2+ levels increased | Reduced hyperactivity and impulsivity |
| Akhondzadeh et al., 2004 [25] | Iran | n = 44, mean age 7.9 ± 1.7; 41% female | Methylphenidate + Zn2+ sulphate 55 mg/day, 6 weeks, adjunct | Parent and Teacher ADHD Rating Scale | Improved ratings |
| Arnold et al., 2011 [26] | USA | n = 52, age range 6–14 y.o. | Zn2+ glycinate 15–30 mg/day, 8 weeks augmentation to amphetamine | Parent ratings; neuropsychological testing | Allowed for amphetamine dose reduction; equivocal clinical outcomes |
| Noorazar et al., 2020 [27] | Iran | n = 60, 20% female; 9.6 ± 1.70 y.o. | Zn2+ augmentation to methylphenidate, 6 weeks | Conners (total, hyperactivity, impulsivity, inattention) | Improved inattention |
| Author, Year | Country | Sample Features (Mean Age—Range, % Female) | Design | Reported Outcomes | Results |
|---|---|---|---|---|---|
| Lakshmi Priya et al., 2011 [29] | India | 45 with ASD and 50 controls; 4–12 y.o; 20% female among patients | Case–control | Level of trace elements (including Zn2+) in hair and nail samples | Significant variation in Zn2+ levels among individuals with low-severity Autism as compared with the remaining sample |
| Li et al., 2014 [30] | China | 60 with ASD and 60 controls | Case–control | Level of Serum Zn2+ and other elements; Childhood Autism Rating Scale | Lower Zn2+ and Zn2+/copper ratio in individuals with autism spectrum disorders; lower Zn2+/copper ratio associated with higher symptoms severity |
| Macedoni-Lukšič et al., 2015 [31] | Slovenia | 52 children with ASD (average age 6.2 y.o.) and 22 with other neurological disorders (average age 6.6 y.o.) | Case–control | Blood metals; Urine porphyrins | In ASD significantly elevated blood Cu/Zn ratio; no difference in porphyrin levels |
| Author, Year | Country | Sample Features (Mean Age—Range, % Female) | Intervention | Reported Outcomes | Results |
|---|---|---|---|---|---|
| Zhao et al., 2013 [38] | China | PD patients n = 238, mean age 66.6 ± 11.3 y.o., 49.2% female; controls n = 302, mean age 65.6 ± 12.2 y.o., 49.3% female | Case–control | Plasma selenium, copper, iron, Zn2+ | PD patients showed increased plasma Se and Fe, but decreased Cu and Zn compared with controls; lower Zn was associated with increased PD risk |
| Author, Year | Country | Sample Features (Mean Age–Range, % Female) | Design | Reported Outcomes | Results |
|---|---|---|---|---|---|
| Whitfield et al., 2015 [43] | UK, Norway | Postmortem brain samples: AD (n = 15, mean age at death 87 y.o., 67% female), DLB (n = 27), PDD (n = 29), and comparison group without dementia (n = 24) | Clinicopathologic case–control | Brain Zn transporter 3 (ZnT3) expression in Broadmann area 9 with depression severity (neuropsychiatry inventory) in postmortem samples | Reduced Zn2+ transporter 3 (ZnT3) in dorsolateral prefrontal cortex associated with higher depression severity across dementia groups, including AD |
| Rembach et al., 2014 [44] | Australia | AIBL cohort: 1084 participants (AD n = 205, MCI n = 126, controls n = 753); mean age AD 78.8 y.o., controls 70.6 y.o.; 58% female | Cross-sectional cohort | Serum and erythrocyte Zn2+ | Observed lower serum Zn2+ in AD vs. controls, but effect disappeared after age adjustment; Zn2+ decline attributed to ageing, not AD |
| Xu et al., 2018 [45] | UK | AD n = 42, controls n = 43; mean age 78.2 vs. 78.1 y.o.; 52% male | Case–control | Plasma levels of seven metals incl. Zn2+; ICP-MS | No overall difference between AD and controls; in males, Zn2+ trended higher in AD vs. controls (p = 0.021); no difference in females. |
| Author, Year | Country | Sample Features (Mean Age—Range, % Female) | Design | Reported Outcomes | Results |
|---|---|---|---|---|---|
| Liu et al., 2015 [46] | China | 114 cases, 114 controls—76 pair-males and 38 pair-females. Cases Mean age 32.8 ± 11.3 years and controls 33.0 ± 10.7 years old | Case–control | Serum levels of trace elements in SCZ vs. controls | No evidence for a difference in Zn2+ levels between study groups |
| Author, Year | Country | Sample Features (Mean Age—Range, % Female) | Design | Reported Outcomes | Results |
|---|---|---|---|---|---|
| Siwek et al., 2016 [47] | Poland | n = 129 individuals with BD mean age 44.3 ± 12.8 y.o., 46.5% bipolar II; n = 50 controls 72% female, mean age 45.8 ± 12.4 y.o. | Cross-sectional | Zn2+ levels in BD patients vs. control and in depending on the mood phase | Lower Zn2+ levels in BD type I in bipolar depression vs. other mood phases |
| Jonsson et al., 2022 [48] | Sweden | n = 121 individuals with BD, female 59.5%, mean age 46.38 ± 1.25 y.o.; n = 30 controls, mean age 46.37 ± 2.80 y.o., 56.6% female | Cross-sectional | Exploring Zn2+ blood concentration and its association with Affective Disorder Evaluation, and executive functioning was assessed by using the Delis–Kaplan Executive Function System | Increased Zn2+ serum levels unrelated to monocyte chemoattractant protein-1, chitinase 3-like protein 1, and soluble cluster of differentiation 14. No association for Zn2+ and executive functioning or symptoms severity |
| Chebieb et al., 2024 [49] | Algeria | N = 33 individuals with BD, mean age 39.4 ± 11.0 y.o., 51.5% female; n = 38 controls, mean age 40.2 ± 10.9 y.o., female 34% | Case–control, cross-sectional | Exploring Zn2+ plasma concentrations and plasma lipid peroxidation (malondialdehyde) | Lower Zn2+ in BD patients vs. controls; negative correlation between lipid peroxidation marker and higher copper to Zn2+ ratio |
| Author, Year | Country | Sample Features (Mean Age—Range, % Female) | Intervention | Reported Outcomes | Results |
|---|---|---|---|---|---|
| Nowak et al., 2003 [50] | Poland | N = 14 | Antidepressant + Zn2+ augmentation 25 mg/day, 12 weeks vs. placebo | Hamilton Depression Rating Scale, Beck Depression Inventory | Greater symptoms reduction in the active arm |
| Siwek et al., 2009 [51] | Poland | N = 60, 18–55 y.o., 66% female | Imipramine + Zn2+ 25 mg/day augmentation, 12 weeks vs. placebo | Clinical Global Impression, Beck Depression Inventory, Hamilton Depression Rating Scale, Montgomery-Åsberg Depression Rating Scale | No difference between group—possible benefit among treatment resistant patients |
| Sawada et al., 2010 [52] | Japan | N = 30, female 100% | Multivitamins + Zn2+ 7 mg/day vs. Multivitamins | Cornell Medical Index—AL and MR sections for somatic symptoms, mood and feelings | Improved mood subscales; increased Zn2+ levels |
| Ranjbar et al., 2013 [53] | Iran | N = 44, 37 ± 9 in active arm, 37.5 ± 8 in placebo arm | SSRI + Zn2+ 25 mg/day augmentation vs. SSRI + placebo | Beck Depression Inventory | Greater mood improvement in the active arm |
| Ranjbar et al., 2014 [54] | Iran | N = 44 | SSRI + Zn2+ 25 mg/day augmentation vs. SSRI + placebo | Hamilton depression rating scale; BDNF, cytokines | No changes in biomarkers; greater mood improvements in the active arm |
| Salari et al., 2015 [55] | Iran | N = 43 MDD in MS | Zn2+ sulphate 220 mg/day (~50 mg elemental Zn2+) vs. placebo, 12 weeks | Beck Depression Inventory; neurological exam (i.e., abnormal ocular movement, muscle power, and gait disorder) | Greater mood improvements in the active arm, with no effect on the neurological examination |
| Solati et al., 2015 [56] | Iran | N = 50 with obesity or overweight | Zn2+ 30 mg/day vs. placebo, monotherapy | Beck Depression Inventory-II; serum BDNF | Greater mood improvements in the active arm; increased BDNF |
| Yosaee et al., 2020 [57] | Iran | N = 140 with obesity or overweight | Randomly assigned to one of four groups in a 1:1:1:1 ratio: 2000 IU/d vitamin D + Zn2+ placebo; 30 mg/d Zn2+ gluconate + vitamin D placebo; 2000 IU/d vitamin D + 30 mg/d Zn2+ gluconate; or vitamin D placebo + Zn2+ placebo for 12 wk. | Beck Depression Inventory II; serum cortisol; serum BDNF | Zn2+ supplements were associated with greater improvements in mood; no cortisol or BDNF effects observed |
| Author, Year | Country | Sample Features (Mean Age—Range, % Female) | Design | Reported Outcomes | Results |
|---|---|---|---|---|---|
| Maes et al., 1999 [58] | Belgium | n = 48, mean age 54.0 ± 14.1 y.o., female 72%; n = 15 controls, mean age 55.3 ± 13.0 y.o., 53% female | Cross-sectional | Exploring Zn2+ serum levels in patients vs. controls | Lower Zn2+ and lower albumin in MDD patients vs. controls—at least part of the effect on Zn2+ appears mediated by lower albumin |
| Maserejian et al., 2012 [59] | USA | Boston Area Community Health survey (2002–2005); Centre for Epidemiologic Studies Depression scale defined depressive symptoms; 2163 female and 1545 men | Cross-sectional | Exploring the association of depressive symptoms and self-reported dietary Zn2+ intake | Women, but not men, with low dietary Zn2+ intake had a higher burden of depressive symptoms |
| Lehto et al., 2013 [60] | Finland | 2317 men, aged 42 to 61 y.o. | Cohort study | Exploring the association of major depression diagnosis at hospital discharge and self-reported dietary Zn2+ intake in a 20-year follow-up study, after excluding individuals with high depressive symptoms at baseline | No association with self-reported Zn2+ intake was found |
| Styczeń et al., 2017 [61] | Poland | Patients n = 114; mean age 49.4 ± 10.7 y.o.; female 75%; Controls n = 50; mean age 45.8 ± 12.4 y.o.; 72% female; | Cross-sectional study | Exploring plasma Zn2+ levels association with treatment outcomes in major depressive disorder | Serum Zn2+ levels were lower among individuals with MDD as compared with controls; individuals reaching symptomatic remission had Zn2+ levels similar to controls |
| Islam et al., 2018 [62] | Bangladesh | Patients n = 247; mean age 33 ± 0.6 y.o.; 63% female. Controls n = 248; mean age 33 ± 0.6 y.o.; 59% female | Case- control study | Exploring the levels of macrominerals (calcium and magnesium) and trace elements (copper, manganese, selenium, iron and Zn2+) in MDD vs. controls | Significantly increased copper and decreased levels of magnesium, calcium, manganese, selenium and Zn2+ in MDD compared to controls |
| Patient Group | RDA/AI (mg/Day) | UL (mg/Day) | Higher Intake Thresholds | Main Adverse Effects |
|---|---|---|---|---|
| Infants | ||||
| 0–6 months | 2 | 4 | — | — |
| 7–12 months | 3 | 5 | — | — |
| Children | ||||
| 1–3 years | 3 | 7 | — | — |
| 4–8 years | 5 | 12 | — | — |
| Adolescents (9–18 y) | Males: 8–11; Females: 8–9 | 23–34 | — | — |
| Adults (≥19 y) | Males: 11; Females: 8; Pregnancy: 11–12; Lactation: 12–13 | 40 | Up to ~100 mg/day generally tolerated | GI upset (nausea, vomiting, diarrhoea, abdominal pain) |
| General adults—excess | — | — | >150 mg/day | Copper deficiency due to impaired absorption |
| Extreme excess (mega-doses/contamination) | — | — | Very high intakes | Severe GI symptoms: in rare cases calcium disodium ethylenediaminetetraacetate (CaNa2EDTA) chelation is used |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faa, G.; Meloni, C.; Lastretti, M.; Pinna, M.; Manchia, M.; Paribello, P. Perturbations of Zinc Homeostasis and Onset of Neuropsychiatric Disorders. Int. J. Mol. Sci. 2025, 26, 10877. https://doi.org/10.3390/ijms262210877
Faa G, Meloni C, Lastretti M, Pinna M, Manchia M, Paribello P. Perturbations of Zinc Homeostasis and Onset of Neuropsychiatric Disorders. International Journal of Molecular Sciences. 2025; 26(22):10877. https://doi.org/10.3390/ijms262210877
Chicago/Turabian StyleFaa, Gavino, Carlotta Meloni, Mara Lastretti, Martina Pinna, Mirko Manchia, and Pasquale Paribello. 2025. "Perturbations of Zinc Homeostasis and Onset of Neuropsychiatric Disorders" International Journal of Molecular Sciences 26, no. 22: 10877. https://doi.org/10.3390/ijms262210877
APA StyleFaa, G., Meloni, C., Lastretti, M., Pinna, M., Manchia, M., & Paribello, P. (2025). Perturbations of Zinc Homeostasis and Onset of Neuropsychiatric Disorders. International Journal of Molecular Sciences, 26(22), 10877. https://doi.org/10.3390/ijms262210877

