Effects of Exercise on Cardiovascular and Metabolic Responses in Adults and Childhood Cancer Survivors: The Role of NETosis and Low-Grade Inflammation as a Novel Therapeutic Target—A Narrative Review
Abstract
1. Introduction
2. Epidemiological Settings in Adults and Childhood Cancer Survivors
3. Cardiovascular and Metabolic Status in Adults and Childhood Cancer Survivors
3.1. Adult Patients
3.2. Pediatric Patients
4. Monitoring of CV Risk Factors and Cardiac Function in Cancer Survivors
4.1. Surveillance of CV Risk Factors
4.2. Cardiac Function Assessment
5. Impact of Exercise on Cardiometabolic Risk in Cancer Survivors
5.1. Exercise as a Cardiometabolic Intervention
5.2. Exercise and Cardiotoxicity Mitigation
5.3. Guideline-Based Approaches to Exercise Prescription
6. Molecular Pathways Linking Low-Grade Inflammation and Cardiometabolic Adaptation to Exercise in Cancer Survivors
7. Neutrophil Extracellular Traps and Their Potential Role in Muscle Metabolism and Exercise Intensity
8. An Integrated Model of Exercise-Based Intervention Against Cardio- and Immuno-Metabolic Risk in Cancer Survivors
- Pediatric Oncology: survivorship follow-up.
- Cardiology: cardiovascular risk assessment, monitoring of chemotherapy-induced cardiotoxicity (TTE and cardiac biomarker surveillance).
- Exercise Physiology: individualized aerobic and resistance exercise protocols, and CRF assessment.
- Immunology/Inflammation: profiling of inflammatory markers and exerkines.
- Public Health: evaluation of both short- and long-term follow-up policies in Latin America and Chile (e.g., PINDA program).
- The development of evidence-informed guidelines for oncologists and cardiologists on surveillance and exercise prescription.
- The integration of exercise programs into national health systems as a validated therapeutic strategy for cancer survivors.
- The identification of novel molecular targets for cardiometabolic and immunomodulatory therapies.
9. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| APC | Activated Protein C |
| AUC | Area Under the Curve |
| CCS | Childhood Cancer Survivors |
| cfDNA | Cell-Free DNA |
| CMR | Cardiac Magnetic Resonance |
| CORE | Cardio-Oncology Rehabilitation and Exercise |
| CRF | Cardiorespiratory Fitness |
| CRP | C-Reactive Protein |
| CS | Cancer Survivors (general) |
| CVD | Cardiovascular Disease |
| CX3CL1 | Fractalkine |
| DNase I | Deoxyribonuclease I |
| DNA | Deoxyribonucleic Acid |
| ESC/ICOS | European Society of Cardiology/International Cardio-Oncology Society |
| FGF21 | Fibroblast Growth Factor 21 |
| HMGB1 | High Mobility Group Box 1 |
| HFA | Heart Failure Association |
| ICOS-CORE | International Cardio-Oncology Society—Cardio-Oncology Rehabilitation and Exercise |
| IL | Interleukin |
| IL-6 | Interleukin-6 |
| IL-8 | Interleukin-8 |
| IL-10 | Interleukin-10 |
| IL-1ra | Interleukin-1 receptor antagonist |
| IR | Ischemia–Reperfusion |
| LV | Left Ventricle/Left Ventricular |
| MAPK | Mitogen-Activated Protein Kinase |
| MPO-DNA | Myeloperoxidase–DNA complex |
| NCDs | Non-Communicable Diseases |
| NETs | Neutrophil Extracellular Traps |
| NETosis | Neutrophil Extracellular Trap Formation |
| PA | Physical Activity |
| PAD4 | protein-arginine deiminase 4 |
| SASP | Senescence-Associated Secretory Phenotype |
| TF | Tissue Factor |
| TFPI | Tissue Factor Pathway Inhibitor |
| TLR4 | Toll-Like Receptor 4 |
| TNF-α | Tumor Necrosis Factor-alpha |
| TM | Thrombomodulin |
| TTE | Transthoracic Echocardiography |
| VEGF | Vascular Endothelial Growth Factor |
| VO2 peak | Peak Oxygen Consumption |
| vWF | von Willebrand Factor |
| YAP | Yes-Associated Protein |
References
- Feuerstein, M. Defining cancer survivorship. J. Cancer Surviv. 2007, 1, 5–7. [Google Scholar] [CrossRef]
- Howlader, N.; Noone, A.M.; Krapcho, M.; Miller, D.; Bishop, K.; Kosary, C.L.; Yu, M.; Ruhl, J.; Tatalovich, Z.; Mariotto, A.; et al. (Eds.) SEER Cancer Statistics Review, 1975–2014; National Cancer Institute: Bethesda, MD, USA, 2017. Available online: https://seer.cancer.gov/csr/1975_2014/ (accessed on 15 August 2025).
- Armstrong, G.T.; Liu, Q.; Yasui, Y.; Neglia, J.P.; Leisenring, W.; Robison, L.L.; Mertens, A.C. Late mortality among 5-year survivors of childhood cancer: A summary from the childhood cancer survivor study. J. Clin. Oncol. 2009, 27, 2328–2338. [Google Scholar] [CrossRef]
- Turcotte, L.M.; Liu, Q.; Yasui, Y.; Arnold, M.A.; Hammond, S.; Howell, R.M.; Smith, S.A.; Weathers, R.E.; Henderson, T.O.; Gibson, T.M.; et al. Temporal trends in treatment and subsequent neoplasm risk among 5-year survivors of childhood cancer, 1970–2015. JAMA 2017, 317, 814–824. [Google Scholar] [CrossRef]
- Carrillo-Estrada, M.; Bobrowski, D.; Carrasco, R.; Nadler, M.B.; Kalra, S.; Thavendiranathan, P.; Abdel-Qadir, H. Coronary artery disease in patients with cancer: Challenges and opportunities for improvement. Curr. Opin. Cardiol. 2021, 36, 597–608. [Google Scholar] [CrossRef]
- Ness, K.K.; Kirkland, J.L.; Gramatges, M.M.; Wang, Z.; Kundu, M.; McCastlain, K.; Li-Harms, X.; Zhang, J.; Tchkonia, T.; Pluijm, S.M.; et al. Premature physiologic aging as a paradigm for understanding increased risk of adverse Health across the lifespan of survivors of childhood cancer. J. Clin. Oncol. 2018, 36, 2206–2215. [Google Scholar] [CrossRef]
- Campbell, K.; Winters-Stone, K.M.; Wiskemann, J.; May, A.M.; Schwartz, A.L.; Courneya, K.S.; Zucker, D.S.; Matthews, C.E.; Ligibel, J.A.; Gerber, L.H.; et al. Exercise Guidelines for Cancer Survivors: Consensus Statement from International Multidisciplinary Roundtable. Med. Sci. Sports Exerc. 2019, 51, 2375–2390. [Google Scholar] [CrossRef]
- Hidalgo, A.; Libby, P.; Soehnlein, O.; Aramburu, I.V.; Papayannopoulos, V.; Silvestre-Roig, C. Neutrophil extracellular traps: From physiology to pathology. Cardiovasc. Res. 2022, 118, 2737–2753. [Google Scholar] [CrossRef]
- Breitbach, S.; Tug, S.; Simon, P. Circulating cell-free DNA: An up-coming molecular marker in exercise physiology. Sports Med. 2012, 42, 565–586. [Google Scholar] [CrossRef]
- Mouton, A.J.; Li, X.; Hall, M.E.; Hall, J.E. Obesity, Hypertension, and Cardiac Dysfunction: Novel Roles of Immunometabolism in Macrophage Activation and Inflammation. Circ. Res. 2020, 126, 789–806. [Google Scholar] [CrossRef]
- Pan American Health Organization (PAHO). Childhood Cancer Country Profiles; PAHO: Washington, DC, USA, 2021; Available online: https://www.paho.org/en/documents/childhood-cancer-profiles-region-latin-america-and-caribbean (accessed on 17 August 2025).
- Izurieta-Pacheco, A.C.; Noyd, D.H.; Challinor, J.; Rossell, N.; Olarte-Sierra, M.F.; Blanco, D.B.; Zubieta, M.B.; George, N.B.; Perez-Jaume, S.; Felip-Badia, A.; et al. Childhood Cancer Survivors in Latin America: Insights Into Health Outcomes and Information Needs. Pediatr. Blood Cancer 2025, 72, e31833. [Google Scholar] [CrossRef]
- Jarvas Barbosa da, S., Jr. A call to action: Strengthening services to improve childhood cancer survival in Latin America and the Caribbean. Rev. Panam. Salud Publica 2023, 47, e157. [Google Scholar] [CrossRef]
- Fedorovsky, J.M.; Cuervo, L.G.; Luciani, S. Pediatric cancer registries in Latin America: The case of Argentina’s pediatric cancer registry. Rev. Panam. Salud Publica 2017, 41, e152. [Google Scholar] [CrossRef]
- Cuervo, L.G.; Roca, S.; Rodríguez, M.N.; Stein, J.; Izquierdo, J.; Trujillo, A.; Mora, M. Evaluation of institutional cancer registries in Colombia. Rev. Panam. Salud Publica 1999, 6, 202–206. [Google Scholar] [CrossRef]
- Instituto Nacional del Cáncer (INAR). Registro Oncopediátrico Hospitalario Argentino (ROHA); Instituto Nacional del Cáncer (INC): Buenos Aires, Argentina, 2017. Available online: https://www.argentina.gob.ar/salud/instituto-nacional-del-cancer/institucional/roha (accessed on 19 March 2017).
- International Agency for Research on Cancer (IARC). International Incidence of Childhood Cancer 3: Registry-Specific Tables; IARC: Lyon, France, 2017. Available online: https://iicc.iarc.fr/results/registry-specific-tables/ (accessed on 19 March 2017).
- Palma, J.; Candia, O.; Cerda, P.; Vasquez, L. Childhood and adolescence cancer in Chile: Examining challenges and sharing tomorrow. Rev. Panam. Salud Publica 2024, 48, e38. [Google Scholar] [CrossRef]
- Ministry of Health, Chile. Tercer Informe de Vigilancia de Cáncer: Registro Nacional de Cáncer Infantil (RENCI); Trienio 2017–2019. (Third Cancer Surveillance Report: National Registry of Childhood Cancer (RENC); 2017–2019 triennium); Ministry of Health: Santiago, Chile, 2023.
- Joannon, P.; Becker, A.; Kabalan, P.; Concha, E.; Beresi, V.; Salgado, C.; Martínez, P.; Olate, P.; Arriagada, M.; Espinoza, F.; et al. Results of Therapy for Wilms Tumor and Other Malignant Kidney Tumors: A Report from the Chilean Pediatric National Cancer Program (PINDA). J. Pediatr. Hematol. Oncol. 2016, 38, 372–377. [Google Scholar] [CrossRef]
- Suh, E.; Stratton, K.L.; Leisenring, W.L.; Nathan, P.C.; Ford, J.S.; Freyer, D.R.; McNeer, J.L.; Stock, W.; Stovall, M.; Krull, K.R.; et al. Late mortality and chronic health conditions in long-term survivors of early-adolescent and young adult cancers: A retrospective cohort analysis from the Childhood Cancer Survivor Study. Lancet Oncol. 2020, 21, 421–435. [Google Scholar] [CrossRef]
- Steliarova-Foucher, E.; Colombet, M.; Ries, L.A.G.; Moreno, F.; Dolya, A.; Bray, F.; Hesseling, P.; Shin, H.Y.; Stiller, C.A.; IICC-3 contributors. International incidence of childhood cancer, 2001–2010: A population-based registry study. Lancet Oncol. 2017, 18, 719–731, Erratum in Lancet Oncol. 2017, 18, e301. [Google Scholar] [CrossRef]
- Hammoud, R.A.; Liu, Q.; Dixon, S.B.; Onerup, A.; Mulrooney, D.A.; Huang, I.C.; Jefferies, J.L.; Rhea, I.B.; Ness, K.K.; Ehrhardt, M.J.; et al. The burden of cardiovascular disease and risk for subsequent major adverse cardiovascular events in survivors of childhood cancer: A prospective, longitudinal analysis from the St Jude Lifetime Cohort Study. Lancet Oncol. 2024, 25, 811–822. [Google Scholar] [CrossRef]
- Carrasco, R.A.; Castillo, R.L.; Gormaz, J.G.; Carrillo, M.; Thavendiranathan, P. Role of Oxidative Stress in the Mechanisms of Anthracycline-Induced Cardiotoxicity: Effects of Preventive Strategies. Oxid. Med. Cell Longev. 2021, 2021, 8863789. [Google Scholar] [CrossRef]
- Stone, N.J.; Smith, S.C., Jr.; Orringer, C.E.; Rigotti, N.A.; Navar, A.M.; Khan, S.C.; Jones, D.W.; Goldberg, R.; Mora, S.; Blaha, M.; et al. Managing Atherosclerotic Cardiovascular Risk in Young Adults: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2022, 79, 819–836. [Google Scholar] [CrossRef]
- Petra, C.V.; Albu, A.; Pamfil, C.; Tamas, M.; Vesa, S.C.; Rednic, S. The relationship between epicardial adipose tissue and arterial stiffness in patients with rheumatoid arthritis. Med. Ultrason. 2019, 21, 427–434. [Google Scholar] [CrossRef]
- Georgiopoulos, G.; Figliozzi, S.; Pateras, K.; Nicoli, F.; Bampatsias, D.; Beltrami, M.; Finocchiaro, G.; Chiribiri, A.; Masci, P.G.; Olivotto, I. Comparison of Demographic, Clinical, Biochemical, and Imaging Findings in Hypertrophic Cardiomyopathy Prognosis: A Network Meta-Analysis. JACC Heart Fail. 2023, 11, 30–41. [Google Scholar] [CrossRef] [PubMed]
- Wernhart, S.; Fiorentini, C.; Glowka, S.; Madl, B.; Grill, S.; Kiechle, M.; Mueller, S.; Schmid, V.; Foulkes, S.; Haykowsky, M.J.; et al. Evaluating Cardiovascular Risk Factors in Breast Cancer Survivors: The Role of Echocardiography and Cardiopulmonary Exercise Testing in the Munich Cardio-Oncology-Exercise Retrospective Registry. Int. J. Cardiol. 2025, 436, 133421, Erratum in Int. J. Cardiol. 2025, 438, 133472. [Google Scholar] [CrossRef] [PubMed]
- Faber, J.; Wingerter, A.; Neu, M.A.; Henninger, N.; Eckerle, S.; Münzel, T.; Lackner, K.J.; Beutel, M.E.; Blettner, M.; Rathmann, W. Burden of Cardiovascular Risk Factors and Cardiovascular Disease in Childhood Cancer Survivors: Data from the German CVSS-Study. Eur. Heart J. 2018, 39, 1555–1562. [Google Scholar] [CrossRef]
- Chow, E.J.; Chen, Y.; Armstrong, G.T.; Baldwin, L.M.; Cai, C.R.; Gibson, T.M.; Hudson, M.M.; McDonald, A.; Nathan, P.C.; Olgin, J.E.; et al. Underdiagnosis and Undertreatment of Modifiable Cardiovascular Risk Factors Among Survivors of Childhood Cancer. J. Am. Heart Assoc. 2022, 11, e024735. [Google Scholar] [CrossRef]
- Florido, R.; Daya, N.R.; Ndumele, C.E.; Koton, S.; Russell, S.D.; Prizment, A.; Blumenthal, R.S.; Matsushita, K.; Mok, Y.; Felix, A.S.; et al. Cardiovascular Disease Risk Among Cancer Survivors: The Atherosclerosis Risk in Communities (ARIC) Study. J. Am. Coll. Cardiol. 2022, 80, 22–32. [Google Scholar] [CrossRef]
- Kapoor, A.; Prakash, V.; Sekhar, M.; Greenfield, D.M.; Hatton, M.; Lean, M.E.; Sharma, P.; Han, T.S. Monitoring risk factors of cardiovascular disease in cancer survivors. Clin. Med. 2017, 17, 293–297. [Google Scholar] [CrossRef]
- Lyon, A.R.; López-Fernández, T.; Couch, L.S.; Asteggiano, R.; ESC Scientific Document Group. 2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur. Heart J. 2022, 43, 4229–4361. [Google Scholar] [CrossRef]
- Baldassarre, L.A.; Ganatra, S.; Lopez-Mattei, J.; Yang, E.H.; Zaha, V.G.; Wong, T.C.; Ayoub, C.; DeCara, J.M.; Dent, S.; Deswal, A.; et al. Advances in Multimodality Imaging in Cardio-Oncology: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2022, 80, 1560–1578. [Google Scholar] [CrossRef]
- Camilli, M.; Skinner, R.; Iannaccone, G.; La Vecchia, G.; Montone, R.A.; Lanza, G.A.; Natale, L.; Crea, F.; Cameli, M.; Del Buono, M.G.; et al. Cardiac Imaging in Childhood Cancer Survivors: A State-of-the-Art Review. Curr. Probl. Cardiol. 2023, 48, 101544. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Mattei, J.C.; Yang, E.H.; Ferencik, M.; Baldassarre, L.A.; Dent, S.; Budoff, M.J. Cardiac Computed Tomography in Cardio-Oncology: JACC: CardioOncology Primer. JACC CardioOncol. 2021, 3, 635–649. [Google Scholar] [CrossRef]
- Bloom, M.; Alvarez-Cardona, J.A.; Ganatra, S.; Barac, A.; Pusic, I.; Lenihan, D.; Dent, S. How to utilize current guidelines to manage patients with cancer at high risk for heart failure. CardioOncology 2024, 10, 63. [Google Scholar] [CrossRef]
- Velusamy, R.; Nolan, M.; Murphy, A.; Thavendiranathan, P.; Marwick, T.H. Screening for Coronary Artery Disease in Cancer Survivors: JACC: CardioOncology State-of-the-Art Review. JACC CardioOncol. 2023, 5, 22–38. [Google Scholar] [CrossRef]
- Courneya, K.S.; Vardy, J.L.; O’Callaghan, C.J.; Friedenreich, C.M.; Campbell, K.L.; Prapavessis, H.; Crawford, J.J.; O’Brien, P.; Dhillon, H.M.; Jonker, D.J.; et al. Effects of a Structured Exercise Program on Physical Activity and Fitness in Colon Cancer Survivors: One Year Feasibility Results from the CHALLENGE Trial. Cancer Epidemiol. Biomark. Prev. 2016, 25, 969–977. [Google Scholar] [CrossRef]
- Garcia, L.; Pearce, M.; Abbas, A.; Mok, A.; Strain, T.; Ali, S.; Crippa, A.; Dempsey, P.C.; Golubic, R.; Kelly, P.; et al. Non-occupational physical activity and risk of cardiovascular disease, cancer and mortality outcomes: A dose-response meta-analysis of large prospective studies. Br. J. Sports Med. 2023, 57, 979–989. [Google Scholar] [CrossRef]
- Posadzki, P.; Pieper, D.; Bajpai, R.; Makaruk, H.; Könsgen, N.; Neuhaus, A.L.; Semwal, M. Exercise/physical activity and health outcomes: An overview of Cochrane systematic reviews. BMC Public Health 2020, 20, 1724. [Google Scholar] [CrossRef]
- Filis, P.; Anastasopoulou, A.; Tzoulis, P.; Dimopoulos, M.A.; Psaltopoulou, T. The magnitude of the evidence for physical activity in cancer survivors: An umbrella review of meta-analyses. Crit. Rev. Oncol. Hematol. 2025, 207, 104602. [Google Scholar] [CrossRef]
- Coma, N.; Ortega, A.; Hernández-Sánchez, S.; Álvarez, M.; Ferrer-Salvans, P. Current Evidence on the Benefit of Exercise in Cancer Patients: Effects on Cardiovascular Mortality, Cardiotoxicity, and Quality of Life. Rev. Cardiovasc. Med. 2023, 24, 160. [Google Scholar] [CrossRef]
- Chow, L.S.; Gerszten, R.E.; Taylor, J.M.; Pedersen, B.K.; van Praag, H.; Trappe, S.; Febbraio, M.A.; Galis, Z.S.; Gao, Y.; Haus, J.M.; et al. Exerkines: Cell-to-cell messengers for the benefits of exercise. Nat. Rev. Endocrinol. 2022, 18, 701–718. [Google Scholar] [CrossRef]
- Lu, X.; Chen, Y.; Shi, Y.; Shi, Y.; Su, X.; Chen, P.; Wu, D.; Shi, H. Exercise and exerkines: Mechanisms and roles in anti-aging and disease prevention. Exp. Gerontol. 2025, 200, 112685. [Google Scholar] [CrossRef] [PubMed]
- Taalas, T.; Järvelä, L.; Niinikoski, H.; Huurre, A.; Harila-Saari, A. Inflammatory biomarkers after an exercise intervention in childhood acute lymphoblastic leukemia survivors. eJHaem 2022, 3, 1188–1200. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Re Cecconi, A.D.; Forti, M.; Chiappa, M.; Zhu, Z.; Zingman, L.V.; Cervo, L.; Beltrame, L.; Marchini, S.; Piccirillo, R.; Musclin, A. Myokine Induced by Aerobic Exercise, Retards Muscle Atrophy During Cancer Cachexia in Mice. Cancers 2019, 11, 1541. [Google Scholar] [CrossRef]
- Huang, Q.; Wu, M.; Wu, X.; Zhang, Y.; Xia, Y. Muscle-to-tumor crosstalk: The effect of exercise-induced myokine on cancer progression. Biochim. Biophys. Acta Rev. Cancer 2022, 1877, 188761. [Google Scholar] [CrossRef]
- Huang, X.; Maguire, O.A.; Walker, J.M.; Jiang, C.S.; Carroll, T.S.; Luo, J.D.; Tonorezos, E.; Friedman, D.N.; Cohen, P. Therapeutic radiation exposure of the abdomen during childhood induces chronic adipose tissue dysfunction. JCI Insight 2021, 6, e153586. [Google Scholar] [CrossRef]
- Singh, P.; Shah, D.A.; Jouni, M.; Cejas, R.B.; Crossman, D.K.; Magdy, T. Altered Peripheral Blood Gene Expression in Childhood Cancer Survivors with Anthracycline-Induced Cardiomyopathy—A COG-ALTE03N1 Report. J. Am. Heart Assoc. 2023, 12, e029954. [Google Scholar] [CrossRef]
- Scott, J.M.; Nilsen, T.S.; Gupta, D.; Jones, L.W. The Potential Role of Aerobic Exercise to Modulate Cardiotoxicity of Molecularly Targeted Cancer Therapeutics. Oncologist 2013, 18, 221–231. [Google Scholar] [CrossRef]
- Amin, M.; Elmasry, O.; Mahmoud, A.; Abdelkader, S.; Zakaria, Z. The efficacy and safety of exercise regimens in cancer patients undergoing cardiotoxic chemotherapy: A systematic review and meta-analysis. CardioOncology 2024, 10, 10. [Google Scholar] [CrossRef]
- Wu, G.; Rana, J.S.; Wykrzykowska, J.; Du, Z.; Ke, Q.; Kang, P.; Li, J.; Laham, R.J. Exercise-induced expression of VEGF and salvation of myocardium in the early stage of myocardial infarction. Am. J. Physiol. Heart Circ. Physiol. 2009, 296, H389–H395. [Google Scholar] [CrossRef]
- Gibb, A.A.; Epstein, P.N.; Uchida, S.; Zheng, Y.; McNally, L.A.; Obal, D.; Katragadda, K.; Trainor, P.; Conklin, D.J.; Brittian, K.R.; et al. Exercise-Induced Changes in Glucose Metabolism Promote Physiological Cardiac Growth. Circulation 2017, 136, 2144–2157. [Google Scholar] [CrossRef]
- Bourdon, A.; Grandy, S.A.; Keats, M.R. Aerobic exercise and cardiopulmonary fitness in childhood cancer survivors treated with a cardiotoxic agent: A meta-analysis. Support. Care Cancer 2018, 26, 2113–2123. [Google Scholar] [CrossRef]
- Morales, J.S.; Valenzuela, P.L.; Herrera-Olivares, A.M.; Baño-Rodrigo, A.; Castillo-García, A.; Rincón-Castanedo, C.; Martín-Ruiz, A.; San-Juan, A.F.; Fiuza-Luces, C.; Lucia, A. Exercise Interventions and Cardiovascular Health in Childhood Cancer: A Meta-analysis. Int. J. Sports Med. 2020, 41, 141–153. [Google Scholar] [CrossRef]
- Kang, D.W.; Wilson, R.L.; Christopher, C.N.; Normann, A.J.; Barnes, O.; Lesansee, J.D.; Choi, G.; Dieli-Conwright, C.M. Exercise Cardio-Oncology: Exercise as a Potential Therapeutic Modality in the Management of Anthracycline-Induced Cardiotoxicity. Front. Cardiovasc. Med. 2022, 8, 805735. [Google Scholar] [CrossRef]
- Kendall, S.J.; Langley, J.E.; Aghdam, M.; Crooks, B.N.; Giacomantonio, N.; Heinze-Milne, S.; Johnston, W.J.; Keats, M.R.; Mulvagh, S.L.; Grandy, S.A. The Impact of Exercise on Cardiotoxicity in Pediatric and Adolescent Cancer Survivors: A Scoping Review. Curr. Oncol. 2022, 29, 6350–6363. [Google Scholar] [CrossRef]
- Wernhart, S.; Hager, A.; Grander, W.; Tschernitz, S.; Oberhuber, R.; Schenk, N. Cardiopulmonary exercise testing and exercise training in cancer patients: A comprehensive narrative review. Clin. Res. Cardiol. 2024, 113, 653–674. [Google Scholar] [CrossRef]
- Sase, K.; Kida, K.; Furukawa, Y. Cardio-oncology rehabilitation-challenges and opportunities to improve cardiovascular outcomes in cancer patients and survivors. J. Cardiol. 2020, 76, 559–567. [Google Scholar] [CrossRef]
- Gilchrist, S.C.; Barac, A.; Ades, P.A.; Alfano, C.M.; Franklin, B.A.; Jones, L.W.; Gerche, A.L.; Ligibel, J.A.; Lopez, G.; Madan, K.; et al. Cardio-Oncology Rehabilitation to Manage Cardiovascular Outcomes in Cancer Patients and Survivors: A Scientific Statement from the American Heart Association. Circulation 2019, 139, e997–e1012. [Google Scholar] [CrossRef]
- Fakhraei, R.; Peck, S.S.; Abdel-Qadir, H.; Thavendiranathan, P.; Sabiston, C.M.; Rivera-Theurel, F.; Oh, P.; Orchanian-Cheff, A.; Lee, L.; Adams, S.C. Research Quality and Impact of Cardiac Rehabilitation in Cancer Survivors. JACC CardioOncol. 2022, 4, 195–206. [Google Scholar] [CrossRef]
- Adams, S.C.; Rivera-Theurel, F.; Scott, J.M.; Nadler, M.B.; Foulkes, S.; Leong, D.; Nilsen, T.; Porter, C.; Haykowsky, M.; Abdel-Qadir, H.; et al. Cardio-oncology rehabilitation and exercise: Evidence, priorities, and research standards from the ICOS-CORE working group. Eur. Heart J. 2025, 46, 2847–2865. [Google Scholar] [CrossRef]
- Pedersen, B.K.; Hoffman-Goetz, L. Exercise and the immune system: Regulation, integration, and adaptation. Physiol. Rev. 2000, 80, 1055–1081. [Google Scholar] [CrossRef]
- Ashcraft, K.A.; Peace, R.M.; Betof, A.S.; Dewhirst, M.W.; Jones, L.W. Efficacy and Mechanisms of Aerobic Exercise on Cancer Initiation, Progression, and Metastasis: A Critical Systematic Review of In Vivo Preclinical Data. Cancer Res. 2016, 76, 4032–4050. [Google Scholar] [CrossRef]
- Koelwyn, G.J.; Quail, D.F.; Zhang, X.; White, R.M.; Jones, L.W. Exercise-dependent regulation of the tumour microenvironment. Nat. Rev. Cancer 2017, 17, 620–632. [Google Scholar] [CrossRef]
- Stefan, M.F.; Herghelegiu, C.G.; Magda, S.L. Accelerated Atherosclerosis and Cardiovascular Toxicity Induced by Radiotherapy in Breast Cancer. Life 2023, 13, 1631. [Google Scholar] [CrossRef]
- Rodrigues, S.F.; Cordeiro de Sousa, M.B. Different types of physical activity on inflammatory biomarkers in women with or without metabolic disorders: A systematic review. Women Health 2013, 53, 298–316. [Google Scholar] [CrossRef]
- Khalafi, M.; Akbari, A.; Symonds, M.E.; Pourvaghar, M.J.; Rosenkranz, S.K.; Tabari, E. Influence of different modes of exercise training on inflammatory markers in older adults with and without chronic diseases: A systematic review and meta-analysis. Cytokine 2023, 169, 156303. [Google Scholar] [CrossRef]
- Pierce, B.L.; Ballard-Barbash, R.; Bernstein, L.; Baumgartner, R.N.; Neuhouser, M.L.; Wener, M.H.; Baumgartner, K.B.; Gilliland, F.D.; Sorensen, B.E.; McTiernan, A.; et al. Elevated biomarkers of Inflammation are associated with reduced survival among breast cancer patients. J. Clin. Oncol. 2009, 27, 3437–3444. [Google Scholar] [CrossRef]
- Abbasi, F.; Pourjalali, H.; Borges do Nascimento, I.J.; Zargarzadeh, N.; Mousavi, S.M.; Eslami, R.; Milajerdi, A. The effects of exercise training on inflammatory biomarkers in patients with breast cancer: A systematic review and meta-analysis. Cytokine 2022, 149, 155712. [Google Scholar] [CrossRef]
- Rogeri, P.S.; Gasparini, S.O.; Martins, G.L.; Costa, L.K.F.; Araujo, C.C.; Lugaresi, R.; Kopfler, M.; Lancha, A.H., Jr. Crosstalk Between Skeletal Muscle and Immune System: Which Roles Do IL-6 and Glutamine Play? Front. Physiol. 2020, 11, 582258. [Google Scholar] [CrossRef]
- Starkie, R.; Ostrowski, S.R.; Jauffred, S.; Febbraio, M.; Pedersen, B.K. Exercise and IL-6 infusion inhibit endotoxin-induced TNF-alpha production in humans. FASEB J. 2003, 17, 884–886. [Google Scholar] [CrossRef]
- Coleman Mills, R. Breast Cancer Survivors, Common Markers of Inflammation, and Exercise: A Narrative Review. Breast Cancer 2017, 11, 1178223417743976. [Google Scholar] [CrossRef]
- Bettariga, F.; Taaffe, D.R.; Borsati, A.; Avancini, A.; Pilotto, S.; Lazzarini, S.G.; Lopez, P.; Maestroni, L.; Crainich, U.; Campbell, J.P.; et al. Effects of exercise on Inflammation in female survivors of nonmetastatic breast cancer: A systematic review and meta-analysis. J. Natl. Cancer Inst. 2025, 117, 1984–1998. [Google Scholar] [CrossRef]
- Tan, L.; Mei, J.; Tang, R.; Huang, D.; Qi, K.; Ossowski, Z.; Wang, X. Can exercise as a complementary technique manage inflammatory markers in women with breast cancer who are overweight and obese? A systematic review and meta-analysis. Complement. Ther. Med. 2025, 88, 103119. [Google Scholar] [CrossRef]
- Pedersen, B.K. The anti-inflammatory effect of exercise: Its role in diabetes and cardiovascular disease control. Essays Biochem. 2006, 42, 105–117. [Google Scholar] [CrossRef]
- Meneses-Echávez, J.F.; Correa-Bautista, J.E.; González-Jiménez, E.; Río-Valle, J.S.; Elkins, M.R.; Lobelo, F.; Ramírez-Vélez, R. The Effect of Exercise Training on Mediators of Inflammation in Breast Cancer Survivors: A Systematic Review with Meta-analysis. Cancer Epidemiol. Biomark. Prev. 2016, 25, 1009–1017. [Google Scholar] [CrossRef]
- Otaka, N.; Shibata, R.; Ohashi, K.; Uemura, Y.; Kambara, T.; Enomoto, T.; Ogawa, H.; Ito, M.; Kawanishi, H.; Maruyama, S.; et al. Myonectin Is an Exercise-Induced Myokine That Protects the Heart from Ischemia-Reperfusion Injury. Circ. Res. 2018, 123, 1326–1338. [Google Scholar] [CrossRef]
- Rogers, L.Q.; Courneya, K.S.; Oster, R.A.; Anton, P.M.; Phillips, S.; Ehlers, D.K.; McAuley, E. Physical activity intervention benefits persist months post-intervention: Randomized trial in breast cancer survivors. J. Cancer Surviv. 2023, 17, 1834–1846. [Google Scholar] [CrossRef]
- Parry, H.A.; Roberts, M.D.; Kavazis, A.N. Human Skeletal Muscle Mitochondrial Adaptations Following Resistance Exercise Training. Int. J. Sports Med. 2020, 41, 349–359. [Google Scholar] [CrossRef]
- Worku, M.; Rehrah, D.; Ismail, H.D.; Asiamah, E.; Adjei-Fremah, S. A Review of the Neutrophil Extracellular Traps (NETs) from Cow, Sheep and Goat Models. Int. J. Mol. Sci. 2021, 22, 8046. [Google Scholar] [CrossRef]
- Poli, V.; Zanoni, I. Neutrophil intrinsic and extrinsic regulation of NETosis in health and disease. Trends Microbiol. 2023, 31, 280–293. [Google Scholar] [CrossRef]
- Baaten, C.C.F.; Nagy, M.; Spronk, H.M.N.; Cate, H.T.; Kietselaer, B.L.J. NETosis in Cardiovascular Disease: An Opportunity for Personalized Antithrombotic Treatments? Arterioscler. Thromb. Vasc. Biol. 2024, 44, 2366–2370. [Google Scholar] [CrossRef]
- Stanišić, J.; Korićanac, G.; Ćulafić, T.; Romić, S.; Stojiljković, M.; Kostić, M.; Pantelić, M.; Tepavčević, S. Low intensity exercise prevents disturbances in rat cardiac insulin signaling and endothelial nitric oxide synthase induced by high fructose diet. Mol. Cell Endocrinol. 2016, 420, 97–104. [Google Scholar] [CrossRef]
- Qatamish, M.A.; Al-Nassan, S.M.; Kondo, H.; Fujino, H. Protective effects of low-intensity exercise on metabolic oxidative capacity and capillarization in skeletal muscle of non-obese diabetic rats. Biomed. Res. 2020, 41, 227–236. [Google Scholar] [CrossRef] [PubMed]
- Ataeinosrat, A.; Saeidi, A.; Abednatanzi, H.; Rahmani, H.; Daloii, A.A.; Pashaei, Z.; Hojati, V.; Basati, G.; Mossayebi, A.; Laher, I.; et al. Intensity Dependent Effects of Interval Resistance Training on Myokines and Cardiovascular Risk Factors in Males with Obesity. Front. Endocrinol. 2022, 13, 895512. [Google Scholar] [CrossRef] [PubMed]
- Syu, G.D.; Chen, H.; Jen, C.J. Acute severe exercise facilitates neutrophil extracellular trap formation in sedentary but not active subjects. Med. Sci. Sports Exerc. 2013, 45, 238–244. [Google Scholar] [CrossRef]
- Vidal-Seguel, N.; Cabrera, C.; Ferrada, L.; Artigas-Arias, M.; Alegría-Molina, A.; Sanhueza, S.; Flores, A.; Huard, N.; Sapunar, J.; Salazar, L.A.; et al. High-intensity interval training reduces the induction of neutrophil extracellular traps in older men using live-neutrophil imaging as biosensor. Exp. Gerontol. 2023, 181, 112280. [Google Scholar] [CrossRef]
- Mijwel, S.; Backman, M.; Bolam, K.A.; Jervaeus, A.; Sundberg, C.J.; Margolin, S.; Browall, M.; Rundqvist, H.; Wengström, Y. Adding high-intensity interval training to conventional training modalities: Optimizing health-related outcomes during chemotherapy for breast cancer: The OptiTrain randomized controlled trial. Breast Cancer Res. Treat. 2018, 168, 79–93. [Google Scholar] [CrossRef]
- Alarcón-Gómez, J.; Chulvi-Medrano, I.; Martin-Rivera, F.; Calatayud, J. Effect of High-Intensity Interval Training on Quality of Life, Sleep Quality, Exercise Motivation and Enjoyment in Sedentary People with Type 1 Diabetes Mellitus. Int. J. Environ. Res. Public Health 2021, 18, 12612. [Google Scholar] [CrossRef]
- Beiter, T.; Fragasso, A.; Hartl, D.; Nieß, A.M. Neutrophil extracellular traps: A walk on the wild side of exercise immunology. Sports Med. 2015, 45, 625–640. [Google Scholar] [CrossRef]
- Singhal, A.; Kumar, S. Neutrophil and remnant clearance in immunity and Inflammation. Immunology 2022, 165, 22–43. [Google Scholar] [CrossRef]
- Edwards, N.J.; Hwang, C.; Marini, S.; Pagani, C.A.; Spreadborough, P.J.; Rowe, C.J.; Yu, P.; Mei, A.; Visser, N.; Li, S.; et al. The role of neutrophil extracellular traps and TLR signaling in skeletal muscle ischemia reperfusion injury. FASEB J. 2020, 34, 15753–15770. [Google Scholar] [CrossRef] [PubMed]
- Albadawi, H.; Oklu, R.; Malley, R.; O’Keefe, R.M.; Uong, T.P.; Cormier, N.R.; Watkins, M.T. Effect of DNase I treatment and neutrophil depletion on acute limb ischemia-reperfusion injury in mice. J. Vasc. Surg. 2016, 64, 484–493. [Google Scholar] [CrossRef]
- Masuda, H.; Sato, A.; Shizuno, T.; Yokoyama, K.; Suzuki, Y.; Tokunaga, M.; Asahara, T. Batroxobin accelerated tissue repair via neutrophil extracellular trap regulation and defibrinogenation in a murine ischemic hindlimb model. PLoS ONE 2019, 14, e0220898. [Google Scholar] [CrossRef]
- Seto, N.; Torres-Ruiz, J.J.; Carmona-Rivera, C.; Pinal-Fernandez, I.; Pak, K.; Purmalek, M.M.; Hosono, Y.; Fernandes-Cerqueira, C.; Gowda, P.; Arnett, N.; et al. Neutrophil dysregulation is pathogenic in idiopathic inflammatory myopathies. JCI Insight 2020, 5, e134189. [Google Scholar] [CrossRef]
- Rodrigues, K.B.; Weng, Z.; Graham, Z.A.; Lavin, K.; McAdam, J.; Craig Tuggle, S.; Peoples, B.; Seay, R.; Yang, S.; Bamman, M.M.; et al. Exercise intensity and training alter the innate immune cell type and chromosomal origins of circulating cell-free DNA in humans. Proc. Natl. Acad. Sci. USA 2025, 122, e2406954122. [Google Scholar] [CrossRef]
- Han, F.; Ding, Z.; Shi, X.; Zhu, Q.; Shen, Q.; Xu, X.; Zhang, J.; Gong, W.; Xiao, W.; Wang, D.; et al. Irisin inhibits neutrophil extracellular traps formation and protects against acute pancreatitis in mice. Redox Biol. 2023, 64, 102787. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, K.; Tsuchiya, M.; Yoshida, S.; Ogawa, K.; Chen, W.; Kanzaki, M.; Takahashi, T.; Fujita, R.; Li, Y.; Yabe, Y.; et al. Tissue accumulation of neutrophil extracellular traps mediates muscle hyperalgesia in a mouse model. Sci. Rep. 2022, 12, 4136. [Google Scholar] [CrossRef]
- Luk, H.; Levitt, D.E.; Appell, C.R.; Jiwan, N.C. Resistance exercise-induced circulating factors influence the damaged skeletal muscle proteome in a sex-dependent manner. Physiol. Rep. 2025, 13, e70291. [Google Scholar] [CrossRef] [PubMed]
- Nie, M.; Lei, D.; Liu, Z.; Zeng, K.; Liang, X.; Huang, P.; Wang, Y.; Sun, P.; Yang, H.; Liu, P.; et al. Cardiomyocyte-localized CCDC25 senses NET DNA to promote doxorubicin cardiotoxicity by activating autophagic flux. Nat. Cancer 2025, 6, 1400–1418. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Li, Y.; Xu, X.; Yang, H.; Li, X.; Fu, S.; Guo, Z.; Zhang, J.; Li, H.; Tian, J. Neutrophil extracellular traps mediate cardiomyocyte ferroptosis via the Hippo-Yap pathway to exacerbate doxorubicin-induced cardiotoxicity. Cell Mol. Life Sci. 2024, 81, 122. [Google Scholar] [CrossRef]
- Ondracek, A.S.; Aszlan, A.; Schmid, M.; Lenz, M.; Mangold, A.; Artner, T.; Emich, M.; Fritzer-Szekeres, M.; Strametz-Juranek, J.; Lang, I.M.; et al. Physical Exercise Promotes DNase Activity Enhancing the Capacity to Degrade Neutrophil Extracellular Traps. Biomedicines 2022, 10, 2849. [Google Scholar] [CrossRef]



Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castillo, R.L.; Figueroa, E.G.; González-Candia, A.; del Campo, A.; Paris, C.; Verdugo, F.; Lang, M.; Cruz-Montecinos, C.; Quezada, M.; Pérez, R.A.; et al. Effects of Exercise on Cardiovascular and Metabolic Responses in Adults and Childhood Cancer Survivors: The Role of NETosis and Low-Grade Inflammation as a Novel Therapeutic Target—A Narrative Review. Int. J. Mol. Sci. 2025, 26, 10843. https://doi.org/10.3390/ijms262210843
Castillo RL, Figueroa EG, González-Candia A, del Campo A, Paris C, Verdugo F, Lang M, Cruz-Montecinos C, Quezada M, Pérez RA, et al. Effects of Exercise on Cardiovascular and Metabolic Responses in Adults and Childhood Cancer Survivors: The Role of NETosis and Low-Grade Inflammation as a Novel Therapeutic Target—A Narrative Review. International Journal of Molecular Sciences. 2025; 26(22):10843. https://doi.org/10.3390/ijms262210843
Chicago/Turabian StyleCastillo, Rodrigo L., Esteban G. Figueroa, Alejandro González-Candia, Andrea del Campo, Claudia Paris, Fernando Verdugo, Morin Lang, Carlos Cruz-Montecinos, Mauricio Quezada, Robert A. Pérez, and et al. 2025. "Effects of Exercise on Cardiovascular and Metabolic Responses in Adults and Childhood Cancer Survivors: The Role of NETosis and Low-Grade Inflammation as a Novel Therapeutic Target—A Narrative Review" International Journal of Molecular Sciences 26, no. 22: 10843. https://doi.org/10.3390/ijms262210843
APA StyleCastillo, R. L., Figueroa, E. G., González-Candia, A., del Campo, A., Paris, C., Verdugo, F., Lang, M., Cruz-Montecinos, C., Quezada, M., Pérez, R. A., Armijo, M., Acevedo, P., & Carrasco, R. (2025). Effects of Exercise on Cardiovascular and Metabolic Responses in Adults and Childhood Cancer Survivors: The Role of NETosis and Low-Grade Inflammation as a Novel Therapeutic Target—A Narrative Review. International Journal of Molecular Sciences, 26(22), 10843. https://doi.org/10.3390/ijms262210843

