Profibrotic Biomarkers Correlate with Clinical Presentation and Outcome in Cardiac Transthyretin Amyloidosis
Abstract
1. Introduction
Biomarker in Cardiac Remodeling
2. Results
2.1. Study Population
2.2. Profibrotic Biomarkers Are Elevated in Patients with Symptomatic ATTR Amyloidosis (ATTRv-CA)
2.3. Multiple Profibrotic Biomarkers Are Associated with Cardiovascular Events in ATTR-CA
2.4. Cluster Analyses Reveal Patients at High Cardiovascular Risk
Analyses of Tafamidis Subgroup
2.5. Stepwise Selection of Multivariate Analyses Revealed Age, Leucocyte Count, NT-proBNP and Cluster Assignment as Independent Risk Factors
2.6. Supervised Prediction Modeling Identified IGFBP-1, -3, -4, -6 as Well as FGF-23, TIMP-2, MMP2 and AGE/RAGE as Best Markers to Predict Cluster Assignment
3. Discussion
3.1. Role of Fibrosis in the Pathophysiology of ATTR-CA
3.2. FGF-23 and Its Cardiorenal Interaction
3.3. Age- and Stage-Dependence of Biomarker Performance
3.4. Novelty of This Study
3.5. Limitations
3.6. Conclusions and Future Directions
4. Materials and Methods
4.1. Study Population
4.2. Echocardiography
4.3. Follow-Up
4.4. Luminex Assay
4.5. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ATTR | Transthyretin Amyloidosis |
| CM | Cardiomyopathy |
| ATTRWT | Wild-type Amyloidosis |
| ATTRv | Hereditary transthyretin Amyloidosis |
| MMP | Matrix Metalloproteinase |
| ENRAGE | Glycation End-Products Binding Protein |
| IGFBP | Insulin-Like Growth Factor Binding Protein |
| FGF | Fibroblast Growth Factor |
| TIMP | Tissue Inhibitor of Metalloproteinases |
| RAGE | Receptor for Advanced Glycation Endproducts |
| AGE | Advanced Glycation Endproducts |
| EDD | Enddiastolic Diameter |
| IVS | Intraventricular Septum |
| HFpEF | Heart Failure with Preserved Ejection Fraction |
| HFrEF | Heart Failure with Reduced Ejection Fraction |
| DMP | Decompensation |
| HTX | Heart Transplantation |
| CMR | Cardiac Magnetic Resonance Tomography |
| ECV | Extracellular Volume |
| NT-proBNP | N-Terminal Prohormone of Brain Natriuretic Peptide |
| hsTNT | High-Sensitivity Troponin T |
| GFR | Glomerular Filtration Rate |
| MAPSE | Mitral Annular Plane Systolic Excursion |
| TAPSE | Tricuspid Annular Plane Systolic Excursion |
| NYHA | New York Heart Association (classification of heart failure) |
| ECG | Electrocardiogram |
| LGE | Late Gadolinium Enhancement |
| LVEDD | Left Ventricular End-Diastolic Diameter |
| BMI | Body Mass Index |
| RNAi | RNA Interference |
| GDF-15 | Growth Differentiation Factor 15 |
References
- Ponikowski, P.; Voors, A.A.; Anker, S.D.; Bueno, H.; Cleland, J.G.; Coats, A.J.; Falk, V.; Gonzalez-Juanatey, J.R.; Harjola, V.P.; Jankowska, E.A.; et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. J. Heart Fail. 2016, 18, 891–975. [Google Scholar] [CrossRef]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Bohm, M.; Burri, H.; Butler, J.; Celutkiene, J.; Chioncel, O. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). With the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. J. Heart Fail. 2022, 24, 4–131. [Google Scholar] [CrossRef]
- Shah, A.M. Ventricular remodeling in heart failure with preserved ejection fraction. Curr. Heart Fail. Rep. 2013, 10, 341–349. [Google Scholar] [CrossRef] [PubMed]
- Hein, S.J.; Knoll, M.; Aus dem Siepen, F.; Furkel, J.; Schoenland, S.; Hegenbart, U.; Katus, H.A.; Kristen, A.V.; Konstandin, M. Elevated interleukin-6 levels are associated with impaired outcome in cardiac transthyretin amyloidosis. World J. Cardiol. 2021, 13, 55–67. [Google Scholar] [CrossRef] [PubMed]
- Mesquita, T.; Lin, Y.N.; Ibrahim, A. Chronic low-grade inflammation in heart failure with preserved ejection fraction. Aging Cell 2021, 20, e13453. [Google Scholar] [CrossRef] [PubMed]
- Cianci, V.; Cianci, A.; Sapienza, D.; Craco, A.; Germana, A.; Ieni, A.; Gualniera, P.; Asmundo, A.; Mondello, C. Epidemiological Changes in Transthyretin Cardiac Amyloidosis: Evidence from In Vivo Data and Autoptic Series. J. Clin. Med. 2024, 13, 5140. [Google Scholar] [CrossRef]
- Semigran, M.J. Transthyretin Amyloidosis: A “Zebra” of Many Stripes. J. Am. Coll. Cardiol. 2016, 68, 173–175. [Google Scholar] [CrossRef]
- Grogan, M.; Scott, C.G.; Kyle, R.A.; Zeldenrust, S.R.; Gertz, M.A.; Lin, G.; Klarich, K.W.; Miller, W.L.; Maleszewski, J.J.; Dispenzieri, A. Natural History of Wild-Type Transthyretin Cardiac Amyloidosis and Risk Stratification Using a Novel Staging System. J. Am. Coll. Cardiol. 2016, 68, 1014–1020. [Google Scholar] [CrossRef]
- Gillmore, J.D.; Damy, T.; Fontana, M.; Hutchinson, M.; Lachmann, H.J.; Martinez-Naharro, A.; Quarta, C.C.; Rezk, T.; Whelan, C.J.; Gonzalez-Lopez, E.; et al. A new staging system for cardiac transthyretin amyloidosis. Eur. Heart J. 2018, 39, 2799–2806. [Google Scholar] [CrossRef]
- Pucci, A.; Aimo, A.; Musetti, V.; Barison, A.; Vergaro, G.; Genovesi, D.; Giorgetti, A.; Masotti, S.; Arzilli, C.; Prontera, C.; et al. Amyloid Deposits and Fibrosis on Left Ventricular Endomyocardial Biopsy Correlate With Extracellular Volume in Cardiac Amyloidosis. J. Am. Heart Assoc. 2021, 10, e020358. [Google Scholar] [CrossRef]
- Dittloff, K.T.; Iezzi, A.; Zhong, J.X.; Mohindra, P.; Desai, T.A.; Russell, B. Transthyretin amyloid fibrils alter primary fibroblast structure, function, and inflammatory gene expression. Am. J. Physiol. Heart Circ. Physiol. 2021, 321, H149–H160. [Google Scholar] [CrossRef]
- Martins, D.; Moreira, J.; Goncalves, N.P.; Saraiva, M.J. MMP-14 overexpression correlates with the neurodegenerative process in familial amyloidotic polyneuropathy. Dis. Model. Mech. 2017, 10, 1253–1260. [Google Scholar] [CrossRef]
- Goncalves, N.P.; Goncalves, P.; Magalhaes, J.; Ventosa, M.; Coelho, A.V.; Saraiva, M.J. Tissue remodeling after interference RNA mediated knockdown of transthyretin in a familial amyloidotic polyneuropathy mouse model. Neurobiol. Aging 2016, 47, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Biolo, A.; Ramamurthy, S.; Connors, L.H.; O’Hara, C.J.; Meier-Ewert, H.K.; Soo Hoo, P.T.; Sawyer, D.B.; Seldin, D.C.; Sam, F. Matrix metalloproteinases and their tissue inhibitors in cardiac amyloidosis: Relationship to structural, functional myocardial changes and to light chain amyloid deposition. Circ. Heart Fail. 2008, 1, 249–257. [Google Scholar] [CrossRef]
- Mulrennan, S.; Baltic, S.; Aggarwal, S.; Wood, J.; Miranda, A.; Frost, F.; Kaye, J.; Thompson, P.J. The role of receptor for advanced glycation end products in airway inflammation in CF and CF related diabetes. Sci. Rep. 2015, 5, 8931. [Google Scholar] [CrossRef]
- Matsunaga, N.; Anan, I.; Forsgren, S.; Nagai, R.; Rosenberg, P.; Horiuchi, S.; Ando, Y.; Suhr, O.B. Advanced glycation end products (AGE) and the receptor for AGE are present in gastrointestinal tract of familial amyloidotic polyneuropathy patients but do not induce NF-kappaB activation. Acta Neuropathol. 2002, 104, 441–447. [Google Scholar] [CrossRef]
- Sousa, M.M.; Du Yan, S.; Fernandes, R.; Guimaraes, A.; Stern, D.; Saraiva, M.J. Familial amyloid polyneuropathy: Receptor for advanced glycation end products-dependent triggering of neuronal inflammatory and apoptotic pathways. J. Neurosci. 2001, 21, 7576–7586. [Google Scholar] [CrossRef]
- Carro, E.; Trejo, J.L.; Gerber, A.; Loetscher, H.; Torrado, J.; Metzger, F.; Torres-Aleman, I. Therapeutic actions of insulin-like growth factor I on APP/PS2 mice with severe brain amyloidosis. Neurobiol. Aging 2006, 27, 1250–1257. [Google Scholar] [CrossRef] [PubMed]
- Barutaut, M.; Fournier, P.; Peacock, W.F.; Evaristi, M.F.; Caubere, C.; Turkieh, A.; Desmoulin, F.; Eurlings, L.W.M.; van Wijk, S.; Rocca, H.B.; et al. Insulin-like Growth Factor Binding Protein 2 predicts mortality risk in heart failure. Int. J. Cardiol. 2020, 300, 245–251. [Google Scholar] [CrossRef]
- Girerd, N.; Bresso, E.; Devignes, M.D.; Rossignol, P. Insulin-like growth factor binding protein 2: A prognostic biomarker for heart failure hardly redundant with natriuretic peptides. Int. J. Cardiol. 2020, 300, 252–254. [Google Scholar] [CrossRef] [PubMed]
- Henson, M.; Damm, D.; Lam, A.; Garrard, L.J.; White, T.; Abraham, J.A.; Schreiner, G.F.; Stanton, L.W.; Joly, A.H. Insulin-like growth factor-binding protein-3 induces fetalization in neonatal rat cardiomyocytes. DNA Cell Biol. 2000, 19, 757–763. [Google Scholar] [CrossRef]
- Tang, X.; Jiang, H.; Lin, P.; Zhang, Z.; Chen, M.; Zhang, Y.; Mo, J.; Zhu, Y.; Liu, N.; Chen, X. Insulin-like growth factor binding protein-1 regulates HIF-1alpha degradation to inhibit apoptosis in hypoxic cardiomyocytes. Cell Death Discov. 2021, 7, 242. [Google Scholar] [CrossRef]
- Ren, J.; Samson, W.K.; Sowers, J.R. Insulin-like growth factor I as a cardiac hormone: Physiological and pathophysiological implications in heart disease. J. Mol. Cell Cardiol. 1999, 31, 2049–2061. [Google Scholar] [CrossRef]
- Leifheit-Nestler, M.; Haffner, D. Paracrine Effects of FGF23 on the Heart. Front. Endocrinol. 2018, 9, 278. [Google Scholar] [CrossRef]
- Stohr, R.; Schuh, A.; Heine, G.H.; Brandenburg, V. FGF23 in Cardiovascular Disease: Innocent Bystander or Active Mediator? Front. Endocrinol. 2018, 9, 351. [Google Scholar] [CrossRef] [PubMed]
- Romano, M.; Piskin, D.; Berard, R.A.; Jackson, B.C.; Acikel, C.; Carrero, J.J.; Lachmann, H.J.; Yilmaz, M.I.; Demirkaya, E. Cardiovascular disease risk assessment in patients with familial Mediterranean fever related renal amyloidosis. Sci. Rep. 2020, 10, 18374. [Google Scholar] [CrossRef]
- Vergaro, G.; Aimo, A.; Taurino, E.; Del Franco, A.; Fabiani, I.; Prontera, C.; Masotti, S.; Musetti, V.; Emdin, M.; Passino, C. Discharge FGF23 level predicts one year outcome in patients admitted with acute heart failure. Int. J. Cardiol. 2021, 336, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Milburn, G.N.; Bell, J.; Wellette-Hunsucker, A.G.; Ruml, H.; Yackzan, A.T.; Campbell, K.S. Myocardium From Patients with ATTR Amyloidosis Produces Less Force Secondary to Increased Fibrosis. JACC Basic. Transl. Sci. 2025, 10, 101271. [Google Scholar] [CrossRef] [PubMed]
- Dittloff, K.T.; Spanghero, E.; Solis, C.; Banach, K.; Russell, B. Transthyretin deposition alters cardiomyocyte sarcomeric architecture, calcium transients, and contractile force. Physiol. Rep. 2022, 10, e15207. [Google Scholar] [CrossRef]
- Sun, W.; Jing, X.; Yang, X.; Huang, H.; Luo, Q.; Xia, S.; Wang, P.; Wang, N.; Zhang, Q.; Guo, J.; et al. Regulation of the IGF1 signaling pathway is involved in idiopathic pulmonary fibrosis induced by alveolar epithelial cell senescence and core fucosylation. Aging 2021, 13, 18852–18869. [Google Scholar] [CrossRef]
- Vieira, M.; Gomes, J.R.; Saraiva, M.J. Transthyretin Induces Insulin-like Growth Factor I Nuclear Translocation Regulating Its Levels in the Hippocampus. Mol. Neurobiol. 2015, 51, 1468–1479. [Google Scholar] [CrossRef]
- Roy, C.; Lejeune, S.; Slimani, A.; de Meester, C.; Ahn As, S.A.; Rousseau, M.F.; Mihaela, A.; Ginion, A.; Ferracin, B.; Pasquet, A.; et al. Fibroblast growth factor 23: A biomarker of fibrosis and prognosis in heart failure with preserved ejection fraction. ESC Heart Fail. 2020, 7, 2494–2507. [Google Scholar] [CrossRef]
- Kanagala, P.; Arnold, J.R.; Khan, J.N.; Singh, A.; Gulsin, G.S.; Eltayeb, M.; Gupta, P.; Squire, I.B.; McCann, G.P.; Ng, L.L. Fibroblast-growth-factor-23 in heart failure with preserved ejection fraction: Relation to exercise capacity and outcomes. ESC Heart Fail. 2020, 7, 4089–4099. [Google Scholar] [CrossRef]
- Gutierrez, O.M.; Mannstadt, M.; Isakova, T.; Rauh-Hain, J.A.; Tamez, H.; Shah, A.; Smith, K.; Lee, H.; Thadhani, R.; Juppner, H.; et al. Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N. Engl. J. Med. 2008, 359, 584–592. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, K.; Essick, E.E.; Doros, G.; Tanriverdi, K.; Connors, L.H.; Seldin, D.C.; Sam, F. Circulating matrix metalloproteinases and tissue inhibitors of metalloproteinases in cardiac amyloidosis. J. Am. Heart Assoc. 2013, 2, e005868. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Liu, N.; Wang, C.; Qin, B.; Zhou, Y.; Xiao, M.; Chang, L.; Yan, L.J.; Zhao, B. Role of RAGE in Alzheimer’s Disease. Cell Mol. Neurobiol. 2016, 36, 483–495. [Google Scholar] [CrossRef]
- Yue, Q.; Song, Y.; Liu, Z.; Zhang, L.; Yang, L.; Li, J. Receptor for Advanced Glycation End Products (RAGE): A Pivotal Hub in Immune Diseases. Molecules 2022, 27, 4922. [Google Scholar] [CrossRef] [PubMed]
- Batra, J.; Buttar, R.S.; Kaur, P.; Kreimerman, J.; Melamed, M.L. FGF-23 and cardiovascular disease: Review of literature. Curr. Opin. Endocrinol. Diabetes Obes. 2016, 23, 423–429. [Google Scholar] [CrossRef]
- Li, W.; Lazarus, A.; Gao, H.; Martinez-Naharro, A.; Fontana, M.; Hawkins, P.; Biswas, S.; Janiczek, R.; Cox, J.; Berry, C.; et al. Analysis of Cardiac Amyloidosis Progression Using Model-Based Markers. Front. Physiol. 2020, 11, 324. [Google Scholar] [CrossRef]
- Hein, S.; Aus dem Siepen, F.; Zierleyn, S.M.; Knoll, M.; Katus, H.A.; Frey, N.; Kristen, A.V. Progression of QRS duration—A potential surrogate marker of survival in ATTRwt amyloidosis patients. Orphanet J. Rare Dis. 2025, 20, 523. [Google Scholar] [CrossRef]
- Li, X.; Li, C.; Zhang, W.; Wang, Y.; Qian, P.; Huang, H. Inflammation and aging: Signaling pathways and intervention therapies. Signal Transduct. Target. Ther. 2023, 8, 239. [Google Scholar] [CrossRef] [PubMed]
- Nagueh, S.F.; Smiseth, O.A.; Appleton, C.P.; Byrd, B.F., 3rd; Dokainish, H.; Edvardsen, T.; Flachskampf, F.A.; Gillebert, T.C.; Klein, A.L.; Lancellotti, P.; et al. Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2016, 29, 277–314. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing. Available online: https://www.R-project.org/ (accessed on 29 October 2025).
- Smithson, M.; Verkuilen, J. A better lemon squeezer? Maximum-likelihood regression with beta-distributed dependent variables. Psychol. Methods 2006, 11, 54–71. [Google Scholar] [CrossRef] [PubMed]






| Study Population (n = 125) | Asympt ATTRv (n = 14) | ATTRv (n = 47) | Ctrl (n = 21) | ATTRwt (n = 43) | p-Value | |
|---|---|---|---|---|---|---|
| Age (years) | 43.6 ± 11.5 | 63.2 ± 8.3 | 47.8 ± 14.9 | 76.0 ± 7.1 | 0.048 | |
| Sex | ||||||
| Male | 9 (64.3%) | 35 (74.5%) | 10 (47.6%) | 40 (93.0%) | ||
| Female | 5 (35.7%) | 12 (25.5%) | 11 (52.4%) | 3 (7.0%) | ||
| BMI | 27.8 ± 5.4 | 25.9 ± 4.9 | 26.5 ± 5.8 | 25.4 ± 3.0 | 0.49 | |
| medication | ||||||
| Tafamidis | 0 (0%) | 23 (48.9%) | 0 (0%) | 1 (2.3%) | <0.001 | |
| Beta blocker | 2 (14.3%) | 17 (36.2%) | 7 (33.3%) | 30 (69.8%) | ||
| ACE inhibitors/AT1 antagonists | 3 (21.4%) | 15 (31.9%) | 7 (33.3%) | 30 (69.8%) | ||
| Diuretics | 2 (14.3%) | 23 (48.9%) | 4 (19.0%) | 41 (95.3%) | ||
| Other antihypertensive medication (amlodipine, doxacor, nitrendipin) | 2 (14.3%) | 1 (2.1%) | 0 (0%) | 5 (11.6%) | ||
| Comorbidities | ||||||
| Coronary heart disease (CHD) | 1 (7.1%) | 1 (2.1%) | 2 (9.5%) | 7 (16.3%) | 0.24 | |
| Diabetes | 0 (0%) | 3 (6.4%) | 0 (0%) | 8 (18.6%) | 0.02 | |
| Thrombembolism/Stroke | 0 (0%) | 3 (6.4%) | 0 (0%) | 5 (11.6%) | 0.15 | |
| Functional impairment | ||||||
| Karnofsky performance score (KPS) | 0.75 | |||||
| ≥80 | 14 (100%) | 35 (75.5%) | 21 (100%) | 42 (97.7%) | ||
| <80 | 0 (0.0%) | 12 (25.5%) | 0 (0%) | 1 (2.3%) | ||
| NYHA class | 0.62 | |||||
| I | 15 (100%) | 20 (42.6%) | 17 (81.0%) | 5 (11.6%) | ||
| II | 0 (0.0%) | 13 (27.7%) | 3 (14.3%) | 12 (27.9%) | ||
| III/IV | 0 (0.0%) | 14 (29.8%) | 1 (4.8%) | 26 (60.5%) | ||
| Risk Classification | ||||||
| Gillmore | 0.002 | |||||
| I | 14 (100%) | 26 (55.3%) | 13 (30.2%) | |||
| II | 0 (0.0%) | 14 (29.8%) | 18 (41.9%) | |||
| III | 0 (0.0%) | 9 (19.1%) | 12 (27.9%) | |||
| Medical history | ||||||
| Pacemaker implantation | 0 (0.0%) | 8 (17.0%) | 1 (4.8%) | 9(20.9%) | 0.07 | |
| Diabetes mellitus | 0 (0.0%) | 3 (6.4%) | 0 (0%) | 8 (18.6%) | 0.042 | |
| Atrial fibrillation | 1 (7.1%) | 14 (29.8%) | 0 (0%) | 26 (60.5%) | 0.001 | |
| ECG findings | ||||||
| Number of bundle branch blocks | 0.15 ± 0.38 | 0.70 ± 0.9 | 0.19 ± 0.51 | 1.2 ± 0.8 | <0.001 | |
| Sinus rhythm | 14 (92.9%) | 34 (72.3%) | 19 (90.5%) | 23 (53.5%) | ||
| Pacemaker rhythm | 0 (0.0%) | 4 (8.5%) | 0 (0%) | 6 (14.0%) | ||
| Low voltage pattern | 2 (14.3%) | 9 (19.1%) | 0 (0%) | 5 (11.6%) | ||
| Heart frequency (bpm) | 67.5 ± 14.0 | 73.7 ± 15.1 | 47.8 ± 14.9 | 78.5± 13.8 | 0.22 | |
| PQ interval (ms) | 143.1 ± 31.2 | 175.9 ± 39.9 | 159.4 ± 24.9 | 212.4 ± 43.3 | 0.40 | |
| QRS time (ms) | 100.8 ± 16.8 | 110.2 ± 29.9 | 97.8 ± 12.5 | 128.7 ± 32.5 | 0.50 | |
| QTc duration (ms) | 404.2 ± 14.9 | 432.4 ± 44.4 | 401.6 ± 13.3 | 450.0 ± 31.6 | 0.93 | |
| Echocardiography | ||||||
| Posterior wall (mm) | 9.6 ± 1.9 | 13.9 ± 3.8 | 9.6 ± 1.2 | 15.5 ± 3.3 | 0.16 | |
| IVS (mm) | 11.1 ± 1.9 | 16.4 ± 4.8 | 11.1 ± 1.0 | 19.4 ± 3.9 | 0.073 | |
| Ejection fraction (%) | 58.6 ± 2.2 | 50.4 ± 1.5 | 55.4 ± 8.2 | 45.0 ± 11.3 | 0.62 | |
| Diastolic dysfunction | 2 (14.3%) | 35 (74.5%) | 3 (14.3%) | 40 (93.0%) | <0.001 | |
| Global longitudinal strain | −14.6 ± 14.2 | −12.4 ± 1.0 | n.b. | −9.8 ± 4.5 | 0.80 | |
| MAPSE (mm) | 1.5 ± 0.3 | 1.1 ± 0.4 | 1.5 ± 0.3 | 0.9 ± 0.3 | 0.93 | |
| TAPSE (mm) | 2.4 ± 0.4 | 2.0 ± 0.3 | 2.1 ± 0.4 | 1.5 ± 0.6 | 0.94 | |
| Pericardial effusion | 0 (0.0%) | 3 (6.4%) | 0 (0%) | 4 (9.3%) | 0.50 | |
| PA pressure (mmHg) | 26.0 ± 4.4 | 35.4 ± 1.8 | 26.9 ± 3.7 | 36.7 ± 10.3 | 0.73 | |
| Biomarkers | ||||||
| NT-proBNP(ng/L) | 144.0 ± 245.6 | 3319.9 ± 605.1 | 299.2 ± 382.6 | 7331.2± 8593.9 | 0.041 | |
| hsTNT (pg/mL) | 4.8 ± 2.5 | 59.0 ± 15.9 | 7.6 ± 8.0 | 68.3 ± 43.4 | <0.001 | |
| GFR (mL/min) | 100.1 ± 15.2 | 77.6 ± 25.1 | 98.7 ± 19.0 | 54.0 ± 19.6 | 0.064 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hein, S.J.; aus dem Siepen, F.; Kristen, A.V.; Schönland, S.; Hegenbart, U.; Rein, K.; Katus, H.A.; Frey, N.; Furkel, J.; Konstandin, M.H.; et al. Profibrotic Biomarkers Correlate with Clinical Presentation and Outcome in Cardiac Transthyretin Amyloidosis. Int. J. Mol. Sci. 2025, 26, 10714. https://doi.org/10.3390/ijms262110714
Hein SJ, aus dem Siepen F, Kristen AV, Schönland S, Hegenbart U, Rein K, Katus HA, Frey N, Furkel J, Konstandin MH, et al. Profibrotic Biomarkers Correlate with Clinical Presentation and Outcome in Cardiac Transthyretin Amyloidosis. International Journal of Molecular Sciences. 2025; 26(21):10714. https://doi.org/10.3390/ijms262110714
Chicago/Turabian StyleHein, Selina J., Fabian aus dem Siepen, Arnt V. Kristen, Stefan Schönland, Ute Hegenbart, Katrin Rein, Hugo A. Katus, Norbert Frey, Jennifer Furkel, Mathias H. Konstandin, and et al. 2025. "Profibrotic Biomarkers Correlate with Clinical Presentation and Outcome in Cardiac Transthyretin Amyloidosis" International Journal of Molecular Sciences 26, no. 21: 10714. https://doi.org/10.3390/ijms262110714
APA StyleHein, S. J., aus dem Siepen, F., Kristen, A. V., Schönland, S., Hegenbart, U., Rein, K., Katus, H. A., Frey, N., Furkel, J., Konstandin, M. H., & Knoll, M. (2025). Profibrotic Biomarkers Correlate with Clinical Presentation and Outcome in Cardiac Transthyretin Amyloidosis. International Journal of Molecular Sciences, 26(21), 10714. https://doi.org/10.3390/ijms262110714

