Sphingolipid Metabolism in the Pathogenesis of Hashimoto’s Thyroiditis
Abstract
1. Introduction
2. Pathophysiological Overview of HT
3. Roles of Sphingolipid Metabolism and S1P Signaling in Immune Regulation and Autoimmunity
3.1. Sphingolipid Metabolic Pathways
3.2. The Pivotal Role of Sphingosine-1-Phosphate in Sphingolipid Metabolism
3.3. The Association Between Sphingosine-1-Phosphate and Autoimmune Diseases
4. Sphingolipid Metabolism and Its Relevance to Hashimoto’s Thyroiditis
4.1. Association Between Sphingosine Kinase and Thyroid Follicular Membrane Disruption in Hashimoto’s Thyroiditis
4.2. Sphingosine-1-Phosphate-Mediated Lymphocyte Infiltration and Immune Dysregulation in the Pathogenesis of Hashimoto’s Thyroiditis
4.3. The Role of Sphingosine-1-Phosphate in Thyroid Tissue Fibrosis in Hashimoto’s Thyroiditis
4.4. The Role of Sphingosine-1-Phosphate in HT-Associated Thyroid Carcinogenesis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lu, Q.; Dou, Y.; Yu, T.; Ren, X.; Li, Y.; Zhu, X.; Zhao, Y.; Miao, G. Association of thyroglobulin antibody and thyroid peroxidase antibody status with aggressive features in papillary thyroid carcinoma with Hashimoto’s thyroiditis. Gland. Surg. 2025, 14, 1091–1100. [Google Scholar] [CrossRef]
- Tywanek, E.; Michalak, A.; Świrska, J.; Zwolak, A. Autoimmunity, New Potential Biomarkers and the Thyroid Gland-The Perspective of Hashimoto’s Thyroiditis and Its Treatment. Int. J. Mol. Sci. 2024, 25, 4703. [Google Scholar] [CrossRef]
- Wrońska, K.; Hałasa, M.; Szczuko, M. The Role of the Immune System in the Course of Hashimoto’s Thyroiditis: The Current State of Knowledge. Int. J. Mol. Sci. 2024, 25, 6883. [Google Scholar] [CrossRef]
- Zhao, Z.; Gao, Y.; Pei, X.; Wang, W.; Zhang, H. Causal role of immune cells in Hashimoto’s thyroiditis: Mendelian randomization study. Front. Endocrinol. 2024, 15, 1352616. [Google Scholar] [CrossRef]
- Xiao, J.; Lin, H.; Liu, B.; Xia, Z.; Zhang, J.; Jin, J. Decreased S1P and SPHK2 are involved in pancreatic acinar cell injury. Biomark. Med. 2019, 13, 627–637. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhuge, J.; Liu, J.; Xia, Z.; Wang, H.; Gao, Q.; Jiang, H.; Qu, Y.; Fan, L.; Ma, J.; et al. Prognostic signatures of sphingolipids: Understanding the immune landscape and predictive role in immunotherapy response and outcomes of hepatocellular carcinoma. Front. Immunol. 2023, 14, 1153423. [Google Scholar] [CrossRef]
- Zhong, Y.; Zhang, Y.; Wei, S.; Chen, J.; Zhong, C.; Cai, W.; Jin, W.; Peng, H. Dissecting the effect of sphingolipid metabolism gene in progression and microenvironment of osteosarcoma to develop a prognostic signature. Front. Endocrinol. 2022, 13, 1030655. [Google Scholar] [CrossRef]
- Zhakupova, A.; Zeinolla, A.; Kokabi, K.; Sergazy, S.; Aljofan, M. Drug Resistance: The Role of Sphingolipid Metabolism. Int. J. Mol. Sci. 2025, 26, 3716. [Google Scholar] [CrossRef]
- Peters, F.; Höfs, W.; Lee, H.; Brodesser, S.; Kruse, K.; Drexler, H.C.A.; Hu, J.; Raker, V.K.; Lukas, D.; von Stebut, E.; et al. Sphingolipid metabolism orchestrates establishment of the hair follicle stem cell compartment. J. Cell Biol. 2025, 224, e202403083. [Google Scholar] [CrossRef] [PubMed]
- Benkhoff, M.; Barcik, M.; Mourikis, P.; Dahlmanns, J.; Kahmann, P.; Wollnitzke, P.; Hering, M.; Huckenbeck, T.; Hoppe, J.; Semleit, N.; et al. Targeting Sphingosine-1-Phosphate Signaling to Prevent the Progression of Aortic Valve Disease. Circulation 2025, 151, 333–347. [Google Scholar] [CrossRef] [PubMed]
- Rufail, M.L.; Bassi, R.; Giussani, P. Sphingosine-1-Phosphate Metabolic Pathway in Cancer: Implications for Therapeutic Targets. Int. J. Mol. Sci. 2025, 26, 1056. [Google Scholar] [CrossRef]
- Xu, X.; Han, Y.; Zhu, T.; Fan, F.; Wang, X.; Liu, Y.; Luo, D. The role of SphK/S1P/S1PR signaling pathway in bone metabolism. Biomed. Pharmacother. 2023, 169, 115838. [Google Scholar] [CrossRef] [PubMed]
- Piao, J.; Su, Z.; He, J.; Zhu, T.; Fan, F.; Wang, X.; Yang, Z.; Zhan, H.; Luo, D. SphK1 deficiency ameliorates the development of atherosclerosis by inhibiting the S1P/S1PR3/Rhoa/ROCK pathway. Cell. Signal. 2024, 121, 111252. [Google Scholar] [CrossRef]
- Gong, L.; Shen, Y.; Wang, S.; Wang, X.; Ji, H.; Wu, X.; Hu, L.; Zhu, L. Nuclear SPHK2/S1P induces oxidative stress and NLRP3 inflammasome activation via promoting p53 acetylation in lipopolysaccharide-induced acute lung injury. Cell Death Discov. 2023, 9, 12. [Google Scholar] [CrossRef]
- Li, J.; Huang, Y.; Zhang, Y.; Liu, P.; Liu, M.; Zhang, M.; Wu, R. S1P/S1PR signaling pathway advancements in autoimmune diseases. Biomol. Biomed. 2023, 23, 922–935. [Google Scholar] [CrossRef]
- Chatzikonstantinou, S.; Poulidou, V.; Arnaoutoglou, M.; Kazis, D.; Heliopoulos, I.; Grigoriadis, N.; Boziki, M. Signaling through the S1P-S1PR Axis in the Gut, the Immune and the Central Nervous System in Multiple Sclerosis: Implication for Pathogenesis and Treatment. Cells 2021, 10, 3217. [Google Scholar] [CrossRef]
- Asakura, T.; Ishii, M.; Namkoong, H.; Suzuki, S.; Kagawa, S.; Yagi, K.; Komiya, T.; Hashimoto, T.; Okamori, S.; Kamata, H.; et al. Sphingosine 1-phosphate receptor modulator ONO-4641 stimulates CD11b(+)Gr-1(+) cell expansion and inhibits lymphocyte infiltration in the lungs to ameliorate murine pulmonary emphysema. Mucosal Immunol. 2018, 11, 1606–1620. [Google Scholar] [CrossRef]
- Han, C.; He, X.; Xia, X.; Guo, J.; Liu, A.; Liu, X.; Wang, X.; Li, C.; Peng, S.; Zhao, W.; et al. Sphk1/S1P/S1PR1 Signaling is Involved in the Development of Autoimmune Thyroiditis in Patients and NOD.H-2(h4) Mice. Thyroid 2019, 29, 700–713. [Google Scholar] [CrossRef] [PubMed]
- Trovato, M.; Valenti, A. Medical Applications of Molecular Biotechnologies in the Context of Hashimoto’s Thyroiditis. Diagnostics 2023, 13, 2114. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; He, L.; Huang, J.; Liu, J.; Chen, W.; Zhong, J.; Wei, T.; Li, Z.; Zhu, J.; Lei, J. miR-142-3p encapsulated in T lymphocyte-derived tissue small extracellular vesicles induces Treg function defect and thyrocyte destruction in Hashimoto’s thyroiditis. BMC Med. 2023, 21, 206. [Google Scholar] [CrossRef]
- Pereira Vasconcelos, A.; Santos, E.S.J.C.; Simizo, A.; Peña Avila, J.; Nassar Reich Goldstein, G.; Prado de Oliveira, P.H.; Mogollón García, H.; de Carvalho Fraga, C.A.; Nakaya, H.I. Sex-Based Differences in Thyroid Plasma B Cell Infiltration: Implications for Autoimmune Disease Susceptibility. Endocrinology 2024, 165, bqae148. [Google Scholar] [CrossRef]
- Zhang, Q.Y.; Ye, X.P.; Zhou, Z.; Zhu, C.F.; Li, R.; Fang, Y.; Zhang, R.J.; Li, L.; Liu, W.; Wang, Z.; et al. Lymphocyte infiltration and thyrocyte destruction are driven by stromal and immune cell components in Hashimoto’s thyroiditis. Nat. Commun. 2022, 13, 775. [Google Scholar] [CrossRef]
- Mirandola, P.; Gobbi, G.; Masselli, E.; Micheloni, C.; Di Marcantonio, D.; Queirolo, V.; Chiodera, P.; Meschi, T.; Vitale, M. Protein kinase Cε regulates proliferation and cell sensitivity to TGF-1β of CD4+ T lymphocytes: Implications for Hashimoto thyroiditis. J. Immunol. 2011, 187, 4721–4732. [Google Scholar] [CrossRef] [PubMed]
- Yao, Z.; Guo, F.; Tan, Y.; Zhang, Y.; Geng, Y.; Yang, G.; Wang, S. Causal relationship between inflammatory cytokines and autoimmune thyroid disease: A bidirectional two-sample Mendelian randomization analysis. Front. Immunol. 2024, 15, 1334772. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Zhang, Z.; Zhang, C.; Guo, Q.; Chen, C.; Peng, X. Unraveling the connection between Hashimoto’s Thyroiditis and non-alcoholic fatty liver disease: Exploring the role of CD4(+)central memory T cells through integrated genetic approaches. Endocrine 2024, 85, 751–765. [Google Scholar] [CrossRef] [PubMed]
- Nodehi, M.; Ajami, A.; Izad, M.; Asgarian Omran, H.; Esfahanian, F.; Yekaninejad, S.; Hemmatabadi, M.; Amouzegar, A.; Chahardoli, R.; Mansouri, F.; et al. The Frequency of CD4(+) T Cells in Women with Hashimoto’s Thyroiditis. Int. J. Endocrinol. Metab. 2021, 19, e110013. [Google Scholar] [CrossRef]
- Zake, T.; Skuja, S.; Kalere, I.; Konrade, I.; Groma, V. Upregulated tissue expression of T helper (Th) 17 pathogenic interleukin (IL)-23 and IL-1β in Hashimoto’s thyroiditis but not in Graves’ disease. Endocr. J. 2019, 66, 423–430. [Google Scholar] [CrossRef]
- Zhu, D.; Ren, X.; Xie, W.; Chen, J.; Liang, S.; Jiang, M.; Wang, J.; Zheng, Z. Potential of gamma/delta T cells for solid tumor immunotherapy. Front. Immunol. 2024, 15, 1466266. [Google Scholar] [CrossRef]
- Blüher, M.; Krohn, K.; Wallaschofski, H.; Braverman, L.E.; Paschke, R. Fas and Fas ligand gene expression in autoimmune thyroiditis in BB/W rats. Eur. J. Endocrinol. 1999, 141, 506–511. [Google Scholar] [CrossRef]
- Giordano, C.; Stassi, G.; De Maria, R.; Todaro, M.; Richiusa, P.; Papoff, G.; Ruberti, G.; Bagnasco, M.; Testi, R.; Galluzzo, A. Potential involvement of Fas and its ligand in the pathogenesis of Hashimoto’s thyroiditis. Science 1997, 275, 960–963. [Google Scholar] [CrossRef]
- Bastos, D.; Chiamolera, M.I.; Silva, R.E.; Souza, M.; Antunes, R.A.; Souza, M.M.; Mancebo, A.C.A.; Arêas, P.C.F.; Reis, F.M.; Lo Turco, E.G.; et al. Metabolomic analysis of follicular fluid from women with Hashimoto thyroiditis. Sci. Rep. 2023, 13, 12497. [Google Scholar] [CrossRef]
- Cui, X.; Li, J.; Wang, C.; Ishaq, H.M.; Zhang, R.; Yang, F. Relationship between sphingolipids-mediated neuroinflammation and alcohol use disorder. Pharmacol. Biochem. Behav. 2024, 235, 173695. [Google Scholar] [CrossRef]
- Schengrund, C.L. Sphingolipids: Less Enigmatic but Still Many Questions about the Role(s) of Ceramide in the Synthesis/Function of the Ganglioside Class of Glycosphingolipids. Int. J. Mol. Sci. 2024, 25, 6312. [Google Scholar] [CrossRef]
- Doll, C.L.; Snider, A.J. The diverse roles of sphingolipids in inflammatory bowel disease. FASEB J. 2024, 38, e23777. [Google Scholar] [CrossRef]
- Sindhu, S.; Leung, Y.H.; Arefanian, H.; Madiraju, S.M.; Al-Mulla, F.; Ahmad, R.; Prentki, M. Neutral sphingomyelinase-2 and cardiometabolic diseases. Obes. Rev. 2021, 22, e13248. [Google Scholar] [CrossRef] [PubMed]
- Wajapeyee, N.; Beamon, T.C.; Gupta, R. Roles and therapeutic targeting of ceramide metabolism in cancer. Mol. Metab. 2024, 83, 101936. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhao, H.; Li, L.; Yu, S.; Liu, M.; Jiang, L. Ceramide on the road to insulin resistance and immunometabolic disorders in transition dairy cows: Driver or passenger? Front. Immunol. 2023, 14, 1321597. [Google Scholar] [CrossRef]
- Woodcock, J. Sphingosine and ceramide signalling in apoptosis. IUBMB Life 2006, 58, 462–466. [Google Scholar] [CrossRef] [PubMed]
- Masuda-Kuroki, K.; Alimohammadi, S.; Di Nardo, A. The Role of Sphingolipids and Sphingosine-1-phosphate-Sphingosine-1-phosphate-receptor Signaling in Psoriasis. Cells 2023, 12, 2352. [Google Scholar] [CrossRef]
- Kleuser, B.; Bäumer, W. Sphingosine 1-Phosphate as Essential Signaling Molecule in Inflammatory Skin Diseases. Int. J. Mol. Sci. 2023, 24, 1456. [Google Scholar] [CrossRef]
- Gaggini, M.; Fenizia, S.; Vassalle, C. Sphingolipid Levels and Signaling via Resveratrol and Antioxidant Actions in Cardiometabolic Risk and Disease. Antioxidants 2023, 12, 1102. [Google Scholar] [CrossRef]
- Park, B.-J.; Kim, J.-H.; Han, J.-S.; Jung, P.-M. Effect of ceramide on apoptosis and phospholipase D activity in FRTL-5 thyroid cells. Exp. Mol. Med. 1999, 31, 142–150. [Google Scholar] [CrossRef]
- Wu, X.; Wabitsch, M.; Yang, J.; Sakharkar, M.K. Effects of adipocyte-conditioned cell culture media on S1P treatment of human triple-negative breast cancer cells. PLoS ONE 2023, 18, e0286111. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Hu, B.; Wu, C.; Jiang, T. Targeting the SPHK1/S1P/S1PR2 axis ameliorates GH-secreted pituitary adenoma progression. Eur. J. Clin. Investig. 2024, 54, e14117. [Google Scholar] [CrossRef] [PubMed]
- Khoei, S.G.; Sadeghi, H.; Samadi, P.; Najafi, R.; Saidijam, M. Relationship between Sphk1/S1P and microRNAs in human cancers. Biotechnol. Appl. Biochem. 2021, 68, 279–287. [Google Scholar] [CrossRef]
- Shi, W.; Ma, D.; Cao, Y.; Hu, L.; Liu, S.; Yan, D.; Zhang, S.; Zhang, G.; Wang, Z.; Wu, J.; et al. SphK2/S1P Promotes Metastasis of Triple-Negative Breast Cancer Through the PAK1/LIMK1/Cofilin1 Signaling Pathway. Front. Mol. Biosci. 2021, 8, 598218. [Google Scholar] [CrossRef]
- Qiao, H.; Jiang, T.; Mu, P.; Chen, X.; Wen, X.; Hu, Z.; Tang, S.; Wen, J.; Deng, Y. Cell fate determined by the activation balance between PKR and SPHK1. Cell Death Differ. 2021, 28, 401–418. [Google Scholar] [CrossRef]
- Gao, Z.; Wang, H.; Xiao, F.J.; Shi, X.F.; Zhang, Y.K.; Xu, Q.Q.; Zhang, X.Y.; Ha, X.Q.; Wang, L.S. SIRT1 mediates Sphk1/S1P-induced proliferation and migration of endothelial cells. Int. J. Biochem. Cell Biol. 2016, 74, 152–160. [Google Scholar] [CrossRef]
- Dominguez, G.; Maddelein, M.L.; Pucelle, M.; Nicaise, Y.; Maurage, C.A.; Duyckaerts, C.; Cuvillier, O.; Delisle, M.B. Neuronal sphingosine kinase 2 subcellular localization is altered in Alzheimer’s disease brain. Acta Neuropathol. Commun. 2018, 6, 25. [Google Scholar] [CrossRef]
- Alkafaas, S.S.; Elsalahaty, M.I.; Ismail, D.F.; Radwan, M.A.; Elkafas, S.S.; Loutfy, S.A.; Elshazli, R.M.; Baazaoui, N.; Ahmed, A.E.; Hafez, W.; et al. The emerging roles of sphingosine 1-phosphate and SphK1 in cancer resistance: A promising therapeutic target. Cancer Cell Int. 2024, 24, 89. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.; Ren, P.; Bian, G.; Wang, J.; Bai, J.; Huang, J.; Ding, Y.; Li, X.; Li, M.; Hou, Z. Enhancing Spns2/S1P in macrophages alleviates hyperinflammation and prevents immunosuppression in sepsis. EMBO Rep. 2023, 24, e56635. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; She, M.; Zeng, Q.; Yi, G.; Zhang, J. Sphingosine 1-phosphate and its receptors in ischemia. Clin. Chim. Acta 2021, 521, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Wang, Z.; Liu, C.; Yang, X.; Jiang, J. Sphingosine-1-phosphate Attenuates Endoplasmic Reticulum Stress-induced Cardiomyocyte Apoptosis Through Sphingosine-1-phosphate Receptor 1. Arch. Med. Res. 2022, 53, 562–573. [Google Scholar] [CrossRef] [PubMed]
- Brozowski, J.M.; Timoshchenko, R.G.; Serafin, D.S.; Allyn, B.; Koontz, J.; Rabjohns, E.M.; Rampersad, R.R.; Ren, Y.; Eudy, A.M.; Harris, T.F.; et al. G protein-coupled receptor kinase 3 modulates mesenchymal stem cell proliferation and differentiation through sphingosine-1-phosphate receptor regulation. Stem Cell Res. Ther. 2022, 13, 37. [Google Scholar] [CrossRef]
- Ko, P.; Kim, D.; You, E.; Jung, J.; Oh, S.; Kim, J.; Lee, K.H.; Rhee, S. Extracellular Matrix Rigidity-dependent Sphingosine-1-phosphate Secretion Regulates Metastatic Cancer Cell Invasion and Adhesion. Sci. Rep. 2016, 6, 21564. [Google Scholar] [CrossRef]
- Mahajan-Thakur, S.; Böhm, A.; Jedlitschky, G.; Schrör, K.; Rauch, B.H. Sphingosine-1-Phosphate and Its Receptors: A Mutual Link between Blood Coagulation and Inflammation. Mediators Inflamm. 2015, 2015, 831059. [Google Scholar] [CrossRef]
- McGinley, M.P.; Cohen, J.A. Sphingosine 1-phosphate receptor modulators in multiple sclerosis and other conditions. Lancet 2021, 398, 1184–1194, Erratum in Lancet 2021, 398, 1132. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, H.; Deng, R.; Dai, X.J.; Bu, Y.H.; Sun, M.H.; Zhang, H.; Wang, M.D.; Wang, R.H. Geniposide downregulates the VEGF/SphK1/S1P pathway and alleviates angiogenesis in rheumatoid arthritis in vivo and in vitro. Phytother. Res. 2021, 35, 4347–4362. [Google Scholar] [CrossRef]
- Askanase, A.D.; D’Cruz, D.; Kalunian, K.; Merrill, J.T.; Navarra, S.V.; Cahuzac, C.; Cornelisse, P.; Murphy, M.J.; Strasser, D.S.; Trokan, L.; et al. Cenerimod, a sphingosine-1-phosphate receptor modulator, versus placebo in patients with moderate-to-severe systemic lupus erythematosus (CARE): An international, double-blind, randomised, placebo-controlled, phase 2 trial. Lancet Rheumatol. 2025, 7, e21–e32. [Google Scholar] [CrossRef]
- Zhang, H.; Li, Q.; Li, C.; Wu, M.; Chen, H.; Li, Y.; You, F.; Zhao, Y.; Jin, J.; Chen, X.; et al. Evaluation of proximod, a selective agonist of sphingosine-1-phosphate receptor-1, in healthy volunteers and patients with rheumatoid arthritis: A phase 1, double-blind, randomised, placebo-controlled, ascending dose trial. Lancet Rheumatol. 2024, 6, e837–e847. [Google Scholar] [CrossRef]
- Wang, M.; Wu, H.; Wang, R.; Dai, X.; Deng, R.; Wang, Y.; Bu, Y.; Sun, M.; Zhang, H. Inhibition of sphingosine 1-phosphate (S1P) receptor 1/2/3 ameliorates biological dysfunction in rheumatoid arthritis fibroblast-like synoviocyte MH7A cells through Gαi/Gαs rebalancing. Clin. Exp. Pharmacol. Physiol. 2021, 48, 1080–1089. [Google Scholar] [CrossRef]
- Lai, W.Q.; Irwan, A.W.; Goh, H.H.; Howe, H.S.; Yu, D.T.; Valle-Oñate, R.; McInnes, I.B.; Melendez, A.J.; Leung, B.P. Anti-inflammatory effects of sphingosine kinase modulation in inflammatory arthritis. J. Immunol. 2008, 181, 8010–8017. [Google Scholar] [CrossRef]
- Baker, D.A.; Obeid, L.M.; Gilkeson, G.S. Impact of sphingosine kinase on inflammatory pathways in fibroblast-like synoviocytes. Inflamm. Allergy-Drug Targets 2011, 10, 464–471. [Google Scholar] [CrossRef]
- Kandjani, O.J.; Yaqoubi, S.; Vahdati, S.S.; Borhannejad, B.; Dastmalchi, S.; Alizadeh, A.A. S1PR1 modulators in multiple sclerosis: Efficacy, safety, comparison, and chemical structure insights. Eur. J. Med. Chem. 2023, 250, 115182. [Google Scholar] [CrossRef] [PubMed]
- Garris, C.S.; Wu, L.; Acharya, S.; Arac, A.; Blaho, V.A.; Huang, Y.; Moon, B.S.; Axtell, R.C.; Ho, P.P.; Steinberg, G.K.; et al. Defective sphingosine 1-phosphate receptor 1 (S1P1) phosphorylation exacerbates TH17-mediated autoimmune neuroinflammation. Nat. Immunol. 2013, 14, 1166–1172. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Wang, Y.; Feng, M.; Ni, X.; Qiang, L.; Xue, J.; Sun, L.; Gao, C.; Luo, J. Sphingosine-1-phosphate alleviates Sjögren’s syndrome-like symptoms via inducing autophagy and regulating status of Treg cells in NOD mice. Int. Immunopharmacol. 2024, 143, 113514. [Google Scholar] [CrossRef]
- Gan, P.R.; Wang, R.H.; Deng, R.; Wu, H.; Bu, Y.H.; Chen, F.Y.; Dong, X.T.; Ke, J.T. Geniposide inhibits SphK1 membrane targeting to restore macrophage polarization balance in collagen-induced arthritis mice. Eur. J. Pharmacol. 2022, 933, 175271. [Google Scholar] [CrossRef]
- Kappos, L.; Radue, E.W.; O’Connor, P.; Polman, C.; Hohlfeld, R.; Calabresi, P.; Selmaj, K.; Agoropoulou, C.; Leyk, M.; Zhang-Auberson, L.; et al. A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N. Engl. J. Med. 2010, 362, 387–401. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, C.L.; Yang, B.; Du, T.; Li, X.L.; Zhang, P.; Ge, M.R.; Lian, Y.; Li, H.; Liu, Y.D.; et al. Prophylactic administration of fingolimod (FTY720) ameliorated experimental autoimmune myasthenia gravis by reducing the number of dendritic cells, follicular T helper cells and antibody-secreting cells. Int. Immunopharmacol. 2021, 96, 107511. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Liu, W.; Gao, G.; Song, Y.; Liu, H.; Li, L.; Zhou, J.; Yan, G.; Cui, H. Effect of FTY-720 on Pulmonary Fibrosis in Mice via the TGF-β1 Signaling Pathway and Autophagy. Biomol. Ther. 2023, 31, 434–445. [Google Scholar] [CrossRef]
- Hijmans, R.S.; Rasmussen, D.G.; Yazdani, S.; Navis, G.; van Goor, H.; Karsdal, M.A.; Genovese, F.; van den Born, J. Urinary collagen degradation products as early markers of progressive renal fibrosis. J. Transl. Med. 2017, 15, 63. [Google Scholar] [CrossRef] [PubMed]
- Budde, K.; Schütz, M.; Glander, P.; Peters, H.; Waiser, J.; Liefeldt, L.; Neumayer, H.H.; Böhler, T. FTY720 (fingolimod) in renal transplantation. Clin. Transplant. 2006, 20 (Suppl. S17), 17–24. [Google Scholar] [CrossRef]
- Stepanovska, B.; Huwiler, A. Targeting the S1P receptor signaling pathways as a promising approach for treatment of autoimmune and inflammatory diseases. Pharmacol. Res. 2020, 154, 104170. [Google Scholar] [CrossRef]
- Bravo, G.; Cedeño, R.R.; Casadevall, M.P.; Ramió-Torrentà, L. Sphingosine-1-Phosphate (S1P) and S1P Signaling Pathway Modulators, from Current Insights to Future Perspectives. Cells 2022, 11, 2058. [Google Scholar] [CrossRef]
- Zhang, N.; Wang, Q.; Tian, Y.; Xiong, S.; Li, G.; Xu, L. Expressions of IL-17 and TNF-α in patients with Hashimoto’s disease combined with thyroid cancer before and after surgery and their relationship with prognosis. Clin. Transl. Oncol. 2020, 22, 1280–1287. [Google Scholar] [CrossRef]
- Kim, S.J.; Lee, S.E.; Kim, Y.I.; Nam-Goong, I.S.; Jung, H.W.; Kim, E.S. Papillary thyroid cancer with Hashimoto’s thyroiditis attenuates the tumour aggressiveness through the up-regulation of E-cadherin and TGF-β expression. Clin. Exp. Med. 2023, 23, 833–840. [Google Scholar] [CrossRef]
- Hepp, M.; Werion, A.; De Greef, A.; de Ville de Goyet, C.; de Bournonville, M.; Behets, C.; Lengelé, B.; Daumerie, C.; Mourad, M.; Ludgate, M.; et al. Oxidative Stress-Induced Sirtuin1 Downregulation Correlates to HIF-1α, GLUT-1, and VEGF-A Upregulation in Th1 Autoimmune Hashimoto’s Thyroiditis. Int. J. Mol. Sci. 2021, 22, 3806. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wu, H.; Gui, B.J.; Liu, J.; Rong, G.X.; Deng, R.; Bu, Y.H.; Zhang, H. Geniposide alleviates VEGF-induced angiogenesis by inhibiting VEGFR2/PKC/ERK1/2-mediated SphK1 translocation. Phytomedicine 2022, 100, 154068. [Google Scholar] [CrossRef] [PubMed]
- Spiegel, S.; Milstien, S. The outs and the ins of sphingosine-1-phosphate in immunity. Nat. Rev. Immunol. 2011, 11, 403–415. [Google Scholar] [CrossRef]
- Ferrari, S.M.; Paparo, S.R.; Ragusa, F.; Elia, G.; Mazzi, V.; Patrizio, A.; Ghionzoli, M.; Varricchi, G.; Centanni, M.; Ulisse, S.; et al. Chemokines in thyroid autoimmunity. Best Pract. Res. Clin. Endocrinol. Metab. 2023, 37, 101773. [Google Scholar] [CrossRef]
- Russo, M.P.; Bennett, B.L.; Manning, A.M.; Brenner, D.A.; Jobin, C. Differential requirement for NF-kappaB-inducing kinase in the induction of NF-kappaB by IL-1beta, TNF-alpha, and Fas. Am. J. Physiol. Cell Physiol. 2002, 283, C347–C357. [Google Scholar] [CrossRef]
- Fang, Y.; Braley-Mullen, H. Cultured murine thyroid epithelial cells expressing transgenic Fas-associated death domain-like interleukin-1beta converting enzyme inhibitory protein are protected from fas-mediated apoptosis. Endocrinology 2008, 149, 3321–3329. [Google Scholar] [CrossRef]
- Sera, N.; Kawakami, A.; Nakashima, T.; Nakamura, H.; Imaizumi, M.; Koji, T.; Abe, Y.; Usa, T.; Tominaga, T.; Ejima, E.; et al. Fas/FasL mediated apoptosis of thyrocytes in Graves’ disease. Clin. Exp. Immunol. 2001, 124, 197–207. [Google Scholar] [CrossRef]
- Guo, Z.; Zhang, M.; An, H.; Chen, W.; Liu, S.; Guo, J.; Yu, Y.; Cao, X. Fas ligation induces IL-1beta-dependent maturation and IL-1beta-independent survival of dendritic cells: Different roles of ERK and NF-kappaB signaling pathways. Blood 2003, 102, 4441–4447. [Google Scholar] [CrossRef] [PubMed]
- Hutami, I.R.; Izawa, T.; Mino-Oka, A.; Shinohara, T.; Mori, H.; Iwasa, A.; Tanaka, E. Fas/S1P(1) crosstalk via NF-κB activation in osteoclasts controls subchondral bone remodeling in murine TMJ arthritis. Biochem. Biophys. Res. Commun. 2017, 490, 1274–1281. [Google Scholar] [CrossRef] [PubMed]
- Song, D.; Li, M.; Zhang, L.; Zhang, K.; An, Y.; Feng, M.; Wang, F.; Yeh, C.T.; Wang, J.; Guo, F. Sphingosine-1-phosphate receptor 3 promotes neuronal apoptosis via the TNF-α/caspase-3 signaling pathway after acute intracerebral hemorrhage. Mol. Cell. Neurosci. 2024, 131, 103979. [Google Scholar] [CrossRef]
- Zheng, B.; Zhang, X.; Kong, X.; Li, J.; Huang, B.; Li, H.; Ji, Z.; Wei, X.; Tao, S.; Shan, Z.; et al. S1P regulates intervertebral disc aging by mediating endoplasmic reticulum-mitochondrial calcium ion homeostasis. JCI Insight 2024, 9, e177789. [Google Scholar] [CrossRef]
- Fosuah, E.; Shen, Z.; Xie, J.; Wang, C.; Lin, Q.; Fu, T.M. Assembly and activation of the death-inducing signaling complex. Proc. Natl. Acad. Sci. USA 2025, 122, e2504819122. [Google Scholar] [CrossRef]
- Dixit, D.; Hallisey, V.M.; Zhu, E.Y.; Okuniewska, M.; Cadwell, K.; Chipuk, J.E.; Axelrad, J.E.; Schwab, S.R. S1PR1 inhibition induces proapoptotic signaling in T cells and limits humoral responses within lymph nodes. J. Clin. Investig. 2024, 134, e174984. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.Q.; Hou, T.; Xiang, R.; Li, X.; Li, J.; Wang, T.T.; Liu, W.J.; Hou, S.; Wang, D.; Zhao, Q.H.; et al. PANX1-mediated ATP release confers FAM3A’s suppression effects on hepatic gluconeogenesis and lipogenesis. Mil. Med. Res. 2024, 11, 41. [Google Scholar] [CrossRef] [PubMed]
- Plöhn, S. The Crucial Role of Sphingosine-1-Phosphate and the Therapeutic Potential of Fingolimod for Graves Disease and Associated Orbitopathy. Ph.D. Thesis, Universität Duisburg-Essen, Duisburg, Germany, Essen, Germany, 2019. [Google Scholar]
- Zhou, Z.; Zuo, C.L.; Li, X.S.; Ye, X.P.; Zhang, Q.Y.; Wang, P.; Zhang, R.X.; Chen, G.; Yang, J.L.; Chen, Y.; et al. Uterus globulin associated protein 1 (UGRP1) is a potential marker of progression of Graves’ disease into hypothyroidism. Mol. Cell. Endocrinol. 2019, 494, 110492. [Google Scholar] [CrossRef]
- Plöhn, S.; Hose, M.; Schlüter, A.; Michel, L.; Diaz-Cano, S.; Hendgen-Cotta, U.B.; Banga, J.P.; Bechrakis, N.E.; Hansen, W.; Eckstein, A.J.T. Fingolimod improves the outcome of experimental Graves’ disease and associated orbitopathy by modulating the autoimmune response to the thyroid-stimulating hormone receptor. Thyroid 2019, 29, 1286–1301. [Google Scholar] [CrossRef]
- Baeyens, A.A.L.; Schwab, S.R. Finding a Way Out: S1P Signaling and Immune Cell Migration. Annu. Rev. Immunol. 2020, 38, 759–784. [Google Scholar] [CrossRef]
- He, B.; Zhao, R.; Zhang, B.; Pan, H.; Liu, J.; Huang, L.; Wei, Y.; Yang, D.; Liang, J.; Wang, M.; et al. Endothelial OX40 activation facilitates tumor cell escape from T cell surveillance through S1P/YAP-mediated angiogenesis. J. Clin. Invest. 2025, 135, e186291. [Google Scholar] [CrossRef]
- Shiah, J.V.; Grandis, J.R.; Johnson, D.E. Targeting STAT3 with Proteolysis Targeting Chimeras and Next-Generation Antisense Oligonucleotides. Mol. Cancer Ther. 2021, 20, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Kudira, R.; Yang, Z.F.; Osuji, I.; Damen, M.; Yang Vom Hofe, A.; Singh, M.; Karns, R.; Bariya, P.; Pfuhler, L.; Mullen, M.; et al. Bile acids engage the SIPR-STAT3 signaling axis to modulate regulatory T cell responses in fibrosing cholangiopathies. J. Hepatol. 2025, 83, 1128–1141. [Google Scholar] [CrossRef]
- Coulombeau, R.; Selck, C.; Giang, N.; Al-Mohammad, A.; Ng, N.; Maher, A.K.; Argüello, R.; Scalfari, A.; Varley, J.; Nicholas, R.; et al. Sphingosine-1-Phosphate Signalling Inhibition Suppresses Th1-Like Treg Generation by Reversing Mitochondrial Uncoupling. Immunology 2025, 174, 153–166. [Google Scholar] [CrossRef]
- Zhao, R.; Chen, R.; An, Y.; Liu, W.; Zheng, M.; Ma, S.; Li, Y.; Ren, X.; He, H. Yunnan Baiyao regulates Th17/Treg cell homeostasis to inhibit periodontitis through the miR-155-5p/ATG5 pathway. Int. Immunopharmacol. 2025, 163, 115253. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Li, X.; Wang, Y.; Yu, X.; Guo, X.; Wang, C.; Wang, F. Corynebacterium striatum drives neutrophilic asthma via IL-17 signaling activation. Int. Immunopharmacol. 2025, 163, 115255. [Google Scholar] [CrossRef]
- Xie, J.; Chen, Q.; Li, L.; Liu, J. Overexpression of SERPINA3 inhibits castration-resistant prostate cancer progression by enhancing M1 macrophage recruitment via CXCL2 upregulation. Braz. J. Med. Biol. Res. 2025, 58, e14445. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Luo, T.; Zhao, X.; Li, P.; Gu, X.; Wan, C.; Xie, X.; Liu, H. PD-1 Regulates the Glycolytic Pathway to Reverse Abnormal CD4(+) T Cell Differentiation and Alleviate Hashimoto’s Thyroiditis. Immunology 2025, 176, 132–144. [Google Scholar] [CrossRef]
- Xu, Q.; Lin, X.; Song, L.; Ren, Y.; Bai, X.; Zhao, X.; Wang, Y.; Si, X.; Huang, R.; Li, J.; et al. Trichinella spiralis excretory-secretory protein alleviates autoimmune thyroiditis by modulating Th17/Treg balance via the STAT3/STAT5 pathway. Acta Trop. 2025, 268, 107706. [Google Scholar] [CrossRef]
- Mincer, D.L.; Jialal, I. Hashimoto thyroiditis. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2017. [Google Scholar]
- Huang, L.S.; Sudhadevi, T.; Fu, P.; Punathil-Kannan, P.K.; Ebenezer, D.L.; Ramchandran, R.; Putherickal, V.; Cheresh, P.; Zhou, G.; Ha, A.W.; et al. Sphingosine Kinase 1/S1P Signaling Contributes to Pulmonary Fibrosis by Activating Hippo/YAP Pathway and Mitochondrial Reactive Oxygen Species in Lung Fibroblasts. Int. J. Mol. Sci. 2020, 21, 2064. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, W.; Ji, X.Y.; Ritter, J.K.; Li, N. Knockout of Sphingosine Kinase 1 Attenuates Renal Fibrosis in Unilateral Ureteral Obstruction Model. Am. J. Nephrol. 2019, 50, 196–203. [Google Scholar] [CrossRef]
- Wang, D.; Han, S.; Lv, G.; Hu, Y.; Zhuo, W.; Zeng, Z.; Tang, J.; Huang, Y.; Wang, F.; Wang, J.; et al. Pancreatic Acinar Cells-Derived Sphingosine-1-Phosphate Contributes to Fibrosis of Chronic Pancreatitis via Inducing Autophagy and Activation of Pancreatic Stellate Cells. Gastroenterology 2023, 165, 1488–1504.e20. [Google Scholar] [CrossRef] [PubMed]
- Takuwa, Y.; Ikeda, H.; Okamoto, Y.; Takuwa, N.; Yoshioka, K. Sphingosine-1-phosphate as a mediator involved in development of fibrotic diseases. Biochim. Biophys. Acta. 2013, 1831, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Shi, D.; Cao, K.; Ru, D.; Ren, J.; Rao, Z.; Chen, Y.; You, Q.; Dai, C.; Liu, L.; et al. Sphingosine kinase 2 cooperating with Fyn promotes kidney fibroblast activation and fibrosis via STAT3 and AKT. Biochim. Et Biophys. Acta Mol. Basis Dis. 2018, 1864, 3824–3836. [Google Scholar] [CrossRef]
- Tanaka, S.; Zheng, S.; Kharel, Y.; Fritzemeier, R.G.; Huang, T.; Foster, D.; Poudel, N.; Goggins, E.; Yamaoka, Y.; Rudnicka, K.P.; et al. Sphingosine 1-phosphate signaling in perivascular cells enhances inflammation and fibrosis in the kidney. Sci. Transl. Med. 2022, 14, eabj2681. [Google Scholar] [CrossRef]
- Liu, J.; Guan, L.; Wang, E.; Schuchman, E.H.; He, X.; Zeng, M. SiO(2) stimulates macrophage stress to induce the transformation of lung fibroblasts into myofibroblasts and its relationship with the sphingomyelin metabolic pathway. J. Appl. Toxicol. 2021, 41, 1584–1597. [Google Scholar] [CrossRef]
- Cruz-Orengo, L.; Daniels, B.P.; Dorsey, D.; Basak, S.A.; Grajales-Reyes, J.G.; McCandless, E.E.; Piccio, L.; Schmidt, R.E.; Cross, A.H.; Crosby, S.D.; et al. Enhanced sphingosine-1-phosphate receptor 2 expression underlies female CNS autoimmunity susceptibility. J. Clin. Investig. 2014, 124, 2571–2584. [Google Scholar] [CrossRef]
- Sacristán-Gómez, P.; Serrano-Somavilla, A.; Castro-Espadas, L.; Sánchez de la Blanca Carrero, N.; Sampedro-Núñez, M.; Muñoz-De-Nova, J.L.; Molina-Jiménez, F.; Rosell, A.; Marazuela, M.; Martínez-Hernández, R. Evaluation of Epithelial-Mesenchymal Transition Markers in Autoimmune Thyroid Diseases. Int. J. Mol. Sci. 2023, 24, 3359. [Google Scholar] [CrossRef]
- Toda, S.; Matsumura, S.; Fujitani, N.; Nishimura, T.; Yonemitsu, N.; Sugihara, H. Transforming growth factor-beta1 induces a mesenchyme-like cell shape without epithelial polarization in thyrocytes and inhibits thyroid folliculogenesis in collagen gel culture. Endocrinology 1997, 138, 5561–5575. [Google Scholar] [CrossRef]
- Tajmiri, S.; Farhangi, M.A.; Dehghan, P. Nigella Sativa treatment and serum concentrations of thyroid hormones, transforming growth factor β (TGF-β) and interleukin 23 (IL-23) in patients with Hashimoto’s Thyroiditis. Eur. J. Integr. Med. 2016, 8, 576–580. [Google Scholar] [CrossRef]
- Wei, L.; Huang, Q.; Tu, Y.; Song, S.; Zhang, X.; Yu, B.; Liu, Y.; Li, Z.; Huang, Q.; Chen, L.; et al. Plasma exosomes from patients with active thyroid-associated orbitopathy induce inflammation and fibrosis in orbital fibroblasts. J. Transl. Med. 2024, 22, 546. [Google Scholar] [CrossRef]
- Luo, X.; Zheng, T.; Mao, C.; Dong, X.; Mou, X.; Xu, C.; Lu, Q.; Liu, B.; Wang, S.; Xiao, Y. Aberrant MRP14 expression in thyroid follicular cells mediates chemokine secretion through the IL-1β/MAPK pathway in Hashimoto’s thyroiditis. Endocr. Connect. 2018, 7, 850–858. [Google Scholar] [CrossRef]
- Vukovic, R.; Zeljkovic, A.; Bufan, B.; Spasojevic-Kalimanovska, V.; Milenkovic, T.; Vekic, J. Hashimoto thyroiditis and dyslipidemia in childhood: A review. Front. Endocrinol. 2019, 10, 868. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Li, J. Sphingosine-1-phosphate induces the migration of thyroid follicular carcinoma cells through the microRNA-17/PTK6/ERK1/2 pathway. PLoS ONE 2015, 10, e0119148. [Google Scholar] [CrossRef] [PubMed]
- Nagahashi, M.; Abe, M.; Sakimura, K.; Takabe, K.; Wakai, T. The role of sphingosine-1-phosphate in inflammation and cancer progression. Cancer Sci. 2018, 109, 3671–3678. [Google Scholar] [CrossRef]
- Wang, X.; Sun, Y.; Peng, X.; Naqvi, S.M.A.S.; Yang, Y.; Zhang, J.; Chen, M.; Chen, Y.; Chen, H.; Yan, H. The tumorigenic effect of sphingosine kinase 1 and its potential therapeutic target. Cancer Control. 2020, 27, 1073274820976664. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Liu, J.; Li, Y.; Du, L.; Cao, Q.; Yang, L.; Zhou, Y.; Chen, P.; Guo, Y.; Zeng, G.; et al. Broad and diverse roles of sphingosine-1-phosphate/sphingosine-1-phosphate receptors in the prostate. iScience 2024, 27, 111290. [Google Scholar] [CrossRef]
- Wang, H.; Huang, H.; Ding, S.F. Sphingosine-1-phosphate promotes the proliferation and attenuates apoptosis of Endothelial progenitor cells via S1PR1/S1PR3/PI3K/Akt pathway. Cell Biol. Int. 2018, 42, 1492–1502. [Google Scholar] [CrossRef]
- Finetti, F.; Paradisi, L.; Bernardi, C.; Pannini, M.; Trabalzini, L. Cooperation between Prostaglandin E2 and Epidermal Growth Factor Receptor in Cancer Progression: A Dual Target for Cancer Therapy. Cancers 2023, 15, 2374. [Google Scholar] [CrossRef]
- Barretto, A.J.B.; Orda, M.A.; Tsai, P.W.; Tayo, L.L. Analysis of Modular Hub Genes and Therapeutic Targets across Stages of Non-Small Cell Lung Cancer Transcriptome. Genes 2024, 15, 1248. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Jiao, B.; Li, S.; Zhao, L.; Zheng, W.; Wang, K.; Xu, J.; Tian, Y.; Liu, C.; Gui, Z.; et al. Oestrogen receptor alpha in papillary thyroid carcinoma: Association with clinical features and BRAFV600E mutation. Jpn. J. Clin. Oncol. 2021, 51, 1051–1058. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Fuchs, T.; Dogan, S.; Landa, I.; Katabi, N.; Fagin, J.A.; Tuttle, R.M.; Sherman, E.; Gill, A.J.; Ghossein, R. Dissecting Anaplastic Thyroid Carcinoma: A Comprehensive Clinical, Histologic, Immunophenotypic, and Molecular Study of 360 Cases. Thyroid 2020, 30, 1505–1517. [Google Scholar] [CrossRef] [PubMed]
- Yu, P.; Qu, N.; Zhu, R.; Hu, J.; Han, P.; Wu, J.; Tan, L.; Gan, H.; He, C.; Fang, C.; et al. TERT accelerates BRAF mutant-induced thyroid cancer dedifferentiation and progression by regulating ribosome biogenesis. Sci. Adv. 2023, 9, eadg7125. [Google Scholar] [CrossRef]
- Rostami, N.; Nikkhoo, A.; Ajjoolabady, A.; Azizi, G.; Hojjat-Farsangi, M.; Ghalamfarsa, G.; Yousefi, B.; Yousefi, M.; Jadidi-Niaragh, F. S1PR1 as a Novel Promising Therapeutic Target in Cancer Therapy. Mol. Diagn. Ther. 2019, 23, 467–487. [Google Scholar] [CrossRef]
- McGowan, E.M.; Lin, Y.; Chen, S. Targeting Chronic Inflammation of the Digestive System in Cancer Prevention: Modulators of the Bioactive Sphingolipid Sphingosine-1-Phosphate Pathway. Cancers 2022, 14, 535. [Google Scholar] [CrossRef]
- Xu, S.; Huang, H.; Qian, J.; Liu, Y.; Huang, Y.; Wang, X.; Liu, S.; Xu, Z.; Liu, J. Prevalence of Hashimoto Thyroiditis in Adults With Papillary Thyroid Cancer and Its Association With Cancer Recurrence and Outcomes. JAMA Netw. Open 2021, 4, e2118526. [Google Scholar] [CrossRef]
- Yao, S.; Zhang, H. Papillary thyroid carcinoma with Hashimoto’s thyroiditis: Impact and correlation. Front. Endocrinol. 2025, 16, 1512417. [Google Scholar] [CrossRef]
- Ragusa, F.; Fallahi, P.; Elia, G.; Gonnella, D.; Paparo, S.R.; Giusti, C.; Churilov, L.P.; Ferrari, S.M.; Antonelli, A. Hashimotos’ thyroiditis: Epidemiology, pathogenesis, clinic and therapy. Best Pract. Res. Clin. Endocrinol. Metab. 2019, 33, 101367. [Google Scholar] [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, J.; Chen, Z.; Wang, Y.; Shang, C.; Feng, Y. Sphingolipid Metabolism in the Pathogenesis of Hashimoto’s Thyroiditis. Int. J. Mol. Sci. 2025, 26, 10674. https://doi.org/10.3390/ijms262110674
Huang J, Chen Z, Wang Y, Shang C, Feng Y. Sphingolipid Metabolism in the Pathogenesis of Hashimoto’s Thyroiditis. International Journal of Molecular Sciences. 2025; 26(21):10674. https://doi.org/10.3390/ijms262110674
Chicago/Turabian StyleHuang, Jialiang, Zeping Chen, Yijue Wang, Chuyu Shang, and Yue Feng. 2025. "Sphingolipid Metabolism in the Pathogenesis of Hashimoto’s Thyroiditis" International Journal of Molecular Sciences 26, no. 21: 10674. https://doi.org/10.3390/ijms262110674
APA StyleHuang, J., Chen, Z., Wang, Y., Shang, C., & Feng, Y. (2025). Sphingolipid Metabolism in the Pathogenesis of Hashimoto’s Thyroiditis. International Journal of Molecular Sciences, 26(21), 10674. https://doi.org/10.3390/ijms262110674

