Vitamin D Receptor Polymorphisms and Immunological Effects of Vitamin D in Hashimoto’s Thyroiditis
Abstract
1. Introduction
1.1. The Scale of the Problem
1.2. Vitamin D—Its Synthesis and Functions
1.3. Vitamin D Receptor mRNA Expression and Its Impact on the Development of Autoimmune Diseases
1.4. Hashimoto’s Thyroiditis—Pathogenesis and Antibodies
1.5. Vitamin D Deficiency
1.6. Vitamin D Receptor
- Cellular level—concerns the impact of VDR polymorphisms on transcriptional activity and cell growth.
 - Protein level—concerns the impact of VDR polymorphisms on VDR protein stability, isoforms, protein–protein interactions, and the influence on the regulation of VDR protein levels.
 - Human level—demonstrates the association between VDR polymorphisms and parameters that can be examined using blood serum and calcium homeostasis.
 - mRNA level—concerns the impact of VDR polymorphisms on mRNA stability, isoforms, splicing, and the influence on the regulation of mRNA levels [33].
 
1.7. The Role of Vitamin D in Immune System Regulation
2. Methods
2.1. Protocol
2.2. Data Sources
2.3. Eligibility Criteria
2.4. Source Selection
3. Genetic Causes of Different Vitamin D Receptor Densities—Gene Polymorphisms and Clinical Implications
| Author and Year of  Investigation  | Population Backgrounds | Sample Size by Case Group | The Disease Under  Investigation  | Type of  Investigation  | Results and Outcomes | 
|---|---|---|---|---|---|
| Kamyshna et al., 2021 [1] | West-Ukrainian | 153 participants divided into three groups:
  | 
  | cross-sectional study | 1. The rs2228570 polymorphism of the VDR gene is associated with a significant decrease in 25(OH)D levels in patients with postoperative hypothyroidism and HT compared to the control group. 2. No significant differences were found in the frequency of the FokI polymorphism between the three patient groups studied. 3. In each of the three patient groups, the 25(OH)D level was significantly lower, regardless of genotype (AA, AG, and GG), compared to the control group. The odds ratio (OR) test shows no differences in the distribution of the AA, AG, and GG genotypes between the study group and the control group. The AG genotype was the most frequent, followed by the AA genotype, while the GG genotype was the least common (p > 0.05). There were no differences in the frequencies of the A allele (p > 0.05) and the G allele (p > 0.05) between the groups.  | 
| Hanna et al., 2021 [41] | Egyptian | 112 participants, including 107 females and 5 males, aged over 18 years (31.5–51 years)  | Hashimoto’s thyroiditis | cross-sectional study | 1. The AA FokI genotype has a significantly higher probability of being associated with HT. In the control group, this genotype was not present at all. 2. The average level of 25(OH)D in HT patients with the AA FokI genotype was higher than in patients with the AG or GG FokI genotypes (p = 0.037).  | 
| Maciejewski et al., 2019 [42] | Caucasian Polish | 223 participants, including 213 females and 10 males (mean, 46.88 ± 13.50 years) | Hashimoto’s thyroiditis | case–control study | 1. No significant association was found between the VDR polymorphisms rs2228570, rs1544410, rs7975232, and rs731236 and the risk of HT. In both groups, the genotype distributions of the studied VDR polymorphisms were in accordance with the Hardy–Weinberg equilibrium (p > 0.05). 2. The distributions of alleles and genotypes of the studied VDR polymorphisms did not differ significantly between patients with HT and the control group. 3. A weak association was observed between the rs1544410 (p = 0.03) and rs7975232 (p = 0.04) polymorphisms and thyroid volume in patients with HT—value of D prime between the loci: 0.95 (0.89–0.98).  | 
| Mestiri et al., 2020 [43] | Tunisian | 162 participants divided into two groups:
  | 
  | case–control study | 1. It has been shown that the rs7975232 polymorphism is not associated with susceptibility to HT and Graves’ disease. The AA genotype was observed more frequently in patients with HT and Graves’ disease under 40 years of age compared to those over 40 years of age with p-values of p = 0.02 and p = 0.03, respectively. 2. The rs7975232 polymorphism is not associated with gender, age, or the presence or absence of anti-TPO and anti-Tg antibodies in patients with HT. 3. VDR rs7975232 polymorphism may be a prognostic factor in predicting the severity of HT.  | 
| Siddiq et al., 2023 [44] | No data | 72 participants, including 56 females (mean, 37 ± 11 years) and 16 males (mean, 33 ± 6 years) | Hashimoto’s thyroiditis | case–control study | 1. Patients with HT had significantly lower levels of vitamin D compared to the control group. 2. The rs7975232 polymorphism is significantly associated with disease progression and exacerbation, whereas no such correlation was found for the rs1544410, rs731236, and rs2228570 polymorphisms in the case group.  | 
3.1. Overview of Study Results by Population Ethnicity and Sample Size
3.2. Overview of Study Results by Evidence Strength and Heterogeneity
4. Vitamin D and Immune Reactions in Hashimoto’s Thyroiditis
5. Relationship Between Vitamin D Level and Frequency of Thyroid Diseases and Antibody Titer
| Author and Year of Investigation | Population  Backgrounds  | Sample Size by Case Group | The Disease Under Investigation | Type of Investigation | Results and Outcomes | 
|---|---|---|---|---|---|
| Behera K.K., 2020 [79] | Bhubaneswar, India | 23 patients with HT (22 with vitamin D3 deficiency) | Hashimoto’s thyroiditis | intervention, prospective | Vitamin D3 supplementation (60,000 IU/week for 8 weeks, then 1×/month for 4 months) decreased TSH and increased vitamin D levels; confirmed link between deficiency and hypothyroidism. | 
| Gierach M.,  Junik R., 2021 [80]  | Collegium Medicum, Bydgoszcz | 370 people (125 healthy, 111 hypothyroid, 134 with Hashimoto); mainly women | Hypothyroidism and Hashimoto’s thyroiditis | observational, cross-sectional | Low vitamin D levels correlated with high TSH and elevated anti-TPO and anti-Tg antibodies. | 
| Chahardoli R., 2016 [72] | Erfan Hospital and Imam Khomeini Hospital Complex, Tehran, Iran | 42 women with HT | Hashimoto’s thyroiditis | double blind, randomized clinical trial | Vitamin D supplementation decreased TSH and anti-Tg levels. | 
| Zhou L, 2023 [85] | Chao-yang Hospital, Bejing | 3143 euthyroid adults (1849 with vitamin D deficiency) | Euthyreosis | observational | Vitamin D levels were associated with tissue sensitivity to thyroid hormones. | 
| Ahn, J, 2023 [86] | Seoul, South Korea | Patients with thyroid cancer (papillary/follicular) | Differentiated thyroid cancer | retrospective, observational (cohort) | Adequate vitamin D levels were associated with better prognosis and survival in patients. | 
6. The Role of Vitamin D Supplementation in Preventing the Development of Autoimmune Diseases
- in full-term newborns and infants—400 IU/day [4],
 - in prematurely born children—800 IU/day (until they reach the corrected age of 40 weeks) [4],
 - in children and adolescents from 1 to 10 years of age—600–1000 IU/day [4],
 - in children and adolescents from 11 to 18 years of age—1000–2000 IU/day [4],
 - in adults—800–2000 IU/day [4],
 - in seniors over 75 years of age—2000–4000 IU/day [4].
 
- -
 - -
 - ApaI (rs7975232) and FokI: These polymorphisms influence mRNA stability and translation, thereby modulating serum vitamin D concentrations. Meta-analyses indicate that ApaI and FokI variants are associated with altered vitamin D status and susceptibility to vitiligo, supporting the hypothesis that these SNPs determine the serum vitamin D threshold required for immunological benefit [36,106].
 
7. Vitamin D Receptor mRNA Expression and Its Impact on the Development of Hashimoto’s Thyroiditis
8. Conclusions and Outlooks
8.1. Future Directions
- Investigating the association between specific polymorphisms in vitamin D receptors and the response to vitamin D supplementation, including assessing the vitamin D dose–response relationship and the potential association with other genetic and environmental factors. Such findings could contribute to the development of personalized supplementation strategies.
 - Conducting in-depth mechanistic studies on the molecular pathways through which VDR and vitamin D influence immune cells, including cytokine production and T cell differentiation.
 - Conducting long-term clinical trials to assess the impact of vitamin D supplementation on the severity of Hashimoto’s thyroiditis and patient quality of life. Clinical symptoms of Hashimoto’s thyroiditis and autoantibody titers should be assessed. Such studies would establish evidence to support therapeutic recommendations.
 - Examining the influence of sex and age on VDR density, receptor functionality and immune responses occurring in Hashimoto’s thyroiditis. Such studies would aim to confirm the susceptibility of specific population types to the disease.
 - Investigating the impact of individual polymorphisms in genes encoding VDR on the risk of developing Hashimoto’s thyroiditis, potentially identifying groups of patients at risk for more severe disease and requiring early diagnosis.
 
8.2. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kamyshna, I.I.; Pavlovych, L.B.; Malyk, I.V.; Kamyshnyi, A.M. 25-OH Vitamin D blood serum linkage with VDR gene polymorphism (rs2228570) in thyroid pathology patients in the West-Ukrainian population. J. Med. Life 2021, 14, 549–556. [Google Scholar] [CrossRef]
 - Durá-Travé, T.; Gallinas-Victoriano, F. Autoimmune Thyroiditis and Vitamin D. Int. J. Mol. Sci. 2024, 25, 3154. [Google Scholar] [CrossRef]
 - Ralli, M.; Angeletti, D.; Fiore, M.; D’Aguanno, V.; Lambiase, A.; Artico, M.; de Vincentiis, M.; Greco, A. Hashimoto’s thyroiditis: An update on pathogenic mechanisms, diagnostic protocols, therapeutic strategies, and potential malignant transformation. Autoimmun. Rev. 2020, 19, 102649. [Google Scholar] [CrossRef] [PubMed]
 - Płudowski, P.; Kos-Kudła, B.; Walczak, M.; Fal, A.; Zozulińska-Ziółkiewicz, D.; Sieroszewski, P.; Peregud-Pogorzelski, J.; Lauterbach, R.; Targowski, T.; Lewiński, A.; et al. Guidelines for Preventing and Treating Vitamin D Deficiency: A 2023 Update in Poland. Nutrients 2023, 15, 695. [Google Scholar] [CrossRef]
 - Chlebna-Sokół, D.; Konstantynowicz, J.; Abramowicz, P.; Kulik-Rechberger, B.; Niedziela, M.; Obuchowicz, A.; Ziora, K.; Karalus-Gach, J.; Golec, J.; Michałus, I.; et al. Evidence of a significant vitamin D deficiency among 9-13-year-old Polish children: Results of a multicentre study. Eur. J. Nutr. 2019, 58, 2029–2036. [Google Scholar] [CrossRef] [PubMed]
 - Maciejewski, A.; Lacka, K. Vitamin D-Related Genes and Thyroid Cancer-A Systematic Review. Int. J. Mol. Sci. 2022, 23, 13661. [Google Scholar] [CrossRef]
 - Robsahm, T.E.; Tretli, S.; Torjesen, P.A.; Babigumira, R.; Schwartz, G.G. Serum 25-hydroxyvitamin D levels predict cancer survival: A prospective cohort with measurements prior to and at the time of cancer diagnosis. Clin. Epidemiol. 2019, 11, 695–705. [Google Scholar] [CrossRef]
 - Chang, S.W.; Lee, H.C. Vitamin D and health—The missing vitamin in humans. Pediatr. Neonatol. 2019, 60, 237–244. [Google Scholar] [CrossRef] [PubMed]
 - Sosa Henríquez, M.; de Tejada Romero, M.J.G. Cholecalciferol or Calcifediol in the Management of Vitamin D Deficiency. Nutrients 2020, 12, 1617. [Google Scholar] [CrossRef]
 - Lebiedziński, F.; Lisowska, K.A. Impact of Vitamin D on Immunopathology of Hashimoto’s Thyroiditis: From Theory to Practice. Nutrients 2023, 15, 3174. [Google Scholar] [CrossRef]
 - Young, K.; Beggs, M.R.; Grimbly, C.; Alexander, R.T. Regulation of 1 and 24 hydroxylation of vitamin D metabolites in the proximal tubule. Exp. Biol. Med. 2022, 247, 1103–1111. [Google Scholar] [CrossRef]
 - Delrue, C.; Speeckaert, M.M. Vitamin D and Vitamin D-Binding Protein in Health and Disease. Int. J. Mol. Sci. 2023, 24, 4642. [Google Scholar] [CrossRef] [PubMed]
 - Benedik, E. Sources of vitamin D for humans. Int. J. Vitam. Nutr. Res. 2022, 92, 118–125. [Google Scholar] [CrossRef] [PubMed]
 - de la Guía-Galipienso, F.; Martínez-Ferran, M.; Vallecillo, N.; Lavie, C.J.; Sanchis-Gomar, F.; Pareja-Galeano, H. Vitamin D and cardiovascular health. Clin. Nutr. 2021, 40, 2946–2957. [Google Scholar] [CrossRef]
 - Bikle, D.; Christakos, S. New aspects of vitamin D metabolism and action-addressing the skin as source and target. Nat. Rev. Endocrinol. 2020, 16, 234–252. [Google Scholar] [CrossRef]
 - Lv, L.; Tan, X.; Peng, X.; Bai, R.; Xiao, Q.; Zou, T.; Tan, J.; Zhang, H.; Wang, C. The relationships of vitamin D, vitamin D receptor gene polymorphisms, and vitamin D supplementation with Parkinson’s disease. Transl. Neurodegener. 2020, 9, 34. [Google Scholar] [CrossRef]
 - Zhou, F.; Liang, Z.; Wang, X.; Tan, G.; Wei, W.; Zheng, G.; Ma, X.; Tian, D.; Li, H.; Yu, H. The VDR gene confers a genetic predisposition to Graves’ disease and Graves’ ophthalmopathy in the Southwest Chinese Han population. Gene 2021, 793, 145750. [Google Scholar] [CrossRef] [PubMed]
 - Shaikh, A.P.; Shaikh, N.P.; Nakashidze, I. Vitamin D levels and VDR rs2228570 genetic variant in Autoimmune Thyroiditis. Sanamed 2023, 18, 217–222. [Google Scholar] [CrossRef]
 - Mele, C.; Caputo, M.; Bisceglia, A.; Samà, M.T.; Zavattaro, M.; Aimaretti, G.; Pagano, L.; Prodam, F.; Marzullo, P. Immunomodulatory Effects of Vitamin D in Thyroid Diseases. Nutrients 2020, 12, 1444. [Google Scholar] [CrossRef]
 - Trefilio, L.M.; Bottino, L.; de Carvalho Cardoso, R.; Montes, G.C.; Fontes-Dantas, F.L. The impact of genetic variants related to vitamin D and autoimmunity: A systematic review. Heliyon 2024, 10, e27700. [Google Scholar] [CrossRef]
 - Bagheri-Hosseinabadi, Z.; Imani, D.; Yousefi, H.; Abbasifard, M. Vitamin D receptor (VDR) gene polymorphism and risk of rheumatoid arthritis (RA): Systematic review and meta-analysis. Clin. Rheumatol. 2020, 39, 3555–3569. [Google Scholar] [CrossRef] [PubMed]
 - Mikulska, A.A.; Karaźniewicz-Łada, M.; Filipowicz, D.; Ruchała, M.; Główka, F.K. Metabolic Characteristics of Hashimoto’s Thyroiditis Patients and the Role of Microelements and Diet in the Disease Management-An Overview. Int. J. Mol. Sci. 2022, 23, 6580. [Google Scholar] [CrossRef]
 - Czarnywojtek, A.; Florek, E.; Pietrończyk, K.; Sawicka-Gutaj, N.; Ruchała, M.; Ronen, O.; Nixon, I.J.; Shaha, A.R.; Rodrigo, J.P.; Tufano, R.P.; et al. The Role of Vitamin D in Autoimmune Thyroid Diseases: A Narrative Review. J. Clin. Med. 2023, 12, 1452. [Google Scholar] [CrossRef]
 - Starchl, C.; Scherkl, M.; Amrein, K. Celiac Disease and the Thyroid: Highlighting the Roles of Vitamin D and Iron. Nutrients 2021, 13, 1755. [Google Scholar] [CrossRef] [PubMed]
 - Lebădă, I.C.; Ristea, R.; Metiu, M.; Stanciu, M. Vitamin D deficiency in thyroid autoimmune diseases. Arch. Clin. Cases 2022, 9, 34–40. [Google Scholar] [CrossRef]
 - Khozam, S.A.; Sumaili, A.M.; Alflan, M.A.; Shawabkeh, R.A.S. Association Between Vitamin D Deficiency and Autoimmune Thyroid Disorder: A Systematic Review. Cureus 2022, 14, e25869. [Google Scholar] [CrossRef]
 - Voltan, G.; Cannito, M.; Ferrarese, M.; Ceccato, F.; Camozzi, V. Vitamin D: An Overview of Gene Regulation, Ranging from Metabolism to Genomic Effects. Genes 2023, 14, 1691. [Google Scholar] [CrossRef] [PubMed]
 - Gospodarska, E.; Ghosh Dastidar, R.; Carlberg, C. Intervention Approaches in Studying the Response to Vitamin D3 Supplementation. Nutrients 2023, 15, 3382. [Google Scholar] [CrossRef]
 - Zhao, R.; Zhang, W.; Ma, C.; Zhao, Y.; Xiong, R.; Wang, H.; Chen, W.; Zheng, S.G. Immunomodulatory Function of Vitamin D and Its Role in Autoimmune Thyroid Disease. Front. Immunol. 2021, 12, 574967. [Google Scholar] [CrossRef]
 - Carlberg, C.; Velleuer, E. Vitamin D and the risk for cancer: A molecular analysis. Biochem. Pharmacol. 2022, 196, 114735. [Google Scholar] [CrossRef]
 - Li, J.; Qin, S.; Zhang, S.; Lu, Y.; Shen, Q.; Cheng, L.; Zhong, R. Serum vitamin D concentration, vitamin D-related polymorphisms, and colorectal cancer risk. Int. J. Cancer 2023, 153, 278–289. [Google Scholar] [CrossRef]
 - Gallo, D.; Baci, D.; Kustrimovic, N.; Lanzo, N.; Patera, B.; Tanda, M.L.; Piantanida, E.; Mortara, L. How Does Vitamin D Affect Immune Cells Crosstalk in Autoimmune Diseases? Int. J. Mol. Sci. 2023, 24, 4689. [Google Scholar] [CrossRef]
 - Tourkochristou, E.; Mouzaki, A.; Triantos, C. Gene Polymorphisms and Biological Effects of Vitamin D Receptor on Nonalcoholic Fatty Liver Disease Development and Progression. Int. J. Mol. Sci. 2023, 24, 8288. [Google Scholar] [CrossRef]
 - Zhang, L.; Zhang, S.; He, C.; Wang, X. VDR Gene Polymorphisms and Allergic Diseases: Evidence from a Meta-analysis. Immunol. Investig. 2020, 49, 166–177. [Google Scholar] [CrossRef]
 - Tamasauskiene, L.; Golubickaite, I.; Ugenskiene, R.; Sjakste, N.; Paramonova, N.; Wu, L.S.; Wang, L.S.; Sitkauskiene, B. Vitamin D receptor gene polymorphisms in atopy. Immun. Inflamm. Dis. 2021, 9, 1153–1159. [Google Scholar] [CrossRef] [PubMed]
 - Ghaseminejad-Raeini, A.; Ghaderi, A.; Sharafi, A.; Nematollahi-Sani, B.; Moossavi, M.; Derakhshani, A.; Sarab, G.A. Immunomodulatory actions of vitamin D in various immune-related disorders: A comprehensive review. Front. Immunol. 2023, 14, 950465. [Google Scholar] [CrossRef] [PubMed]
 - Munteanu, C.; Schwartz, B. The relationship between nutrition and the immune system. Front. Nutr. 2022, 9, 1082500. [Google Scholar] [CrossRef] [PubMed]
 - Santos, H.L.B.S.; Silva, S.S.E.; Paula, E.; Pereira-Ferrari, L.; Mikami, L.; Riedi, C.A.; Chong-Neto, H.J.; Rosário, N.A. Vitamin D Receptor Gene Mutations and Vitamin D Serum Levels in Asthmatic Children. Mutações do Gene do Receptor de Vitamina d e Níveis Séricos de Vitamina d em Crianças Com Asma. Rev. Paul. Pediatr. 2018, 36, 269–274. [Google Scholar] [CrossRef]
 - Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
 - Marini, F.; Falcini, F.; Stagi, S.; Fabbri, S.; Ciuffi, S.; Rigante, D.; Cerinic, M.M.; Brandi, M.L. Study of vitamin D status and vitamin D receptor polymorphisms in a cohort of Italian patients with juvenile idiopathic arthritis. Sci. Rep. 2020, 10, 17550. [Google Scholar] [CrossRef]
 - Hanna, H.W.Z.; Rizzo, C.; Halim, R.M.A.; El Haddad, H.E.; Salam, R.; Abou-Youssef, H.E.-S. Vitamin D status in Hashimoto’s thyroiditis and its association with vitamin D receptor genetic variants. J. Steroid Biochem. Mol. Biol. 2021, 212, 105922. [Google Scholar] [CrossRef]
 - Maciejewski, A.; Kowalczyk, M.J.; Herman, W.; Czyżyk, A.; Kowalska, M.; Żaba, R.; Łącka, K. Vitamin D Receptor Gene Polymorphisms and Autoimmune Thyroiditis: Are They Associated with Disease Occurrence and Its Features? BioMed Res. Int. 2019, 2019, 8197580. [Google Scholar] [CrossRef]
 - Mestiri, S.; Zaaber, I.; Nasr, I.; Marmouch, H. Implication of VDR Rs7975232 and FCGR2A Rs1801274 Gene Polymorphisms in the Risk and the Prognosis of autoimmune Thyroid Diseases in the Tunisian Population. Balk. J. Med. Genet. BJMG 2020, 23, 69–76. [Google Scholar] [CrossRef]
 - Siddiq, A.; Naveed, A.K.; Khan, J.A.; Fatima, N.; Muzaffar, M. Vitamin D Receptor Gene Polymorphisms and Genetic Susceptibility to Hashimoto’s Thyroiditis; National Institutes of Health (NIH): Bethesda, MD, USA, 2023. [Google Scholar]
 - Gao, X.R.; Yu, Y.G. Meta-Analysis of the Association between Vitamin D Receptor Polymorphisms and the Risk of Autoimmune Thyroid Disease. Int. J. Endocrinol. 2018, 2018, 2846943. [Google Scholar] [CrossRef] [PubMed]
 - Usategui-Martín, R.; De Luis-Román, D.A.; Fernández-Gómez, J.M.; Ruiz-Mambrilla, M.; Pérez-Castrillón, J.L. Vitamin D Receptor (VDR) Gene Polymorphisms Modify the Response to Vitamin D Supplementation: A Systematic Review and Meta-Analysis. Nutrients 2022, 14, 360. [Google Scholar] [CrossRef]
 - Ceriani, F.; Montalvan, M.; Quintero, B.; Suárez, R.; Bautista-Valarezo, E.; Frias-Toral, E. Ethics of the clinical practice of nutrigenetics and nutrigenomics. Clin. Nutr. Open Sci. 2023, 49, 58–66. [Google Scholar] [CrossRef]
 - Martinez-Martin, N.; Magnus, D. Privacy and ethical challenges in next-generation sequencing. Expert Rev. Precis. Med. Drug Dev. 2019, 4, 95–104. [Google Scholar] [CrossRef]
 - Ma, L.; Wang, S.; Chen, H.; Cui, L.; Liu, X.; Yang, H.; Li, G.; Liu, S.; Qi, T.; Tian, H. Diminished 25-OH vitamin D3 levels and vitamin D receptor variants are associated with susceptibility to type 2 diabetes with coronary artery diseases. J. Clin. Lab. Anal. 2020, 34, e23137. [Google Scholar] [CrossRef]
 - Suksawatamnuay, S.; Sriphoosanaphan, S.; Aumpansub, P.; Aniwan, S.; Thanapirom, K.; Tanasanvimon, S.; Thaimai, P.; Wiangngoen, S.; Ponauthai, Y.; Sumdin, S.; et al. Association between Vitamin D Receptor Single-Nucleotide Polymorphisms and Colorectal Cancer in the Thai Population: A Case-Control Study. BioMed Res. Int. 2020, 2020, 7562958. [Google Scholar] [CrossRef] [PubMed]
 - Iriani, A.; Rachman, A.; Fatina, M.K.; Gemilang, R.K.; Trisnandi, A.; Nugraha, M.F.I. Gene expression profiling of vitamin D metabolism enzymes in leukemia and lymphoma patients: Molecular aspect interplay of VDR, CYP2R1, and CYP24A1. Mol. Biol. Rep. 2024, 51, 526. [Google Scholar] [CrossRef] [PubMed]
 - Divanoglou, N.; Komninou, D.; Stea, E.A.; Argiriou, A.; Papatzikas, G.; Tsakalof, A.; Pazaitou-Panayiotou, K.; Georgakis, M.K.; Petridou, E. Association of Vitamin D Receptor Gene Polymorphisms with Serum Vitamin D Levels in a Greek Rural Population (Velestino Study). Lifestyle Genom. 2021, 14, 81–90. [Google Scholar] [CrossRef]
 - Apaydin, T.; Polat, H.; Dincer Yazan, C.; Ilgin, C.; Elbasan, O.; Dashdamirova, S.; Bayram, F.; Tukenmez Tigen, E.; Unlu, O.; Tekin, A.F.; et al. Effects of vitamin D receptor gene polymorphisms on the prognosis of COVID-19. Clin. Endocrinol. 2022, 96, 819–830. [Google Scholar] [CrossRef] [PubMed]
 - Ruiz-Ballesteros, A.I.; Meza-Meza, M.R.; Vizmanos-Lamotte, B.; Parra-Rojas, I.; de la Cruz-Mosso, U. Association of Vitamin D Metabolism Gene Polymorphisms with Autoimmunity: Evidence in Population Genetic Studies. Int. J. Mol. Sci. 2020, 21, 9626. [Google Scholar] [CrossRef]
 - Jamka, M.; Ruchała, M.; Walkowiak, J. Vitamin D and Hashimoto’s disease. Pol. Merkur. Lek. Organ Pol. Tow. Lek. 2019, 47, 111–113. [Google Scholar]
 - Miteva, M.Z.; Nonchev, B.I.; Orbetzova, M.M.; Stoencheva, S.D. Vitamin D and Autoimmune Thyroid Diseases—A Review. Folia Medica 2020, 62, 223–229. [Google Scholar] [CrossRef]
 - Kazemian, E.; Davoodi, S.H.; Akbari, M.E.; Moradi, N.; Gharibzadeh, S.; Mondul, A.M.; Jamshidi-Naeini, Y.; Khademolmele, M.; Zarins, K.R.; Ghodoosi, N.; et al. Vitamin D Receptor (VDR) Allelic Variants Correlating with Response to Vitamin D3 Supplementation in Breast Cancer Survivors. Nutr. Cancer 2022, 74, 68–81. [Google Scholar] [CrossRef] [PubMed]
 - Al-Ghafari, A.B.; Balamash, K.S.; Al Doghaither, H.A. Relationship between Serum Vitamin D and Calcium Levels and Vitamin D Receptor Gene Polymorphisms in Colorectal Cancer. BioMed Res. Int. 2019, 2019, 8571541. [Google Scholar] [CrossRef]
 - Latacz, M.; Rozmus, D.; Fiedorowicz, E.; Snarska, J.; Jarmołowska, B.; Kordulewska, N.; Savelkoul, H.; Cieślińska, A. Vitamin D Receptor (VDR) Gene Polymorphism in Patients Diagnosed with Colorectal Cancer. Nutrients 2021, 13, 200. [Google Scholar] [CrossRef] [PubMed]
 - Kumar, R.; Himani Gupta, N.; Singh, V.; Kumar, V.; Haq, A.; Mirza, A.A.; Sharma, A. Unveiling molecular associations of polymorphic variants of VDR gene (FokI, BsmI and ApaI) in multiple myeloma patients of Indian population. J. Steroid Biochem. Mol. Biol. 2020, 199, 105588. [Google Scholar] [CrossRef]
 - Rui, H.; Liu, Y.; Lin, M.; Zheng, X. Vitamin D receptor gene polymorphism is associated with multiple myeloma. J. Cell. Biochem. 2020, 121, 224–230. [Google Scholar] [CrossRef]
 - Hassan, M.H.; Elsadek, A.A.M.; Mahmoud, M.A.; Elsadek, B.E.M. Vitamin D Receptor Gene Polymorphisms and Risk of Knee Osteoarthritis: Possible Correlations with TNF-α, Macrophage Migration Inhibitory Factor, and 25-Hydroxycholecalciferol Status. Biochem. Genet. 2022, 60, 611–628. [Google Scholar] [CrossRef]
 - Shokri, H.M.; Mohamed, K.O.; Fahmy, N.A.; Mostafa, A.O.; Ghareeb, A. Vitamin D receptor gene polymorphism in patients with osteomalacic myopathy in Egypt. Neurol. Sci. 2021, 42, 1031–1037. [Google Scholar] [CrossRef]
 - Lye, M.S.; Tor, Y.S.; Tey, Y.Y.; Shahabudin, A.; Loh, S.P.; Ibrahim, N.; Stanslas, J.; Rosli, R.; Ling, K.H. BsmI-ApaI-TaqI TAC (BAt) Haplotype of Vitamin D Receptor Gene Is Associated with Increased Risk of Major Depressive Disorder. J. Mol. Neurosci. 2021, 71, 981–990. [Google Scholar] [CrossRef] [PubMed]
 - Zhang, R.; Wang, M.; Wang, M.; Zhang, L.; Ding, Y.; Tang, Z.; Fu, Z.; Fan, H.; Zhang, W.; Wang, J. Vitamin D Level and Vitamin D Receptor Genetic Variation Were Involved in the Risk of Non-Alcoholic Fatty Liver Disease: A Case-Control Study. Front. Endocrinol. 2021, 12, 648844. [Google Scholar] [CrossRef]
 - Qadir, J.; Majid, S.; Khan, M.S.; Wani, M.D. Association of Vitamin D receptor gene variations with Gastric cancer risk in Kashmiri population. Mol. Biol. Rep. 2021, 48, 3313–3325. [Google Scholar] [CrossRef]
 - Yang, X.; Ru, J.; Li, Z.; Jiang, X.; Fan, C. Lower vitamin D levels and VDR FokI variants are associated with susceptibility to sepsis: A hospital-based case-control study. Biomarkers 2022, 27, 188–195. [Google Scholar] [CrossRef]
 - Kim, T.E.; Kim, S.K.; Shin, M.K.; Jeong, K.H.; Lee, M.H. Serum 25-Hydroxy Vitamin D Levels and Association of Vitamin D Receptor Gene Polymorphisms in Vitiligo. J. Korean Med. Sci. 2022, 37, e110. [Google Scholar] [CrossRef]
 - Jafari, M.; Khodaverdi, S.; Sadri, M.; Moradi, Z.; Mohammadi, T.; Heidari, S.; Akhavan Sales, Z.; Delbandi, A.A. Association Between Vitamin D Receptor (VDR) and Vitamin D Binding Protein (VDBP) Genes Polymorphisms to Endometriosis Susceptibility in Iranian Women. Reprod. Sci. (Thousand Oaks Calif.) 2021, 28, 3491–3497. [Google Scholar] [CrossRef] [PubMed]
 - Aziz, A.; Shah, M.; Siraj, S.; Iqbal, W.; Jan, A.; Khan, I.; Ahmed, S.; Vitale, S.G.; Angioni, S. Association of vitamin D deficiency and vitamin D receptor (VDR) gene single-nucleotide polymorphism (rs7975232) with risk of preeclampsia. Gynecol. Endocrinol. 2023, 39, 2146089. [Google Scholar] [CrossRef]
 - Punceviciene, E.; Gaizevska, J.; Sabaliauskaite, R.; Venceviciene, L.; Puriene, A.; Vitkus, D.; Jarmalaite, S.; Butrimiene, I. Vitamin D and VDR Gene Polymorphisms’ Association with Rheumatoid Arthritis in Lithuanian Population. Medicina 2021, 57, 346. [Google Scholar] [CrossRef] [PubMed]
 - Chahardoli, R.; Saboor-Yaraghi, A.A.; Amouzegar, A.; Khalili, D.; Vakili, A.Z.; Azizi, F. Can Supplementation with Vitamin D Modify Thyroid Autoantibodies (Anti-TPO Ab, Anti-Tg Ab) and Thyroid Profile (T3, T4, TSH) in Hashimoto’s Thyroiditis? A Double Blind, Randomized Clinical Trial. Horm. Metab. Res. 2019, 51, 296–301. [Google Scholar] [CrossRef]
 - Vieira, I.H.; Rodrigues, D.; Paiva, I. Vitamin D and Autoimmune Thyroid Disease-Cause, Consequence, or a Vicious Cycle? Nutrients 2020, 12, 2791. [Google Scholar] [CrossRef] [PubMed]
 - Nodehi, M.; Ajami, A.; Izad, M.; Asgarian Omran, H.; Chahardoli, R.; Amouzegar, A.; Yekaninejad, S.; Hemmatabadi, M.; Azizi, F.; Esfahanian, F.; et al. Effects of vitamin D supplements on frequency of CD4+ T-cell subsets in women with Hashimoto’s thyroiditis: A double-blind placebo-controlled study. Eur. J. Clin. Nutr. 2019, 73, 1236–1243. [Google Scholar] [CrossRef]
 - Botelho, I.M.B.; Moura Neto, A.; Silva, C.A.; Tambascia, M.A.; Alegre, S.M.; Zantut-Wittmann, D.E. Vitamin D in Hashimoto’s thyroiditis and its relationship with thyroid function and inflammatory status. Endocr. J. 2018, 65, 1029–1037. [Google Scholar] [CrossRef] [PubMed]
 - Babić Leko, M.; Jureško, I.; Rozić, I.; Pleić, N.; Gunjača, I.; Zemunik, T. Vitamin D and the Thyroid: A Critical Review of the Current Evidence. Int. J. Mol. Sci. 2023, 24, 3586. [Google Scholar] [CrossRef] [PubMed]
 - Yu, Y.; Yang, X.; Wu, J.; Shangguan, X.; Bai, S.; Yu, R. A Mendelian randomization study of the effect of serum 25-hydroxyvitamin D levels on autoimmune thyroid disease. Front. Immunol. 2024, 14, 1298708. [Google Scholar] [CrossRef]
 - Chao, G.; Zhu, Y.; Fang, L. Correlation Between Hashimoto’s Thyroiditis-Related Thyroid Hormone Levels and 25-Hydroxyvitamin D. Front. Endocrinol. 2020, 11, 4. [Google Scholar] [CrossRef]
 - Behera, K.K.; Saharia, G.K.; Hota, D.; Sahoo, D.P.; Sethy, M.; Srinivasan, A. Effect of Vitamin D Supplementation on Thyroid Autoimmunity among Subjects of Autoimmune Thyroid Disease in a Coastal Province of India: A Randomized Open-label Trial. Niger. Med. J. 2020, 61, 237–240. [Google Scholar] [CrossRef]
 - Gierach, M.; Junik, R. The role of vitamin D in women with Hashimoto’s thyroiditis. Endokrynol. Pol. 2023, 74, 176–180. [Google Scholar] [CrossRef]
 - Zhang, J.; Chen, Y.; Li, H.; Li, H. Effects of vitamin D on thyroid autoimmunity markers in Hashimoto’s thyroiditis: Systematic review and meta-analysis. J. Int. Med. Res. 2021, 49, 3000605211060675. [Google Scholar] [CrossRef]
 - Tang, J.; Shan, S.; Li, F.; Yun, P. Effects of vitamin D supplementation on autoantibodies and thyroid function in patients with Hashimoto’s thyroiditis: A systematic review and meta-analysis. Medicine 2023, 102, e36759. [Google Scholar] [CrossRef]
 - Kaličanin, D.; Cvek, M.; Barić, A.; Škrabić, V.; Punda, A.; Boraska Perica, V. Associations between vitamin D levels and dietary patterns in patients with Hashimoto’s thyroiditis. Front. Nutr. 2023, 10, 1188612. [Google Scholar] [CrossRef]
 - Cvek, M.; Kaličanin, D.; Barić, A.; Vuletić, M.; Gunjača, I.; Lovrić, V.T.; Škrabić, V.; Punda, A.; Perica, V.B. Vitamin D and Hashimoto’s Thyroiditis: Observations from CROHT Biobank. Nutrients 2021, 13, 2793. [Google Scholar] [CrossRef]
 - Zhou, L.; Wang, Y.; Su, J.; An, Y.; Liu, J.; Wang, G. Vitamin D Deficiency Is Associated with Impaired Sensitivity to Thyroid Hormones in Euthyroid Adults. Nutrients 2023, 15, 3697. [Google Scholar] [CrossRef]
 - Ahn, J.H.; Choi, H.; Kim, S.J.; Cho, S.W.; Lee, K.E.; Park, D.J.; Park, Y.J. The association between vitamin D supplementation and the long-term prognosis of differentiated thyroid cancer patients: A retrospective observational cohort study with propensity score matching. Front. Endocrinol. 2023, 14, 1163671. [Google Scholar] [CrossRef]
 - Taheriniya, S.; Arab, A.; Hadi, A.; Fadel, A.; Askari, G. Vitamin D and thyroid disorders: A systematic review and Meta-analysis of observational studies. BMC Endocr. Disord. 2021, 21, 171. [Google Scholar] [CrossRef]
 - Ao, T.; Kikuta, J.; Ishii, M. The Effects of Vitamin D on Immune System and Inflammatory Diseases. Biomolecules 2021, 11, 1624. [Google Scholar] [CrossRef] [PubMed]
 - Wang, W.; Li, Y.; Meng, X. Vitamin D and neurodegenerative diseases. Heliyon 2023, 9, e12877. [Google Scholar] [CrossRef] [PubMed]
 - Bilezikian, J.P.; Formenti, A.M.; Adler, R.A.; Binkley, N.; Bouillon, R.; Lazaretti-Castro, M.; Marcocci, C.; Napoli, N.; Rizzoli, R.; Giustina, A. Vitamin D: Dosing, levels, form, and route of administration: Does one approach fit all? Rev. Endocr. Metab. Disord. 2021, 22, 1201–1218. [Google Scholar] [CrossRef] [PubMed]
 - Vieth, R. Vitamin D supplementation: Cholecalciferol, calcifediol, and calcitriol. Eur. J. Clin. Nutr. 2020, 74, 1493–1497. [Google Scholar] [CrossRef]
 - Ramasamy, I. Vitamin D Metabolism and Guidelines for Vitamin D Supplementation. Clin. Biochem. Rev. 2020, 41, 103–126. [Google Scholar] [CrossRef]
 - Sîrbe, C.; Rednic, S.; Grama, A.; Pop, T.L. An Update on the Effects of Vitamin D on the Immune System and Autoimmune Diseases. Int. J. Mol. Sci. 2022, 23, 9784. [Google Scholar] [CrossRef]
 - Charoenngam, N.; Holick, M.F. Immunologic Effects of Vitamin D on Human Health and Disease. Nutrients 2020, 12, 2097. [Google Scholar] [CrossRef]
 - Fletcher, J.; Bishop, E.L.; Harrison, S.R.; Swift, A.; Cooper, S.C.; Dimeloe, S.K.; Raza, K.; Hewison, M. Autoimmune disease and interconnections with vitamin D. Endocr. Connect. 2022, 11, e210554. [Google Scholar] [CrossRef]
 - Szulc, M.; Świątkowska-Stodulska, R.; Pawłowska, E.; Derwich, M. Vitamin D3 Metabolism and Its Role in Temporomandibular Joint Osteoarthritis and Autoimmune Thyroid Diseases. Int. J. Mol. Sci. 2023, 24, 4080. [Google Scholar] [CrossRef]
 - Bhakat, B.; Pal, J.; Das, S.; Charaborty, S.K.; SircarMedical, N.R. A prospective study to evaluate the possible role of cholecalciferol supplementation on autoimmunity in hashimoto’s thyroiditis. J. Assoc. Physicians India 2023, 71, 1. [Google Scholar]
 - Abouzid, M.; Karazniewicz-Lada, M.; Glowka, F. Genetic Determinants of Vitamin D-Related Disorders; Focus on Vitamin D Receptor. Curr. Drug Metab. 2018, 19, 1042–1052. [Google Scholar] [CrossRef] [PubMed]
 - Siddiq, A.; Naveed, A.K.; Ghaffar, N.; Aamir, M.; Ahmed, N. Association of Pro-Inflammatory Cytokines with Vitamin D in Hashimoto’s Thyroid Autoimmune Disease. Medicina 2023, 59, 853. [Google Scholar] [CrossRef]
 - Jiang, X.; Huang, Y.; Li, Y.; Xia, Y.; Liu, L.; Lin, F.; Shi, Y. Therapeutic effect of vitamin D in Hashimoto’s thyroiditis: A prospective, randomized and controlled clinical trial in China. Am. J. Transl. Res. 2023, 15, 6234–6241. [Google Scholar]
 - Soda, M.; Priante, C.; Pesce, C.; De Maio, G.; Lombardo, M. The Impact of Vitamin D on Immune Function and Its Role in Hashimoto’s Thyroiditis: A Narrative Review. Life 2024, 14, 771. [Google Scholar] [CrossRef]
 - Rizzoli, R. Vitamin D supplementation: Upper limit for safety revisited? Aging Clin. Exp. Res. 2021, 33, 19–24. [Google Scholar] [CrossRef]
 - Janoušek, J.; Pilařová, V.; Macáková, K.; Nomura, A.; Veiga-Matos, J.; Silva, D.D.D.; Remião, F.; Saso, L.; Malá-Ládová, K.; Malý, J.; et al. Vitamin D: Sources, physiological role, biokinetics, deficiency, therapeutic use, toxicity, and overview of analytical methods for detection of vitamin D and its metabolites. Crit. Rev. Clin. Lab. Sci. 2022, 59, 517–554. [Google Scholar] [CrossRef]
 - De Vincentis, S.; Russo, A.; Milazzo, M.; Lonardo, A.; De Santis, M.C.; Rochira, V.; Simoni, M.; Madeo, B. How Much Vitamin D is Too Much? A Case Report and Review of the Literature. Endocr. Metab. Immune Disord. Drug Targets 2021, 21, 1653–1659. [Google Scholar] [CrossRef]
 - Pizzini, C.; Ossato, A.; Realdon, N.; Tessari, R. Case Report: Nephrocalcinosis in an infant due to vitamin-D food supplement overdose. Front. Pediatr. 2024, 12, 1485814. [Google Scholar] [CrossRef]
 - Agliardi, C.; Guerini, F.R.; Bolognesi, E.; Zanzottera, M.; Clerici, M. VDR gene single nucleotide polymorphisms and autoimmunity: A narrative review. Biology 2023, 12, 916. [Google Scholar] [CrossRef]
 - Lemke, D.; Klement, R.J.; Schweiger, F.; Schweiger, B.; Spitz, J. Vitamin D Resistance as a Possible Cause of Autoimmune Diseases: A Hypothesis Confirmed by a Therapeutic High-Dose Vitamin D Protocol. Front. Immunol. 2021, 12, 655739. [Google Scholar] [CrossRef] [PubMed]
 - Fernandez Lahore, G.; Raposo, B.; Lagerquist, M.; Ohlsson, C.; Sabatier, P.; Xu, B.; Aoun, M.; James, J.; Cai, X.; Zubarev, R.A.; et al. Vitamin D3 receptor polymorphisms regulate T cells and T cell-dependent inflammatory diseases. Proc. Natl. Acad. Sci. USA 2020, 117, 24986–24997. [Google Scholar] [CrossRef] [PubMed]
 - Gallo, D.; Mortara, L.; Gariboldi, M.B.; Cattaneo, S.A.M.; Rosetti, S.; Gentile, L.; Noonan, D.M.; Premoli, P.; Cusini, C.; Tanda, M.L.; et al. Immunomodulatory effect of vitamin D and its potential role in the prevention and treatment of thyroid autoimmunity: A narrative review. J. Endocrinol. Investig. 2020, 43, 413–429. [Google Scholar] [CrossRef] [PubMed]
 


| VDR Polymorphism Region | Polymorphism Name | Effect | Result | 
|---|---|---|---|
| exon | FokI (rs10735810/rs2228570) | production of a shortened protein | increased transcriptional activity of the protein | 
| exon | TaqI (rs731236) | affects VDR gene methylation status | altered gene transcription | 
| intron | ApaI (rs7975232) | affects transcript stability | altered VDR protein translation and density status | 
| intron | BsmI (rs1544410) | affects transcript stability | altered VDR protein translation and density status | 
| promoter | GATA (rs4516035) | disruption of the binding to the GATA binding site | reduced VDR promoter activity | 
| promoter | Cdx2 (rs11568820) | changes overall activity and VDR transcription | altered active (bonded to VDR) vitamin D activity | 
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.  | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pakosiński, M.; Żyła, M.; Kamieniak, A.; Kluz, N.; Gil-Kulik, P. Vitamin D Receptor Polymorphisms and Immunological Effects of Vitamin D in Hashimoto’s Thyroiditis. Int. J. Mol. Sci. 2025, 26, 10576. https://doi.org/10.3390/ijms262110576
Pakosiński M, Żyła M, Kamieniak A, Kluz N, Gil-Kulik P. Vitamin D Receptor Polymorphisms and Immunological Effects of Vitamin D in Hashimoto’s Thyroiditis. International Journal of Molecular Sciences. 2025; 26(21):10576. https://doi.org/10.3390/ijms262110576
Chicago/Turabian StylePakosiński, Mateusz, Martyna Żyła, Anna Kamieniak, Natalia Kluz, and Paulina Gil-Kulik. 2025. "Vitamin D Receptor Polymorphisms and Immunological Effects of Vitamin D in Hashimoto’s Thyroiditis" International Journal of Molecular Sciences 26, no. 21: 10576. https://doi.org/10.3390/ijms262110576
APA StylePakosiński, M., Żyła, M., Kamieniak, A., Kluz, N., & Gil-Kulik, P. (2025). Vitamin D Receptor Polymorphisms and Immunological Effects of Vitamin D in Hashimoto’s Thyroiditis. International Journal of Molecular Sciences, 26(21), 10576. https://doi.org/10.3390/ijms262110576
        
