The Role of Mitochondria in Obstructive Sleep Apnea: Implications for the Upper Airway Muscles
Abstract
1. Introduction
2. Literature Search and Study Selection
3. Obstructive Sleep Apnea: Clinical and Pathophysiological Aspects
4. Upper Airway Muscle Function in OSA: Anatomy and Physiology
5. Hypoxia and Mitochondria
5.1. Metabolic Adaptation
| HIF-1 Target | Molecular Function | Consequence Under Hypoxia |
|---|---|---|
| PDK (↑) [55] | Inhibits pyruvate dehydrogenase, preventing conversion of pyruvate to acetyl-CoA | Reduces TCA cycle activity and shifts metabolism toward glycolysis |
| LDHA (↑) [57,58] | Converts pyruvate to lactate and regenerates NAD⁺ for glycolysis | Supports anaerobic glycolysis and reduces mitochondrial respiration |
| COX4-2 (↑) [59] | Alternative subunit of Complex IV with improved efficiency under low oxygen | Enhances ETC efficiency during hypoxia; replaces COX4-1 |
| Lon (↑) [59] | Mitochondrial protease targeting COX4-1 for degradation | Enables COX4-2 incorporation into Complex IV |
| HIGD1A (↑) [60,61] | Modulates Complex IV assembly and activity | Increases Complex IV activity under hypoxia |
| NDUFA4L2 (↑) [62] | Atypical Complex I subunit that suppresses its activity | Decreases Complex I activity |
| TMEM26B (↓) [63] | Complex I assembly factor | Degraded under hypoxia, reducing Complex I assembly and function |
MIR210
| Iron–sulfur cluster assembly proteins for ETC Complexes I–III | Disrupts proper ETC function across multiple complexes |
MIR210
| Subunit of Complex I | Reduces ETC efficiency |
MIR210
| Subunit of Complex II (succinate dehydrogenase) | Decreases Complex II activity |
MIR210
| Complex IV assembly protein | Reduction of oxygen consumption |
5.2. Adaptations in Mitochondrial Quality Control
| Category | Protein/Gene/miRNA | Function | Repercussion in Hypoxia |
|---|---|---|---|
| Fission machinery | DRP1 | Mediates mitochondrial fission via recruitment to the outer membrane | Activated and recruited by FUNDC1; promotes mitochondrial fragmentation and mitophagy [86] |
| Mitophagy receptor | FUNDC1 | Outer membrane protein that recruits DRP1 and acts as a mitophagy receptor | Upregulated by hypoxia; enhances both fission and mitophagy [95,96] |
| Fusion machinery | OPA1 | Mediates inner membrane fusion and maintains cristae structure | Cleaved/disassembled by BNIP3 interaction; promotes fragmentation and mitophagy [91,92] |
| Fusion modulator | HIGD-1A | Inhibits OPA1 cleavage | Maintains fusion by protecting OPA1 under hypoxia [93] |
| E3 ubiquitin ligase | SIAH2 | Promotes degradation of AKAP121 and prolyl hydroxylases | Enhances DRP1 activity and stabilizes HIF1, supporting adaptation to hypoxia [71] |
| Mitophagy regulator | BNIP3 | Promotes mitophagy and disrupts OPA1 activity | Induces mitochondrial fragmentation and facilitates mitophagy [90] |
| Micro RNA | MIR137 | Negatively regulates FUNDC1 expression | Downregulated under hypoxia, relieving inhibition of FUNDC1 and promoting mitophagy [87] |
| MIR17-5p | Targets Mfn2; regulates fusion, mitochondrial integrity, and cell proliferation | Downregulated in hypoxia; reduces fusion, impairs function, increases apoptosis susceptibility [89] |
5.3. Reactive Oxygen Species Generation and Signaling
6. Mitochondrial Alterations in OSA: Influence on Upper Airway Muscles
6.1. Muscle and Mitochondrial Structure
6.1.1. Human Studies
6.1.2. Experimental Models
| Specie (Muscle) | Model | Hypoxia Exposure Conditions | Key Alterations |
|---|---|---|---|
| Human (palatopharyngeus) | OSA | disordered muscle fibers, decreased number of mitochondria, mitochondrial swelling, vacuolization and morphological changes [129] | |
| Human (pharyngeal constrictor) | OSA | Disordered myofibrils with lipid droplets, mitochondrial swelling and vacuolization [130] | |
| Rat (genioglossus) | CIH model—N2 dilution chamber | 4–5% O2, 15–20 s duration, 30 cycles/h, 8 h/day, 5 weeks | Myofibril lysis/degeneration; connective tissue proliferation; mitochondrial swelling; cristae disruption [133] |
| Rat (genioglossus) | CIH model—N2 dilution chamber | 4–5% O2, 15–20 s duration, 30 cycles/h, 8 h/day, 5 weeks | Reduced mitochondrial density; fewer subsarcolemmal and intra-myofibrillar mitochondria; swelling; reduced matrix density; disarrayed cristae [142] |
| Rat (genioglossus) | CIH model—N2 dilution chamber | 10% O2, 45 s duration, 20 cycles/h, 8 h/day, 4 weeks | Myofibril disorganization and lysis; vacuolar degeneration; mitochondrial swelling; cristae disruption; reduced mitochondrial number and area [144] |
| Rat (genioglossus) | CIH model—N2 dilution chamber | 4–5% O2, 15–20 s duration, 30 cycles/h, 8 h/day, 5 weeks | Autophagosomes, with cytoplasmic organelles and other vesicles encapsulated in vacuoles [145] |
| Rat (genioglossus) | Obesity mouse model Lepob/ob | - | Lipid droplets; subsarcolemmal mitochondria accumulation; lipid droplet in mitochondria. In males: intermyofibrillar mitochondria accumulation; abnormal cristae morphology [143] |
| Mouse (genioglossus) | HFD-induced obese mouse | - | Vague myofibril structure; reduced mitochondria number; swollen mitochondria; cristae disintegration [138] |
6.2. Mitochondrial Function
6.2.1. Human Studies
6.2.2. Experimental Models
| Pathway/Protein/Enzyme | Reported Change | Muscle (Model) | Methods |
|---|---|---|---|
| Glucose uptake | ↓ | Genioglossus (human) | PET/FDG imaging [149] |
| Glycolysis | |||
| HK | No change (vs. snorers) | Musculus uvulae (human) | Enzyme assays [115] |
| PFK | No change (vs. snorers) | Genioglossus (human) | Enzyme assays [116] |
| ↑ (vs. snorers) | Musculus uvulae (human) | Enzyme assays [115,116] | |
| GAPDH | No change (vs. snorers) | Genioglossus (human) | Enzyme assays [116] |
| ↑ (vs. snorers) | Musculus uvulae (human) | Enzyme assays [115,116] | |
| No change | Sternohyoid (rat, CIH) | Histochemistry [153] | |
| No change | Sternohyoid (rat, CIH) | Enzyme assays [151] | |
| PYG | No change (vs. snorers) | Genioglossus (human) | Enzyme assays [116] |
| ↑ (vs. snorers) | Musculus uvulae (human) | Enzyme assays [116] | |
| TCA Cycle | |||
| CS | No change (vs. snorers) | Musculus uvulae (human) | Enzyme assays [115] |
| No change | Sternohyoid (mouse, CIH) | Enzyme assays [150,151] | |
| ↓ | Genioglossus (rat, CIH) | mRNA expression [142] | |
| OXPHOS | |||
| Complex I | ↓ Activity | Genioglossus (rat, CIH) | Enzyme assays [133] |
| ↓ NDUFC2, NDUFAB1 | Genioglossus (mouse, CIH) | Proteomics [155] | |
| Complex II | ↓ SDHA | Genioglossus (mouse, CIH) | IHC [154] |
| No change in SDH activity | Sternohyoid (rat, CIH) | Histochemistry [139,140,153] | |
| Complex III | ↓ UQCRC2 (Core protein 2) * | Genioglossus (rat, HFD) | WB [138] |
| ↓ UQCRB | Genioglossus (mouse, CIH) | Proteomics [155] | |
| Complex IV | COX negative in fibers (1.4%) | Musculus uvulae (human) | Histochemistry [152] |
| COX negative in fibers (3.2%) | Palatopharyngeus (human) | Histochemistry [152] | |
| No change (vs. snorers) | Musculus uvulae (human) | Enzyme assays [115] | |
| ↓ COX (low % fibers) | Genioglossus (rat, CIH) | Histochemistry [142] | |
| ↓ Activity | Genioglossus (rat, CIH) | Enzyme assays [133] | |
| ↓ COX4I1 | Genioglossus (rat, CIH) | mRNA expression [142] | |
| ↓ COX7C, COX4I2, COX6C | Genioglossus (mouse, CIH) | Proteomics [155] | |
| ↓ COX17 (assembly protein) | Genioglossus (mouse, CIH) | Proteomics [155] | |
| Complex V | ↓ ATP5F1A (α subunit) * | Genioglossus (rat, HFD) | WB [138] |
| ↓ ATP5MF, ATP5ME, ATP5MG | Genioglossus (mouse, CIH) | Proteomics [155] | |
| Mitochondrial function | |||
| ΔΨm (Mitochondrial membrane potential) | ↓ | Genioglossus (rat, CIH) | Fluorescent probe [133] |
| ANT1 | ↓ | Genioglossus (rat, CIH) | mRNA expression [142] |
6.3. Mitochondrial Quality Control
6.3.1. Human Studies
6.3.2. Experimental Models
6.4. Oxidative Stress
6.4.1. Human Studies
| Process | Marker | Sample | Basal | With CPAP | Study |
|---|---|---|---|---|---|
| Protein oxidation | Protein carbonyl | Blood | No change | n.d. | [170] |
| Protein carbonylation | Uvula, palatopharyngeus | Present | n.d. | [162] | |
| AOPP | Blood | ↑ | No change | [165] | |
| Lipid peroxidation | 8-Isoprostane | Exhaled breath and blood | ↑ | ↓ | [166] |
| 8-Isoprostane | Blood | No change | n.d. | [171] | |
| 8-Isoprostane | Blood | No change | n.d. | [170] | |
| MDA | Blood | ↑ | ↓ | [172] | |
| TBARS | Blood | No change | n.d. | [171] | |
| TBARS | Blood | ↑ | n.d. | [168] | |
| TBARS | Blood | No change | n.d. | [170] | |
| ROS production | Hydrogen peroxide | Blood | ↑ | ↓ | [167] |
| Hydrogen peroxide | Exhaled breath condensate (children) | ↑ | n.d. | [169] | |
| Antioxidant defense | GSH | Blood | ↑ | n.d. | [170] |
| GSH | Blood | ↓ | [165] | ||
| Catalase | Blood | No change | n.d. | [170] | |
| SOD | Blood | No change | n.d. | [170] | |
| SOD | Blood | ↓ | n.d. | [168] | |
| FRAP | Blood | ↓ | ↑ | [165] | |
| TAS | Blood | ↓ | n.d. | [168] | |
| TAC | Blood | No change | n.d. | [170] |
6.4.2. Experimental Models
7. Conclusions and Future Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| 4-HNE | 4-hydroxynonenal |
| 8-OHdG | 8-hydroxy-2′-deoxyguanosine |
| Acetyl-CoA | Acetyl Coenzyme-A |
| AHI | Apnea–hypopnea index |
| AKAP121 | A-kinase anchoring protein 121 |
| ANT1 | Adenine nucleotide translocator |
| AOPP | Advanced oxidation protein products |
| ATP | Adenosine triphosphate |
| Bax | BCL2-associated X protein |
| Bcl-2 | B-cell lymphoma 2 |
| BNIP3 | BCL2 Interacting Protein 3 |
| BSO | Buthathionine sulfoximine |
| CIH | Chronic intermittent hypoxia |
| COX | Cytochrome c oxidase |
| COX10 | Cytochrome c oxidase assembly factor heme A:farnesyltransferase COX10 |
| COX4 | Cytochrome c oxidase subunit IV |
| COX4-1 | Cytochrome c oxidase subunit IV isoform 1 |
| COX4-2 | Cytochrome c oxidase subunit IV isoform 2 |
| CPAP | Continuous positive airway pressure |
| Cyt-c | Cytochrome c |
| DCFH-DA | 2′,7′-dichlorodihydrofluorescein diacetate |
| DHE | Dihydroethidium |
| DRP1 | Dynamin-related protein 1 |
| ERRα | Estrogen-related receptor α |
| ETC | Electron transport chain |
| FADH2 | Flavine adenine dinucleotide reduced form |
| FIS1 | Fission protein 1 |
| FRAP | Ferric reducing antioxidant power |
| FUNDC1 | FUN14 domain-containing protein 1 |
| GAPDH | Glyceraldehyde-3-phosphate dehydrogenase |
| GSH | glutathione |
| HFD | High-fat diet |
| HIF-1α | Hypoxia-inducible factor α-subunit |
| HIF-1β | Hypoxia-inducible factor β-subunit |
| HIFs | Hypoxia-inducible factors |
| HIGD1A | Hypoxia-inducible domain family member 1A |
| ISCU | Iron–sulfur cluster assembly enzyme |
| LC3-II | Microtubule-associated protein 1 light chain 3-II |
| LDHA | Lactate dhydrogenase A |
| MDA | Malondialdehyde |
| MFF | Mitochondrial fission factor |
| MFN1 | Mitofusin 1 |
| MFN2 | Mitofusin 2 |
| MID49 | Mitochondrial dynamics protein 49 |
| MID51 | Mitochondrial dynamics protein 51 |
| MIR | microRNA |
| MitoQ | mitoquinone |
| MMEL | Megamitochondria engulfing lysosome |
| MSD | Mitochondrial self-digestion |
| mtDNA | Mitochondrial DNA |
| NAC | N-acetylcysteine |
| NADH | Nicotinamide adenine dinucleotide |
| NDUFA2 | Nadh:ubiquinone oxidoreductase subunit a2 |
| NDUFA4 | NADH-ubiquinone oxidoreductase MLRQ subunit |
| NDUFA4L2 | NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 4-like 2 |
| NRF1 | Nuclear respiratory factor 1 |
| OGG1 | 8-oxoguanine DNA glycosylase |
| OPA1 | Optic atrophy 1 |
| OSA | Obstructive sleep apnea |
| OXPHOS | Oxidative phosphorylation |
| PDH | Pyruvate dehydrogenase |
| PDK | Pyruvate dehydrogenase kinase |
| PGC-1α | Peroxisome proliferative activated receptor gamma coactivator 1 alpha |
| PHD | Prolyl hydroxylase domain |
| Raptor | Regulatory-associated protein of mTOR |
| REM | Rapid eye movement sleep |
| ROS | Reactive oxygen species |
| SDH | Succinate dehydrogenase |
| SDHD | Succinate dehydrogenase complex subunit D |
| SIAH2 | Seven in Absentia homolog 2 |
| SIRT1 | Sirtuin 1 |
| SOD | Superoxide dismutase |
| TAS | Total antioxidant status |
| TAC | Total antioxidant capacity |
| TCA | tricarboxylic acid |
| TMEM126B | Transmembrane protein 126B |
| TSC1 | Tuberous sclerosis complex subunit 1 |
| ULK1 | Unc-51-like autophagy activating kinase 1 |
| ΔΨm | Mitochondrial membrane potential |
References
- Jordan, A.S.; McSharry, D.G.; Malhotra, A. Adult obstructive sleep apnoea. Lancet 2014, 383, 736–747. [Google Scholar] [CrossRef]
- Xu, X.; Zhen, P.H.; Yu, F.C.; Wang, T.; Li, S.N.; Wei, Q.; Tong, J.Y. Chronic intermittent hypoxia accelerates cardiac dysfunction and cardiac remodeling during cardiac pressure overload in mice and can be alleviated by PHD3 overexpression. Front. Cardiovasc. Med. 2022, 9, 974345. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, S.X.; Gozal, D. Reactive oxygen species and the brain in sleep apnea. Respir. Physiol. Neurobiol. 2010, 174, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Lavie, L. Oxidative stress in obstructive sleep apnea and intermittent hypoxia—Revisited—The bad ugly and good: Implications to the heart and brain. Sleep Med. Rev. 2015, 20, 27–45. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Lee, Y.Y.; Gulla, E.M.; Potter, A.; Kitzmiller, J.; Ruben, M.D.; Salomonis, N.; Whitsett, J.A.; Francey, L.J.; Hogenesch, J.B.; et al. Short-term exposure to intermittent hypoxia leads to changes in gene expression seen in chronic pulmonary disease. eLife 2021, 10, e63003. [Google Scholar] [CrossRef]
- Xu, L.; Yang, Y.; Chen, J. The role of reactive oxygen species in cognitive impairment associated with sleep apnea. Exp. Ther. Med. 2020, 20, 4. [Google Scholar] [CrossRef]
- Zhang, K.; Ma, D.; Wu, Y.; Xu, Z. Impact of Chronic Intermittent Hypoxia on Cognitive Function and Hippocampal Neurons in Mice: A Study of Inflammatory and Oxidative Stress Pathways. Nat. Sci. Sleep 2024, 16, 2029–2043. [Google Scholar] [CrossRef]
- Prabhakar, N.R.; Peng, Y.J.; Nanduri, J. Hypoxia-inducible factors and obstructive sleep apnea. J. Clin. Investig. 2020, 130, 5042–5051. [Google Scholar] [CrossRef]
- Ayappa, I.; Rapoport, D.M. The upper airway in sleep: Physiology of the pharynx. Sleep Med. Rev. 2003, 7, 9–33. [Google Scholar] [CrossRef]
- Guilleminault, C.; Eldridge, F.L.; Simmon, F.B.; Dement, W.C. Sleep apnea syndrome. Can it induce hemodynamic changes? West. J. Med. 1975, 123, 7–16. [Google Scholar]
- Berry, R.B.; Gleeson, K. Respiratory arousal from sleep: Mechanisms and significance. Sleep 1997, 20, 654–675. [Google Scholar] [CrossRef] [PubMed]
- Kapur, V.K.; Auckley, D.H.; Chowdhuri, S.; Kuhlmann, D.C.; Mehra, R.; Ramar, K.; Harrod, C.G. Clinical Practice Guideline for Diagnostic Testing for Adult Obstructive Sleep Apnea: An American Academy of Sleep Medicine Clinical Practice Guideline. J. Clin. Sleep Med. 2017, 13, 479–504. [Google Scholar] [CrossRef] [PubMed]
- Young, T.; Palta, M.; Dempsey, J.; Skatrud, J.; Weber, S.; Badr, S. The occurrence of sleep-disordered breathing among middle-aged adults. N. Engl. J. Med. 1993, 328, 1230–1235. [Google Scholar] [CrossRef] [PubMed]
- Senaratna, C.V.; Perret, J.L.; Lodge, C.J.; Lowe, A.J.; Campbell, B.E.; Matheson, M.C.; Hamilton, G.S.; Dharmage, S.C. Prevalence of obstructive sleep apnea in the general population: A systematic review. Sleep Med. Rev. 2017, 34, 70–81. [Google Scholar] [CrossRef]
- Yeghiazarians, Y.; Jneid, H.; Tietjens, J.R.; Redline, S.; Brown, D.L.; El-Sherif, N.; Mehra, R.; Bozkurt, B.; Ndumele, C.E.; Somers, V.K. Obstructive Sleep Apnea and Cardiovascular Disease: A Scientific Statement From the American Heart Association. Circulation 2021, 144, e56–e67, Erratum in Circulation 2022, 145, e775. [Google Scholar] [CrossRef]
- Li, M.; Zou, X.; Lu, H.; Li, F.; Xin, Y.; Zhang, W.; Li, B.; Wang, Y. Association of sleep apnea and depressive symptoms among US adults: A cross-sectional study. BMC Public Health 2023, 23, 427. [Google Scholar] [CrossRef]
- Charokopos, A.; Card, M.E.; Gunderson, C.; Steffens, C.; Bastian, L.A. The Association of Obstructive Sleep Apnea and Pain Outcomes in Adults: A Systematic Review. Pain Med. 2018, 19, S69–S75. [Google Scholar] [CrossRef]
- Ricordeau, F.; Chouchou, F.; Pichot, V.; Roche, F.; Petitjean, T.; Gormand, F.; Bastuji, H.; Charbonnier, E.; Le Cam, P.; Stauffer, E.; et al. Impaired post-sleep apnea autonomic arousals in patients with drug-resistant epilepsy. Clin. Neurophysiol. 2024, 160, 1–11. [Google Scholar] [CrossRef]
- Blaszczyk, B.; Martynowicz, H.; Wieckiewicz, M.; Straburzynski, M.; Antolak, M.; Budrewicz, S.; Staszkiewicz, M.; Kopszak, A.; Waliszewska-Prosol, M. Prevalence of headaches and their relationship with obstructive sleep apnea (OSA)—Systematic review and meta-analysis. Sleep Med. Rev. 2024, 73, 101889. [Google Scholar] [CrossRef]
- Pase, M.P.; Harrison, S.; Misialek, J.R.; Kline, C.E.; Cavuoto, M.; Baril, A.A.; Yiallourou, S.; Bisson, A.; Himali, D.; Leng, Y.; et al. Sleep Architecture, Obstructive Sleep Apnea, and Cognitive Function in Adults. JAMA Netw. Open 2023, 6, e2325152. [Google Scholar] [CrossRef]
- Yang, C.; Zhou, Y.; Liu, H.; Xu, P. The Role of Inflammation in Cognitive Impairment of Obstructive Sleep Apnea Syndrome. Brain Sci. 2022, 12, 1303. [Google Scholar] [CrossRef] [PubMed]
- Messineo, L.; Bakker, J.P.; Cronin, J.; Yee, J.; White, D.P. Obstructive sleep apnea and obesity: A review of epidemiology, pathophysiology and the effect of weight-loss treatments. Sleep Med. Rev. 2024, 78, 101996. [Google Scholar] [CrossRef] [PubMed]
- Figorilli, M.; Velluzzi, F.; Redolfi, S. Obesity and sleep disorders: A bidirectional relationship. Nutr. Metab. Cardiovasc. Dis. 2025, 35, 104014. [Google Scholar] [CrossRef] [PubMed]
- Kheirandish-Gozal, L.; Gozal, D. Obstructive Sleep Apnea and Inflammation: Proof of Concept Based on Two Illustrative Cytokines. Int. J. Mol. Sci. 2019, 20, 459. [Google Scholar] [CrossRef]
- Young, T. Rationale, design and findings from the Wisconsin Sleep Cohort Study: Toward understanding the total societal burden of sleep disordered breathing. Sleep Med. Clin. 2009, 4, 37–46. [Google Scholar] [CrossRef]
- Roumelioti, M.E.; Brown, L.K.; Unruh, M.L. The Relationship Between Volume Overload in End-Stage Renal Disease and Obstructive Sleep Apnea. Semin. Dial. 2015, 28, 508–513. [Google Scholar] [CrossRef]
- Eckert, D.J.; Malhotra, A. Pathophysiology of adult obstructive sleep apnea. Proc. Am. Thorac. Soc. 2008, 5, 144–153. [Google Scholar] [CrossRef]
- Beecroft, J.M.; Hoffstein, V.; Pierratos, A.; Chan, C.T.; McFarlane, P.A.; Hanly, P.J. Pharyngeal narrowing in end-stage renal disease: Implications for obstructive sleep apnoea. Eur. Respir. J. 2007, 30, 965–971. [Google Scholar] [CrossRef]
- Kasai, T.; Bradley, T.D. Obstructive sleep apnea and heart failure: Pathophysiologic and therapeutic implications. JACC 2011, 57, 119–127. [Google Scholar] [CrossRef]
- Levy, P.; Naughton, M.T.; Tamisier, R.; Cowie, M.R.; Bradley, T.D. Sleep apnoea and heart failure. Eur. Respir. J. 2022, 59, 2101640. [Google Scholar] [CrossRef]
- Menon, T.; Kalra, D.K. Sleep Apnea and Heart Failure-Current State-of-The-Art. Int. J. Mol. Sci. 2024, 25, 5251. [Google Scholar] [CrossRef]
- Chadda, K.R.; Fazmin, I.T.; Ahmad, S.; Valli, H.; Edling, C.E.; Huang, C.L.; Jeevaratnam, K. Arrhythmogenic mechanisms of obstructive sleep apnea in heart failure patients. Sleep 2018, 41, zsy136. [Google Scholar] [CrossRef] [PubMed]
- Khoo, M.C. Determinants of ventilatory instability and variability. Respir. Physiol. 2000, 122, 167–182. [Google Scholar] [CrossRef] [PubMed]
- Younes, M. Role of respiratory control mechanisms in the pathogenesis of obstructive sleep disorders. J. Appl. Physiol. 2008, 105, 1389–1405. [Google Scholar] [CrossRef] [PubMed]
- Eckert, D.J.; White, D.P.; Jordan, A.S.; Malhotra, A.; Wellman, A. Defining phenotypic causes of obstructive sleep apnea. Identification of novel therapeutic targets. Am. J. Respir. Crit. Care Med. 2013, 188, 996–1004. [Google Scholar] [CrossRef]
- Mayer, P.; Herrero Babiloni, A.; Aube, J.L.; Kaddaha, Z.; Marshansky, S.; Rompre, P.H.; Jobin, V.; Lavigne, G.J. Autonomic Arousals as Surrogates for Cortical Arousals Caused by Respiratory Events: A Methodological Optimization Study in the Diagnosis of Sleep Breathing Disorders. Nat. Sci. Sleep 2019, 11, 423–431. [Google Scholar] [CrossRef]
- Espinoza, H.; Thornton, A.T.; Sharp, D.; Antic, R.; McEvoy, R.D. Sleep fragmentation and ventilatory responsiveness to hypercapnia. Am. Rev. Respir. Dis. 1991, 144, 1121–1124. [Google Scholar] [CrossRef]
- Sullivan, C.E.; Issa, F.G.; Berthon-Jones, M.; Eves, L. Reversal of obstructive sleep apnoea by continuous positive airway pressure applied through the nares. Lancet 1981, 317, 862–865. [Google Scholar] [CrossRef]
- Patil, S.P.; Ayappa, I.A.; Caples, S.M.; Kimoff, R.J.; Patel, S.R.; Harrod, C.G. Treatment of Adult Obstructive Sleep Apnea With Positive Airway Pressure: An American Academy of Sleep Medicine Systematic Review, Meta-Analysis, and GRADE Assessment. J. Clin. Sleep Med. 2019, 15, 301–334. [Google Scholar] [CrossRef]
- Boppana, T.K.; Mittal, S.; Madan, K.; Tiwari, P.; Mohan, A.; Hadda, V. Antioxidant therapies for obstructive sleep apnea: A systematic review and meta-analysis. Sleep Breath. 2024, 28, 1513–1522. [Google Scholar] [CrossRef]
- Arredondo, E.; DeLeon, M.; Masozera, I.; Panahi, L.; Udeani, G.; Tran, N.; Nguyen, C.K.; Atphaisit, C.; de la Sota, B.; Gonzalez, G., Jr.; et al. Overview of the Role of Pharmacological Management of Obstructive Sleep Apnea. Medicina 2022, 58, 225. [Google Scholar] [CrossRef] [PubMed]
- Luu, S.; Chan, D.; Marshall, N.S.; Phillips, C.L.; Grunstein, R.R.; Yee, B.J. Pharmacotherapy for obstructive sleep apnea: A critical review of randomized placebo-controlled trials. Sleep Med. Rev. 2025, 84, 102169. [Google Scholar] [CrossRef] [PubMed]
- Jordan, A.S.; White, D.P. Pharyngeal motor control and the pathogenesis of obstructive sleep apnea. Respir. Physiol. Neurobiol. 2008, 160, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Hockel, M.; Vaupel, P. Tumor hypoxia: Definitions and current clinical, biologic, and molecular aspects. J. Natl. Cancer Inst. 2001, 93, 266–276. [Google Scholar] [CrossRef]
- Span, P.N.; Bussink, J. Biology of hypoxia. Semin. Nucl. Med. 2015, 45, 101–109. [Google Scholar] [CrossRef]
- Michiels, C. Physiological and pathological responses to hypoxia. Am. J. Pathol. 2004, 164, 1875–1882. [Google Scholar] [CrossRef]
- Luo, Z.; Tian, M.; Yang, G.; Tan, Q.; Chen, Y.; Li, G.; Zhang, Q.; Li, Y.; Wan, P.; Wu, J. Hypoxia signaling in human health and diseases: Implications and prospects for therapeutics. Signal Transduct. Target. Ther. 2022, 7, 218. [Google Scholar] [CrossRef]
- Guillemin, K.; Krasnow, M.A. The hypoxic response: Huffing and HIFing. Cell 1997, 89, 9–12. [Google Scholar] [CrossRef]
- Fuhrmann, D.C.; Brune, B. Mitochondrial composition and function under the control of hypoxia. Redox Biol. 2017, 12, 208–215. [Google Scholar] [CrossRef]
- Arias, C.F.; Acosta, F.J.; Bertocchini, F.; Fernandez-Arias, C. Redefining the role of hypoxia-inducible factors (HIFs) in oxygen homeostasis. Commun. Biol. 2025, 8, 446. [Google Scholar] [CrossRef]
- Lee, P.; Chandel, N.S.; Simon, M.C. Cellular adaptation to hypoxia through hypoxia inducible factors and beyond. Nat. Rev. Mol. Cell Biol. 2020, 21, 268–283. [Google Scholar] [CrossRef] [PubMed]
- Timon-Gomez, A.; Barrientos, A. Mitochondrial respiratory chain composition and organization in response to changing oxygen levels. J. Life Sci. 2020, 2, 1–17. [Google Scholar] [CrossRef]
- Gray, L.R.; Tompkins, S.C.; Taylor, E.B. Regulation of pyruvate metabolism and human disease. Cell. Mol. Life Sci. 2014, 71, 2577–2604. [Google Scholar] [CrossRef]
- Saraste, M. Oxidative phosphorylation at the fin de siecle. Science 1999, 283, 1488–1493. [Google Scholar] [CrossRef]
- Papandreou, I.; Cairns, R.A.; Fontana, L.; Lim, A.L.; Denko, N.C. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab. 2006, 3, 187–197. [Google Scholar] [CrossRef]
- Kim, J.W.; Tchernyshyov, I.; Semenza, G.L.; Dang, C.V. HIF-1-mediated expression of pyruvate dehydrogenase kinase: A metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 2006, 3, 177–185. [Google Scholar] [CrossRef]
- Semenza, G.L.; Jiang, B.H.; Leung, S.W.; Passantino, R.; Concordet, J.P.; Maire, P.; Giallongo, A. Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. J. Biol. Chem. 1996, 271, 32529–32537. [Google Scholar] [CrossRef]
- Firth, J.D.; Ebert, B.L.; Ratcliffe, P.J. Hypoxic regulation of lactate dehydrogenase A. Interaction between hypoxia-inducible factor 1 and cAMP response elements. J. Biol. Chem. 1995, 270, 21021–21027. [Google Scholar] [CrossRef]
- Fukuda, R.; Zhang, H.; Kim, J.W.; Shimoda, L.; Dang, C.V.; Semenza, G.L. HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell 2007, 129, 111–122. [Google Scholar] [CrossRef]
- Hayashi, T.; Asano, Y.; Shintani, Y.; Aoyama, H.; Kioka, H.; Tsukamoto, O.; Hikita, M.; Shinzawa-Itoh, K.; Takafuji, K.; Higo, S.; et al. Higd1a is a positive regulator of cytochrome c oxidase. Proc. Natl. Acad. Sci. USA 2015, 112, 1553–1558. [Google Scholar] [CrossRef] [PubMed]
- Timon-Gomez, A.; Garlich, J.; Stuart, R.A.; Ugalde, C.; Barrientos, A. Distinct Roles of Mitochondrial HIGD1A and HIGD2A in Respiratory Complex and Supercomplex Biogenesis. Cell Rep. 2020, 31, 107607. [Google Scholar] [CrossRef]
- Tello, D.; Balsa, E.; Acosta-Iborra, B.; Fuertes-Yebra, E.; Elorza, A.; Ordonez, A.; Corral-Escariz, M.; Soro, I.; Lopez-Bernardo, E.; Perales-Clemente, E.; et al. Induction of the mitochondrial NDUFA4L2 protein by HIF-1alpha decreases oxygen consumption by inhibiting Complex I activity. Cell Metab. 2011, 14, 768–779. [Google Scholar] [CrossRef]
- Fuhrmann, D.C.; Wittig, I.; Drose, S.; Schmid, T.; Dehne, N.; Brune, B. Degradation of the mitochondrial complex I assembly factor TMEM126B under chronic hypoxia. Cell. Mol. Life Sci. 2018, 75, 3051–3067. [Google Scholar] [CrossRef] [PubMed]
- Chan, S.Y.; Zhang, Y.Y.; Hemann, C.; Mahoney, C.E.; Zweier, J.L.; Loscalzo, J. MicroRNA-210 controls mitochondrial metabolism during hypoxia by repressing the iron-sulfur cluster assembly proteins ISCU1/2. Cell Metab. 2009, 10, 273–284. [Google Scholar] [CrossRef] [PubMed]
- Merlo, A.; de Quiros, S.B.; Secades, P.; Zambrano, I.; Balbin, M.; Astudillo, A.; Scola, B.; Aristegui, M.; Suarez, C.; Chiara, M.D. Identification of a signaling axis HIF-1alpha/microRNA-210/ISCU independent of SDH mutation that defines a subgroup of head and neck paragangliomas. J. Clin. Endocrinol. Metab. 2012, 97, E2194–E2200. [Google Scholar] [CrossRef] [PubMed]
- Dahia, P.L.; Ross, K.N.; Wright, M.E.; Hayashida, C.Y.; Santagata, S.; Barontini, M.; Kung, A.L.; Sanso, G.; Powers, J.F.; Tischler, A.S.; et al. A HIF1alpha regulatory loop links hypoxia and mitochondrial signals in pheochromocytomas. PLoS Genet. 2005, 1, e8. [Google Scholar] [CrossRef]
- Anton, L.; DeVine, A.; Polyak, E.; Olarerin-George, A.; Brown, A.G.; Falk, M.J.; Elovitz, M.A. HIF-1alpha Stabilization Increases miR-210 Eliciting First Trimester Extravillous Trophoblast Mitochondrial Dysfunction. Front. Physiol. 2019, 10, 699. [Google Scholar] [CrossRef]
- Puissegur, M.P.; Mazure, N.M.; Bertero, T.; Pradelli, L.; Grosso, S.; Robbe-Sermesant, K.; Maurin, T.; Lebrigand, K.; Cardinaud, B.; Hofman, V.; et al. miR-210 is overexpressed in late stages of lung cancer and mediates mitochondrial alterations associated with modulation of HIF-1 activity. Cell Death Differ. 2011, 18, 465–478. [Google Scholar] [CrossRef]
- Chen, Z.; Li, Y.; Zhang, H.; Huang, P.; Luthra, R. Hypoxia-regulated microRNA-210 modulates mitochondrial function and decreases ISCU and COX10 expression. Oncogene 2010, 29, 4362–4368. [Google Scholar] [CrossRef]
- Ong, S.B.; Subrayan, S.; Lim, S.Y.; Yellon, D.M.; Davidson, S.M.; Hausenloy, D.J. Inhibiting mitochondrial fission protects the heart against ischemia/reperfusion injury. Circulation 2010, 121, 2012–2022. [Google Scholar] [CrossRef]
- Kim, H.; Scimia, M.C.; Wilkinson, D.; Trelles, R.D.; Wood, M.R.; Bowtell, D.; Dillin, A.; Mercola, M.; Ronai, Z.A. Fine-tuning of Drp1/Fis1 availability by AKAP121/Siah2 regulates mitochondrial adaptation to hypoxia. Mol. Cell 2011, 44, 532–544. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Wang, X.; Lan, B.; Gao, Y.; Cai, Y. DRP1, fission and apoptosis. Cell Death Discov. 2025, 11, 150. [Google Scholar] [CrossRef] [PubMed]
- Gottlieb, R.A.; Piplani, H.; Sin, J.; Sawaged, S.; Hamid, S.M.; Taylor, D.J.; de Freitas Germano, J. At the heart of mitochondrial quality control: Many roads to the top. Cell. Mol. Life Sci. 2021, 78, 3791–3801. [Google Scholar] [CrossRef] [PubMed]
- Rambold, A.S.; Kostelecky, B.; Elia, N.; Lippincott-Schwartz, J. Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation. Proc. Natl. Acad. Sci. USA 2011, 108, 10190–10195. [Google Scholar] [CrossRef]
- Giacomello, M.; Pyakurel, A.; Glytsou, C.; Scorrano, L. The cell biology of mitochondrial membrane dynamics. Nat. Rev. Mol. Cell Biol. 2020, 21, 204–224. [Google Scholar] [CrossRef]
- Chen, W.; Zhao, H.; Li, Y. Mitochondrial dynamics in health and disease: Mechanisms and potential targets. Signal Transduct. Target. Ther. 2023, 8, 333. [Google Scholar] [CrossRef]
- Smirnova, E.; Griparic, L.; Shurland, D.L.; van der Bliek, A.M. Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol. Biol. Cell 2001, 12, 2245–2256. [Google Scholar] [CrossRef]
- Palmer, C.S.; Osellame, L.D.; Laine, D.; Koutsopoulos, O.S.; Frazier, A.E.; Ryan, M.T. MiD49 and MiD51, new components of the mitochondrial fission machinery. EMBO Rep. 2011, 12, 565–573. [Google Scholar] [CrossRef]
- Shen, Q.; Yamano, K.; Head, B.P.; Kawajiri, S.; Cheung, J.T.; Wang, C.; Cho, J.H.; Hattori, N.; Youle, R.J.; van der Bliek, A.M. Mutations in Fis1 disrupt orderly disposal of defective mitochondria. Mol. Biol. Cell 2014, 25, 145–159. [Google Scholar] [CrossRef]
- Otera, H.; Wang, C.; Cleland, M.M.; Setoguchi, K.; Yokota, S.; Youle, R.J.; Mihara, K. Mff is an essential factor for mitochondrial recruitment of Drp1 during mitochondrial fission in mammalian cells. J. Cell Biol. 2010, 191, 1141–1158. [Google Scholar] [CrossRef]
- Cipolat, S.; Martins de Brito, O.; Dal Zilio, B.; Scorrano, L. OPA1 requires mitofusin 1 to promote mitochondrial fusion. Proc. Natl. Acad. Sci. USA 2004, 101, 15927–15932. [Google Scholar] [CrossRef] [PubMed]
- Eura, Y.; Ishihara, N.; Yokota, S.; Mihara, K. Two mitofusin proteins, mammalian homologues of FZO, with distinct functions are both required for mitochondrial fusion. J. Biochem. 2003, 134, 333–344. [Google Scholar] [CrossRef] [PubMed]
- Schrepfer, E.; Scorrano, L. Mitofusins, from Mitochondria to Metabolism. Mol. Cell 2016, 61, 683–694. [Google Scholar] [CrossRef] [PubMed]
- Scarpulla, R.C.; Vega, R.B.; Kelly, D.P. Transcriptional integration of mitochondrial biogenesis. Trends Endocrinol. Metab. 2012, 23, 459–466. [Google Scholar] [CrossRef]
- Wang, S.; Tan, J.; Miao, Y.; Zhang, Q. Mitochondrial Dynamics, Mitophagy, and Mitochondria-Endoplasmic Reticulum Contact Sites Crosstalk Under Hypoxia. Front. Cell Dev. Biol. 2022, 10, 848214. [Google Scholar] [CrossRef]
- Wu, W.; Lin, C.; Wu, K.; Jiang, L.; Wang, X.; Li, W.; Zhuang, H.; Zhang, X.; Chen, H.; Li, S.; et al. FUNDC1 regulates mitochondrial dynamics at the ER-mitochondrial contact site under hypoxic conditions. EMBO J. 2016, 35, 1368–1384. [Google Scholar] [CrossRef]
- Li, W.; Zhang, X.; Zhuang, H.; Chen, H.G.; Chen, Y.; Tian, W.; Wu, W.; Li, Y.; Wang, S.; Zhang, L.; et al. MicroRNA-137 is a novel hypoxia-responsive microRNA that inhibits mitophagy via regulation of two mitophagy receptors FUNDC1 and NIX. J. Biol. Chem. 2014, 289, 10691–10701. [Google Scholar] [CrossRef]
- Nakayama, K.; Frew, I.J.; Hagensen, M.; Skals, M.; Habelhah, H.; Bhoumik, A.; Kadoya, T.; Erdjument-Bromage, H.; Tempst, P.; Frappell, P.B.; et al. Siah2 regulates stability of prolyl-hydroxylases, controls HIF1alpha abundance, and modulates physiological responses to hypoxia. Cell 2004, 117, 941–952. [Google Scholar] [CrossRef]
- Qin, W.; Zhang, Y.B.H.; Deng, B.L.; Liu, J.; Zhang, H.L.; Jin, Z.L. MiR-17-5p modulates mitochondrial function of the genioglossus muscle satellite cells through targeting Mfn2 in hypoxia. J. Biol. Regul. Homeost. Agents 2019, 33, 753–761. [Google Scholar]
- Landes, T.; Emorine, L.J.; Courilleau, D.; Rojo, M.; Belenguer, P.; Arnaune-Pelloquin, L. The BH3-only Bnip3 binds to the dynamin Opa1 to promote mitochondrial fragmentation and apoptosis by distinct mechanisms. EMBO Rep. 2010, 11, 459–465. [Google Scholar] [CrossRef]
- Baburamani, A.A.; Hurling, C.; Stolp, H.; Sobotka, K.; Gressens, P.; Hagberg, H.; Thornton, C. Mitochondrial Optic Atrophy (OPA) 1 Processing Is Altered in Response to Neonatal Hypoxic-Ischemic Brain Injury. Int. J. Mol. Sci. 2015, 16, 22509–22526. [Google Scholar] [CrossRef]
- Sanderson, T.H.; Raghunayakula, S.; Kumar, R. Neuronal hypoxia disrupts mitochondrial fusion. Neuroscience 2015, 301, 71–78. [Google Scholar] [CrossRef] [PubMed]
- An, H.J.; Shin, H.; Jo, S.G.; Kim, Y.J.; Lee, J.O.; Paik, S.G.; Lee, H. The survival effect of mitochondrial Higd-1a is associated with suppression of cytochrome C release and prevention of caspase activation. Biochim. Biophys. Acta (BBA)—Mol. Cell Res. 2011, 1813, 2088–2098. [Google Scholar] [CrossRef] [PubMed]
- Hao, T.; Yu, J.; Wu, Z.; Jiang, J.; Gong, L.; Wang, B.; Guo, H.; Zhao, H.; Lu, B.; Engelender, S.; et al. Hypoxia-reprogramed megamitochondrion contacts and engulfs lysosome to mediate mitochondrial self-digestion. Nat. Commun. 2023, 14, 4105. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Li, W.; Chen, H.; Jiang, L.; Zhu, R.; Feng, D. FUNDC1 is a novel mitochondrial-associated-membrane (MAM) protein required for hypoxia-induced mitochondrial fission and mitophagy. Autophagy 2016, 12, 1675–1676. [Google Scholar] [CrossRef]
- Liu, L.; Feng, D.; Chen, G.; Chen, M.; Zheng, Q.; Song, P.; Ma, Q.; Zhu, C.; Wang, R.; Qi, W.; et al. Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat. Cell Biol. 2012, 14, 177–185. [Google Scholar] [CrossRef]
- Chandel, N.S.; McClintock, D.S.; Feliciano, C.E.; Wood, T.M.; Melendez, J.A.; Rodriguez, A.M.; Schumacker, P.T. Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: A mechanism of O2 sensing. J. Biol. Chem. 2000, 275, 25130–25138. [Google Scholar] [CrossRef]
- Waypa, G.B.; Smith, K.A.; Schumacker, P.T. O2 sensing, mitochondria and ROS signaling: The fog is lifting. Mol. Asp. Med. 2016, 47–48, 76–89. [Google Scholar] [CrossRef]
- Giustarini, D.; Dalle-Donne, I.; Tsikas, D.; Rossi, R. Oxidative stress and human diseases: Origin, link, measurement, mechanisms, and biomarkers. Crit. Rev. Clin. Lab. Sci. 2009, 46, 241–281. [Google Scholar] [CrossRef]
- Guzy, R.D.; Hoyos, B.; Robin, E.; Chen, H.; Liu, L.; Mansfield, K.D.; Simon, M.C.; Hammerling, U.; Schumacker, P.T. Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab. 2005, 1, 401–408. [Google Scholar] [CrossRef]
- Hernansanz-Agustin, P.; Izquierdo-Alvarez, A.; Sanchez-Gomez, F.J.; Ramos, E.; Villa-Pina, T.; Lamas, S.; Bogdanova, A.; Martinez-Ruiz, A. Acute hypoxia produces a superoxide burst in cells. Free Radic. Biol. Med. 2014, 71, 146–156. [Google Scholar] [CrossRef]
- Alva, R.; Wiebe, J.E.; Stuart, J.A. Revisiting reactive oxygen species production in hypoxia. Pflügers Arch.—Eur. J. Physiol. 2024, 476, 1423–1444. [Google Scholar] [CrossRef]
- Hernansanz-Agustin, P.; Choya-Foces, C.; Carregal-Romero, S.; Ramos, E.; Oliva, T.; Villa-Pina, T.; Moreno, L.; Izquierdo-Alvarez, A.; Cabrera-Garcia, J.D.; Cortes, A.; et al. Na+ controls hypoxic signalling by the mitochondrial respiratory chain. Nature 2020, 586, 287–291. [Google Scholar] [CrossRef] [PubMed]
- Rotariu, D.; Babes, E.E.; Tit, D.M.; Moisi, M.; Bustea, C.; Stoicescu, M.; Radu, A.F.; Vesa, C.M.; Behl, T.; Bungau, A.F.; et al. Oxidative stress—Complex pathological issues concerning the hallmark of cardiovascular and metabolic disorders. Biomed. Pharmacother. 2022, 152, 113238. [Google Scholar] [CrossRef]
- Sheikhi Kouhsar, S.; Bigdeli, M.; Shakiba, Y.; Sadeghniiat, K. GCH1 (rs841) polymorphism in the nitric oxide-forming pathway has protective effects on obstructive sleep apnea. Sci. Rep. 2019, 9, 18664. [Google Scholar] [CrossRef] [PubMed]
- Carlson, D.A.; True, C.; Wilson, C.G. Oxidative stress and food as medicine. Front. Nutr. 2024, 11, 1394632. [Google Scholar] [CrossRef]
- Ferini-Strambi, L.J.; Smirne, S.; Moz, U.; Sferrazza, B.; Iannaccone, S. Muscle fibre type and obstructive sleep apnea. Sleep Res. Online 1998, 1, 24–27. [Google Scholar]
- Carrera, M.; Barbe, F.; Sauleda, J.; Tomas, M.; Gomez, C.; Agusti, A.G. Patients with obstructive sleep apnea exhibit genioglossus dysfunction that is normalized after treatment with continuous positive airway pressure. Am. J. Respir. Crit. Care Med. 1999, 159, 1960–1966. [Google Scholar] [CrossRef]
- Sauleda, J.; Garcia-Palmer, F.J.; Tarraga, S.; Maimo, A.; Palou, A.; Agusti, A.G. Skeletal muscle changes in patients with obstructive sleep apnoea syndrome. Respir. Med. 2003, 97, 804–810. [Google Scholar] [CrossRef]
- Stal, P.S.; Lindman, R.; Johansson, B. Capillary supply of the soft palate muscles is reduced in long-term habitual snorers. Respiration 2009, 77, 303–310. [Google Scholar] [CrossRef]
- Pette, D.; Staron, R.S. Cellular and molecular diversities of mammalian skeletal muscle fibers. Rev. Physiol. Biochem. Pharmacol. 1990, 116, 1–76. [Google Scholar] [CrossRef]
- Schiaffino, S.; Reggiani, C. Fiber types in mammalian skeletal muscles. Physiol. Rev. 2011, 91, 1447–1531. [Google Scholar] [CrossRef] [PubMed]
- Westerblad, H.; Bruton, J.D.; Katz, A. Skeletal muscle: Energy metabolism, fiber types, fatigue and adaptability. Exp. Cell Res. 2010, 316, 3093–3099. [Google Scholar] [CrossRef] [PubMed]
- Smirne, S.; Iannaccone, S.; Ferini-Strambi, L.; Comola, M.; Colombo, E.; Nemni, R. Muscle fibre type and habitual snoring. Lancet 1991, 337, 597–599. [Google Scholar] [CrossRef] [PubMed]
- Series, F.; Cote, C.; Simoneau, J.A.; Gelinas, Y.; St Pierre, S.; Leclerc, J.; Ferland, R.; Marc, I. Physiologic, metabolic, and muscle fiber type characteristics of musculus uvulae in sleep apnea hypopnea syndrome and in snorers. J. Clin. Investig. 1995, 95, 20–25. [Google Scholar] [CrossRef]
- Series, F.J.; Simoneau, S.A.; St Pierre, S.; Marc, I. Characteristics of the genioglossus and musculus uvulae in sleep apnea hypopnea syndrome and in snorers. Am. J. Respir. Crit. Care Med. 1996, 153, 1870–1874. [Google Scholar] [CrossRef]
- Lindman, R.; Stal, P.S. Abnormal palatopharyngeal muscle morphology in sleep-disordered breathing. J. Neurol. Sci. 2002, 195, 11–23. [Google Scholar] [CrossRef]
- Dong, J.; Niu, X.; Chen, X. Injury and Apoptosis in the Palatopharyngeal Muscle in Patients with Obstructive Sleep Apnea-Hypopnea Syndrome. Med. Sci. Monit. 2020, 26, e919501. [Google Scholar] [CrossRef]
- Shi, S.; Xia, Y.; Chen, S.; Li, M.; Chen, D.; Liu, F.; Zheng, H. The relationship between structural/MHC changes in upper airway palatopharyngeal muscle morphology and obstructive sleep apnea/hypopnea syndrome. Eur. Arch. Otorhinolaryngol. 2014, 271, 109–116. [Google Scholar] [CrossRef]
- Vuono, I.M.; Zanoteli, E.; de Oliveira, A.S.; Fujita, R.R.; Pignatari, S.S.; Pizarro, G.U.; de Cassia Pradelle-Hallinan, M.L.; Moreira, G.A. Histological analysis of palatopharyngeal muscle from children with snoring and obstructive sleep apnea syndrome. Int. J. Pediatr. Otorhinolaryngol. 2007, 71, 283–290. [Google Scholar] [CrossRef]
- Chen, H.; Huang, X.; Ye, Y.; Luo, Y.; Huang, Y.; Li, X. Muscle type of palatopharyngeal muscle in children with severe obstructive sleep apnea. J. Clin. Sleep Med. 2020, 16, 1523–1529. [Google Scholar] [CrossRef] [PubMed]
- Petrof, B.J.; Hendricks, J.C.; Pack, A.I. Does upper airway muscle injury trigger a vicious cycle in obstructive sleep apnea? A hypothesis. Sleep 1996, 19, 465–471. [Google Scholar] [CrossRef] [PubMed]
- Kimura, H.; Niijima, M.; Edo, H.; Tatsumi, K.; Honda, Y.; Kuriyama, T. The effect of hypoxic depression on genioglossal muscle activity in healthy subjects and obstructive sleep apnea patients. Sleep 1993, 16 (Suppl. 8), S135–S136. [Google Scholar] [CrossRef] [PubMed]
- Friberg, D.; Ansved, T.; Borg, K.; Carlsson-Nordlander, B.; Larsson, H.; Svanborg, E. Histological indications of a progressive snorers disease in an upper airway muscle. Am. J. Respir. Crit. Care Med. 1998, 157, 586–593. [Google Scholar] [CrossRef]
- Edstrom, L.; Larsson, H.; Larsson, L. Neurogenic effects on the palatopharyngeal muscle in patients with obstructive sleep apnoea: A muscle biopsy study. J. Neurol. Neurosurg. Psychiatry 1992, 55, 916–920. [Google Scholar] [CrossRef]
- Saboisky, J.P.; Butler, J.E.; Gandevia, S.C.; Eckert, D.J. Functional role of neural injury in obstructive sleep apnea. Front. Neurol. 2012, 3, 95. [Google Scholar] [CrossRef]
- Kimoff, R.J. Upperairway myopathy is important in the pathophysiology of obstructive sleep apnea. J. Clin. Sleep Med. 2007, 3, 567–569. [Google Scholar] [CrossRef]
- Saigusa, H.; Niimi, S.; Yamashita, K.; Gotoh, T.; Kumada, M. Morphological and histochemical studies of the genioglossus muscle. Ann. Otol. Rhinol. Laryngol. 2001, 110, 779–784. [Google Scholar] [CrossRef]
- Chen, L.; Shen, Y.; Xiong, H.; Guan, Z.; Si, Y.; Liang, H.; Zhu, W.; Cai, Q. Role of PGC-1alpha in fiber type conversion in the palatopharyngeus muscle of OSA patients. J. Clin. Lab. Anal. 2022, 36, e24551. [Google Scholar] [CrossRef]
- Shi, L.; Wang, H.; Wei, L.; Hong, Z.; Wang, M.; Wang, Z. Pharyngeal constrictor muscle fatty change may contribute to obstructive sleep apnea-hypopnea syndrome: A prospective observational study. Acta Otolaryngol. 2016, 136, 1285–1290. [Google Scholar] [CrossRef]
- O’Halloran, K.D.; Lewis, P. Respiratory muscle dysfunction in animal models of hypoxic disease: Antioxidant therapy goes from strength to strength. Hypoxia 2017, 5, 75–84. [Google Scholar] [CrossRef]
- Barnes, L.A.; Mesarwi, O.A.; Sanchez-Azofra, A. The Cardiovascular and Metabolic Effects of Chronic Hypoxia in Animal Models: A Mini-Review. Front. Physiol. 2022, 13, 873522. [Google Scholar] [CrossRef]
- Huang, H.; Zhang, X.; Ding, N.; Li, Q.; Min, Y.; Zhang, X. Effects of chronic intermittent hypoxia on genioglossus in rats. Sleep Breath. 2012, 16, 505–510. [Google Scholar] [CrossRef] [PubMed]
- El-Khoury, R.; O’Halloran, K.D.; Bradford, A. Effects of chronic hypobaric hypoxia on contractile properties of rat sternohyoid and diaphragm muscles. Clin. Exp. Pharmacol. Physiol. 2003, 30, 551–554. [Google Scholar] [CrossRef] [PubMed]
- McGuire, M.; MacDermott, M.; Bradford, A. The effects of chronic episodic hypercapnic hypoxia on rat upper airway muscle contractile properties and fiber-type distribution. Chest 2002, 122, 1400–1406. [Google Scholar] [CrossRef] [PubMed]
- Skelly, J.R.; O’Connell, R.A.; Jones, J.F.; O’Halloran, K.D. Structural and functional properties of an upper airway dilator muscle in aged obese male rats. Respiration 2011, 82, 539–549. [Google Scholar] [CrossRef]
- Zhang, X.B.; Song, Y.; Lai, Y.T.; Qiu, S.Z.; Hu, A.K.; Li, D.X.; Zheng, N.S.; Zeng, H.Q.; Lin, Q.C. MiR-210-3p enhances intermittent hypoxia-induced tumor progression via inhibition of E2F3. Sleep Breath. 2024, 28, 607–617. [Google Scholar] [CrossRef]
- Chen, Q.; Han, X.; Chen, M.; Zhao, B.; Sun, B.; Sun, L.; Zhang, W.; Yu, L.; Liu, Y. High-Fat Diet-Induced Mitochondrial Dysfunction Promotes Genioglossus Injury—A Potential Mechanism for Obstructive Sleep Apnea with Obesity. Nat. Sci. Sleep 2021, 13, 2203–2219. [Google Scholar] [CrossRef]
- Shortt, C.M.; Fredsted, A.; Bradford, A.; O’Halloran, K.D. Diaphragm muscle remodeling in a rat model of chronic intermittent hypoxia. J. Histochem. Cytochem. 2013, 61, 487–499. [Google Scholar] [CrossRef]
- McDonald, F.B.; Williams, R.; Sheehan, D.; O’Halloran, K.D. Early life exposure to chronic intermittent hypoxia causes upper airway dilator muscle weakness, which persists into young adulthood. Exp. Physiol. 2015, 100, 947–966. [Google Scholar] [CrossRef]
- Petrof, B.J.; Pack, A.I.; Kelly, A.M.; Eby, J.; Hendricks, J.C. Pharyngeal myopathy of loaded upper airway in dogs with sleep apnea. J. Appl. Physiol. 1994, 76, 1746–1752. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Jiang, X.; Dong, Y.; Zhang, X.; Ding, N.; Liu, J.; Hutchinson, S.Z.; Lu, G.; Zhang, X. Adiponectin alleviates genioglossal mitochondrial dysfunction in rats exposed to intermittent hypoxia. PLoS ONE 2014, 9, e109284. [Google Scholar] [CrossRef] [PubMed]
- Medharametla, S.; Borger, G.; Gaonkar, S.; Valenzuela, I.M.Y. Abnormalities in the genioglossus muscle and its neuromuscular synapse in leptin-deficient male mice. Skelet. Muscle 2025, 15, 18. [Google Scholar] [CrossRef]
- Meng, Y.; Li, W.; Zou, Y.; Yao, Y.; Huang, H.; Sun, J.; Li, X.; Guo, S.; Zhang, X.; Wang, W. How Does Chronic Intermittent Hypoxia Influence Upper Airway Stability in Rats? Nat. Sci. Sleep 2020, 12, 749–758. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Ding, W.; Huang, H.; Zhu, Y.; Ding, N.; Feng, G.; Zhang, X. The role of mitophagy in the mechanism of genioglossal dysfunction caused by chronic intermittent hypoxia and the protective effect of adiponectin. Sleep Breath. 2021, 25, 931–940. [Google Scholar] [CrossRef]
- O’Donnell, C.P.; Schaub, C.D.; Haines, A.S.; Berkowitz, D.E.; Tankersley, C.G.; Schwartz, A.R.; Smith, P.L. Leptin prevents respiratory depression in obesity. Am. J. Respir. Crit. Care Med. 1999, 159, 1477–1484. [Google Scholar] [CrossRef]
- Pho, H.; Hernandez, A.B.; Arias, R.S.; Leitner, E.B.; Van Kooten, S.; Kirkness, J.P.; Schneider, H.; Smith, P.L.; Polotsky, V.Y.; Schwartz, A.R. The effect of leptin replacement on sleep-disordered breathing in the leptin-deficient ob/ob mouse. J. Appl. Physiol. 2016, 120, 78–86. [Google Scholar] [CrossRef]
- Skelly, J.R.; Bradford, A.; O’Halloran, K.D. Intermittent hypoxia impairs pharyngeal dilator muscle function in male but not female rats. Adv. Exp. Med. Biol. 2010, 669, 285–287. [Google Scholar] [CrossRef]
- Kim, A.M.; Keenan, B.T.; Jackson, N.; Chan, E.L.; Staley, B.; Torigian, D.A.; Alavi, A.; Schwab, R.J. Metabolic activity of the tongue in obstructive sleep apnea. A novel application of FDG positron emission tomography imaging. Am. J. Respir. Crit. Care Med. 2014, 189, 1416–1425. [Google Scholar] [CrossRef]
- Drummond, S.E.; Burns, D.P.; Maghrani, S.E.; Ziegler, O.; Healy, V.; O’Halloran, K.D. NADPH oxidase 2 is necessary for chronic intermittent hypoxia-induced sternohyoid muscle weakness in adult male mice. Exp. Physiol. 2022, 107, 946–964. [Google Scholar] [CrossRef]
- Williams, R.; Lemaire, P.; Lewis, P.; McDonald, F.B.; Lucking, E.; Hogan, S.; Sheehan, D.; Healy, V.; O’Halloran, K.D. Chronic intermittent hypoxia increases rat sternohyoid muscle NADPH oxidase expression with attendant modest oxidative stress. Front. Physiol. 2015, 6, 15. [Google Scholar] [CrossRef]
- Stal, P.S.; Johansson, B. Abnormal mitochondria organization and oxidative activity in the palate muscles of long-term snorers with obstructive sleep apnea. Respiration 2012, 83, 407–417. [Google Scholar] [CrossRef]
- Skelly, J.R.; Edge, D.; Shortt, C.M.; Jones, J.F.; Bradford, A.; O’Halloran, K.D. Respiratory control and sternohyoid muscle structure and function in aged male rats: Decreased susceptibility to chronic intermittent hypoxia. Respir. Physiol. Neurobiol. 2012, 180, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.H.; Zhang, W.H.; Lu, Y.; Yu, L.M.; Han, X.X.; Xu, Y.; Wu, M.J.; Ding, W.H.; Liu, Y.H. Dental pulp stem cells promote genioglossus repair and systemic amelioration in chronic intermittent hypoxia. iScience 2024, 27, 111143. [Google Scholar] [CrossRef] [PubMed]
- Fang, H.; Zhang, Y.; Zhu, L.; Lyu, J.; Li, Q. In-depth proteomics and Phosphoproteomics reveal biomarkers and molecular pathways of chronic intermittent hypoxia in mice. J. Proteom. 2025, 311, 105334. [Google Scholar] [CrossRef] [PubMed]
- Lacedonia, D.; Carpagnano, G.E.; Crisetti, E.; Cotugno, G.; Palladino, G.P.; Patricelli, G.; Sabato, R.; Foschino Barbaro, M.P. Mitochondrial DNA alteration in obstructive sleep apnea. Respir. Res. 2015, 16, 47. [Google Scholar] [CrossRef]
- Kim, Y.S.; Kwak, J.W.; Lee, K.E.; Cho, H.S.; Lim, S.J.; Kim, K.S.; Yang, H.S.; Kim, H.J. Can mitochondrial dysfunction be a predictive factor for oxidative stress in patients with obstructive sleep apnea? Antioxid. Redox Signal. 2014, 21, 1285–1288. [Google Scholar] [CrossRef]
- Lin, C.C.; Chen, W.J.; Sun, Y.K.; Chiu, C.H.; Lin, M.W.; Tzeng, I.S. Continuous positive airway pressure affects mitochondrial function and exhaled PGC1-alpha levels in obstructive sleep apnea. Exp. Lung Res. 2021, 47, 476–486. [Google Scholar] [CrossRef]
- Xue, Z.; Ding, W.; Ge, L.; Zhang, Q. Klotho alleviates chronic intermittent hypoxia-induced genioglossus myocyte apoptosis by inhibiting endoplasmic reticulum stress. Exp. Ther. Med. 2021, 22, 708. [Google Scholar] [CrossRef]
- Zhang, M.H.; Han, X.X.; Lu, Y.; Deng, J.J.; Zhang, W.H.; Mao, J.Q.; Mi, J.; Ding, W.H.; Wu, M.J.; Yu, L.M.; et al. Chronic intermittent hypoxia impaired collagen synthesis in mouse genioglossus via ROS accumulation: A transcriptomic analysis. Respir. Physiol. Neurobiol. 2023, 308, 103980. [Google Scholar] [CrossRef]
- Palikaras, K.; Tavernarakis, N. Mitochondrial homeostasis: The interplay between mitophagy and mitochondrial biogenesis. Exp. Gerontol. 2014, 56, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Kimoff, R.J.; Hamid, Q.; Divangahi, M.; Hussain, S.; Bao, W.; Naor, N.; Payne, R.J.; Ariyarajah, A.; Mulrain, K.; Petrof, B.J. Increased upper airway cytokines and oxidative stress in severe obstructive sleep apnoea. Eur. Respir. J. 2011, 38, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Stanek, A.; Brozyna-Tkaczyk, K.; Myslinski, W. Oxidative Stress Markers among Obstructive Sleep Apnea Patients. Oxidative Med. Cell. Longev. 2021, 2021, 9681595. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Mai, L.; Luo, J.; Shi, W.; Xiang, H.; Song, S.; Hong, L.; Long, W.; Mo, B.; Luo, M. Peripheral blood oxidative stress markers for obstructive sleep apnea-a meta-analysis. Sleep Breath. 2022, 26, 2045–2057. [Google Scholar] [CrossRef]
- Mancuso, M.; Bonanni, E.; LoGerfo, A.; Orsucci, D.; Maestri, M.; Chico, L.; DiCoscio, E.; Fabbrini, M.; Siciliano, G.; Murri, L. Oxidative stress biomarkers in patients with untreated obstructive sleep apnea syndrome. Sleep Med. 2012, 13, 632–636. [Google Scholar] [CrossRef]
- Carpagnano, G.E.; Kharitonov, S.A.; Resta, O.; Foschino-Barbaro, M.P.; Gramiccioni, E.; Barnes, P.J. 8-Isoprostane, a marker of oxidative stress, is increased in exhaled breath condensate of patients with obstructive sleep apnea after night and is reduced by continuous positive airway pressure therapy. Chest 2003, 124, 1386–1392. [Google Scholar] [CrossRef]
- Christou, K.; Kostikas, K.; Pastaka, C.; Tanou, K.; Antoniadou, I.; Gourgoulianis, K.I. Nasal continuous positive airway pressure treatment reduces systemic oxidative stress in patients with severe obstructive sleep apnea syndrome. Sleep Med. 2009, 10, 87–94. [Google Scholar] [CrossRef]
- Cofta, S.; Wysocka, E.; Piorunek, T.; Rzymkowska, M.; Batura-Gabryel, H.; Torlinski, L. Oxidative stress markers in the blood of persons with different stages of obstructive sleep apnea syndrome. J. Physiol. Pharmacol. 2008, 59 (Suppl. 6), 183–190. [Google Scholar]
- Malakasioti, G.; Alexopoulos, E.; Befani, C.; Tanou, K.; Varlami, V.; Ziogas, D.; Liakos, P.; Gourgoulianis, K.; Kaditis, A.G. Oxidative stress and inflammatory markers in the exhaled breath condensate of children with OSA. Sleep Breath. 2012, 16, 703–708. [Google Scholar] [CrossRef]
- Ntalapascha, M.; Makris, D.; Kyparos, A.; Tsilioni, I.; Kostikas, K.; Gourgoulianis, K.; Kouretas, D.; Zakynthinos, E. Oxidative stress in patients with obstructive sleep apnea syndrome. Sleep Breath. 2013, 17, 549–555. [Google Scholar] [CrossRef]
- Svatikova, A.; Wolk, R.; Lerman, L.O.; Juncos, L.A.; Greene, E.L.; McConnell, J.P.; Somers, V.K. Oxidative stress in obstructive sleep apnoea. Eur. Heart J. 2005, 26, 2435–2439. [Google Scholar] [CrossRef]
- Tichanon, P.; Wilaiwan, K.; Sopida, S.; Orapin, P.; Watchara, B.; Banjamas, I. Effect of Continuous Positive Airway Pressure on Airway Inflammation and Oxidative Stress in Patients with Obstructive Sleep Apnea. Can. Respir. J. 2016, 2016, 3107324. [Google Scholar] [CrossRef] [PubMed]
- Peres, B.U.; Allen, A.J.H.; Shah, A.; Fox, N.; Laher, I.; Almeida, F.; Jen, R.; Ayas, N. Obstructive Sleep Apnea and Circulating Biomarkers of Oxidative Stress: A Cross-Sectional Study. Antioxidants 2020, 9, 476. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Liu, Y.; Yu, X.; Tian, N.; Liu, Y.; Yu, D. Identifying key antioxidative stress factors regulating Nrf2 in the genioglossus with human umbilical cord mesenchymal stem-cell therapy. Sci. Rep. 2024, 14, 5838. [Google Scholar] [CrossRef] [PubMed]
- Ding, W.; Liu, Y. Genistein attenuates genioglossus muscle fatigue under chronic intermittent hypoxia by down-regulation of oxidative stress level and up-regulation of antioxidant enzyme activity through ERK1/2 signaling pathway. Oral Dis. 2011, 17, 677–684. [Google Scholar] [CrossRef]
- Dunleavy, M.; Bradford, A.; O’Halloran, K.D. Oxidative stress impairs upper airway muscle endurance in an animal model of sleep-disordered breathing. Adv. Exp. Med. Biol. 2008, 605, 458–462. [Google Scholar] [CrossRef]
- Skelly, J.R.; Edge, D.; Shortt, C.M.; Jones, J.F.; Bradford, A.; O’Halloran, K.D. Tempol ameliorates pharyngeal dilator muscle dysfunction in a rodent model of chronic intermittent hypoxia. Am. J. Respir. Cell Mol. Biol. 2012, 46, 139–148. [Google Scholar] [CrossRef]
- Baby, S.M.; Tanner, L.H.; Discala, J.F.; Gruber, R.B.; Hsieh, Y.H.; Lewis, S.J. Systemic Administration of Tempol, a Superoxide Dismutase Mimetic, Augments Upper Airway Muscle Activity in Obese Zucker Rats. Front. Pharmacol. 2022, 13, 814032. [Google Scholar] [CrossRef]
- Lv, R.; Liu, X.; Zhang, Y.; Dong, N.; Wang, X.; He, Y.; Yue, H.; Yin, Q. Pathophysiological mechanisms and therapeutic approaches in obstructive sleep apnea syndrome. Signal Transduct. Target. Ther. 2023, 8, 218. [Google Scholar] [CrossRef]
- Yan, Y.R.; Zhang, L.; Lin, Y.N.; Sun, X.W.; Ding, Y.J.; Li, N.; Li, H.P.; Li, S.Q.; Zhou, J.P.; Li, Q.Y. Chronic intermittent hypoxia-induced mitochondrial dysfunction mediates endothelial injury via the TXNIP/NLRP3/IL-1beta signaling pathway. Free Radic. Biol. Med. 2021, 165, 401–410. [Google Scholar] [CrossRef]
- Wang, N.; Khan, S.A.; Prabhakar, N.R.; Nanduri, J. Impairment of pancreatic beta-cell function by chronic intermittent hypoxia. Exp. Physiol. 2013, 98, 1376–1385. [Google Scholar] [CrossRef]
- Arnaud, C.; Billoir, E.; de Melo Junior, A.F.; Pereira, S.A.; O’Halloran, K.D.; Monteiro, E.C. Chronic intermittent hypoxia-induced cardiovascular and renal dysfunction: From adaptation to maladaptation. J. Physiol. 2023, 601, 5553–5577. [Google Scholar] [CrossRef]
- Hu, Z.; Mu, S.; Zhao, L.; Dou, Z.; Wang, P.; Zhang, J.; Jin, N.; Lu, X.; Xu, X.; Liang, T.; et al. Regulation of the CB1R/AMPK/PGC-1alpha signaling pathway in mitochondria of mouse hearts and cardiomyocytes with chronic intermittent hypoxia. Sleep Breath. 2024, 28, 133–149. [Google Scholar] [CrossRef]
- Liu, K.; Li, X.; Liu, Z.; Ming, X.; Han, B.; Cai, W.; Yang, X.; Huang, Z.; Shi, Z.; Wu, J.; et al. Orientin Promotes Antioxidant Capacity, Mitochondrial Biogenesis, and Fiber Transformation in Skeletal Muscles through the AMPK Pathway. J. Agric. Food Chem. 2024, 72, 6226–6235. [Google Scholar] [CrossRef]


| Process | Alt. | Molecular Alterations | Mitochondrial Function | Methods | Samples (Model) |
|---|---|---|---|---|---|
| Biogenesis | ↑ | ↑mtDNA | ↑ Oxidative stress; | qPCR, oxidative stress assay (d-ROM test) | Human blood cells [156] |
| ↓ | ↓ mtDNA | n.d. | qPCR | Human whole blood DNA [157] | |
| ↑ | ↑ PGC-1α ↑ mtDNA | n.d. | qPCR, ELISA | Human exhaled breath condensate [158] | |
| - | - PGC-1α - mtDNA | n.d. | qPCR, ELISA | Human blood [158] | |
| ↓ | ↓ PGC-1α ↓ NRF-1 | ↓ number of mitochondria | qPCR, WB, EM | Palatopahryngeus muscle [129] | |
| ↓ | ↓ PGC-1α ↓ ERRα ↓ NRF1 | ↓ mitochondrial density structural disruption | EM, qPCR, histochemistry | Rat genioglossus (CIH) [142] | |
| ↓ | ↓ PGC-1α ↓ NRF1 | n.d. | qPCR, WB | C2C12 myoblasts (intermittent hypoxia) [129] | |
| Fission | ↑ | ↑ DRP1 ↓ Mfn2 | ↓ Complex III ↓ Complex V ↓ Number of mitochondria ↓ mtDNA | WB, EM, qPCR | Rat genioglossus (HFD) [138] |
| Mitophagy | ↑ | ↑ p-ULK1 ↑ p-Raptor ↑ SIRT1 ↑ TSC1 ↑ LC3-II | altered mitochondrial structure ↓ mitochondrial function | WB, qPCR, EM | Rat genioglossus (CIH) [145] |
| Apoptosis | ↑ | ↑ cleaved caspase-3 ↑ Bax/Bcl-2 ratio cytochrome c release ↑ TUNEL+ nuclei | ↓ cell survival ↑ apoptotic cell death | WB, qPCR, TUNEL | Rat genioglossus (CIH; HFD) [138,145,159] |
| Oxidative Stress/Findings | Detection/Markers | Functional Evaluation | Antioxidant/Pro-Oxidant Effect | Sample/Model |
|---|---|---|---|---|
| ↑ ROS [145] | DHE | ↓ expression of mitochondrial function-related genes | n.d. | Rat, genioglossus/CIH |
| ↑ lipid peroxidation ↑ oxidized DNA [138] | 4-HNE 8-OHdG | n.d. | n.d. | Rat, genioglossus/HFD |
| ↑ ROS (mitochondrial) [138] | MitoSOX Red | n.d. | n.d. | Rat, C2C12 myoblasts/Palmitic acid |
| ↑ ROS [138,159] | DHE | n.d. | n.d. | Mouse, genioglossus/CIH |
| ↑ lipid peroxidation ↓ antioxidant enzyme [174] | MDA GSH-Px | n.d. | n.d. | Rat, genioglossus/CIH |
| transcriptional changes associated with the response to ROS [160] | RNAseq | Electromyography | n.d. | Rat, genioglossus/CIH |
| No changes in protein oxidation [140] | Protein free thiol and carbonyl content | Rat, sternohyoid/CIH | ||
| ↑ Mitochondrial ROS ↑ lipid peroxidation ↓ antioxidant enzymes [175] | DCFH-DA probe in isolated mitochondria, MDA Activities of superoxide dismutase, catalase and glutathione peroxidase | In vitro electrophysiological study |
| Rat, genioglossus/CIH |
| n.d. [176] | n.d. | In vitro electrophysiological study |
| Rat, sternohyoid/CIH |
| n.d. [148] | n.d. | In vitro electrophysiological study tested in the presence and absence of the antioxidant |
| Rat, sternohyoid/CIH |
| n.d. [177] | n.d. | In vitro electrophysiological study |
| Rat, sternohyoid/CIH |
| n.d. [178] | n.d. | In vivo EMG study |
| Zucker rat, genioglossus/obesity |
| Domain | Main Findings |
|---|---|
| Bioenergetics | ↓ respiratory chain complexes ↓ mitochondrial membrane potential ↓ ANT1 |
| Oxidative stress | ↑ ROS and lipid peroxidation ↑ mtROS ↑ lipid peroxidation, DNA oxidation ↓ antioxidant enzymes (SOD, catalase) |
| Mitophagy/Quality control | ↓ mitochondrial biogenesis ↑ fission ↑ mitophagy |
| Apoptosis | ↑ DNA fragmentation (TUNEL) ↑ Bax/Bcl-2 ↑ cytoplasmic Cyt-c and ↓ mitochondrial Cyt-c ↑ cleaved Caspase-9, Caspase-12, Caspase-3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carlos, K.; do Prado, G.F.; Tengan, C.H. The Role of Mitochondria in Obstructive Sleep Apnea: Implications for the Upper Airway Muscles. Int. J. Mol. Sci. 2025, 26, 10562. https://doi.org/10.3390/ijms262110562
Carlos K, do Prado GF, Tengan CH. The Role of Mitochondria in Obstructive Sleep Apnea: Implications for the Upper Airway Muscles. International Journal of Molecular Sciences. 2025; 26(21):10562. https://doi.org/10.3390/ijms262110562
Chicago/Turabian StyleCarlos, Karla, Gilmar Fernandes do Prado, and Celia Harumi Tengan. 2025. "The Role of Mitochondria in Obstructive Sleep Apnea: Implications for the Upper Airway Muscles" International Journal of Molecular Sciences 26, no. 21: 10562. https://doi.org/10.3390/ijms262110562
APA StyleCarlos, K., do Prado, G. F., & Tengan, C. H. (2025). The Role of Mitochondria in Obstructive Sleep Apnea: Implications for the Upper Airway Muscles. International Journal of Molecular Sciences, 26(21), 10562. https://doi.org/10.3390/ijms262110562

