Targeted Analysis of Placental Steroid Hormones in Relation to Maternal Tobacco Smoke Exposure: Early Markers Relevant to DOHaD (Developmental Origins of Health and Disease)
Abstract
1. Introduction
2. Results
2.1. Study Groups
2.2. Analytical Method
2.3. Primary Statistics Results
2.4. Adjusted Models
2.5. Multi-Class Classification
3. Discussion
4. Materials and Methods
4.1. Ethics Statement
4.2. Design and Groups
4.3. Sample Handling, Analytes, and Assay
4.4. Statistics
4.4.1. Primary Statistics
4.4.2. Adjusted Models
4.4.3. Secondary Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| DOHaD | Developmental Origins of Health and Disease |
| BH | Benjamini–Hochberg |
| AUC | Area Under Curve |
| OvR | One-versus-rest |
| OLS | Ordinary Least Squares |
| SE | Standard Error |
| PLS | Partial Least Squares |
| CI | Confidence Interval |
| ETS | Environmental Tobacco Smoke |
| CAD | Charged Aerosol Detector |
| CS | Cigarette Smoke |
| SIDS | Sudden Infant death syndrome |
| BMI | body mass index |
| C | non-smoking control |
| PS | passive smokers |
| AS | active smokers |
| SPE | solid phase extraction |
| HPLC | high-performance liquid chromatography |
| SD | standard deviation |
| LOD | limit of detection |
| LOQ | limit of quantification |
| CV | Cross-validation |
| E1 | estrone |
| E2 | estradiol |
| E3 | estriol |
| T | testosterone |
| PD | pregnanediol |
| P | progesterone |
Appendix A
| Time (Min) | Flow Rate (mL/Min) | Acetonitrile (%) |
|---|---|---|
| 0 | 1 | 10 |
| 15 | 1 | 25 |
| 45 | 1 | 33 |
| 65 | 1 | 33 |
| 85 | 1 | 40 |
| 95 | 1 | 68 |
| 140 | 1 | 99 |
| Steroid | Nominal Concentration (ng/mL) | Within Day (n = 5) | Between Day (n = 15) | Recoveries % | ||
|---|---|---|---|---|---|---|
| Accuracy % | Precision % | Accuracy % | Precision % | |||
| Estradiol | 33 ng | 108 | 12 | 105 | 13 | 83 |
| 50 ng | 104 | 10 | 101 | 14 | 84 | |
| 250 ng | 102 | 7 | 98 | 9 | 86 | |
| 500 ng | 99 | 4.6 | 96 | 7 | 87 | |
| Estriol | 30 ng | 89 | 13.5 | 83 | 11 | 82 |
| 50 ng | 88 | 11 | 86 | 13 | 83 | |
| 250 ng | 92 | 4.3 | 90 | 7 | 86 | |
| 500 ng | 96 | 5 | 93 | 6 | 88 | |
| Estrone | 33 ng | 101 | 13 | 91 | 10 | 88 |
| 50 ng | 100 | 10 | 92 | 8 | 86 | |
| 250 ng | 98 | 8 | 94 | 11 | 89 | |
| 500 ng | 99 | 6 | 98 | 6 | 90 | |
| Progesterone | 30 ng | 101 | 11 | 98 | 10 | 81 |
| 50 ng | 98 | 12 | 97 | 8 | 80 | |
| 250 ng | 99 | 10 | 92 | 6 | 83 | |
| 500 ng | 100 | 9 | 99 | 4 | 85 | |
| Testosterone | 30 ng | 103 | 12 | 98 | 13 | 90 |
| 50 ng | 101 | 8 | 94 | 9 | 91 | |
| 250 ng | 98 | 7 | 93 | 10 | 93 | |
| 500 ng | 97 | 4 | 95 | 6 | 94 | |
| Pregnanediol | 30 ng | 87 | 11 | 83 | 9 | 78 |
| 50 ng | 88 | 10 | 85 | 7 | 80 | |
| 250 ng | 92 | 8 | 90 | 4 | 82 | |
| 500 ng | 90 | 5 | 91 | 5 | 86 | |

References
- Öztürk, H.; Türker, P. Fetal Programming: Could Intrauterin Life Affect Health Status in Adulthood? Obstet. Gynecol. Sci. 2021, 64, 473–483. [Google Scholar] [CrossRef]
- Wadhwa, P.; Buss, C.; Entringer, S.; Swanson, J. Developmental Origins of Health and Disease: Brief History of the Approach and Current Focus on Epigenetic Mechanisms. Semin. Reprod. Med. 2009, 27, 358–368. [Google Scholar] [CrossRef] [PubMed]
- Kwon, E.; Kim, Y. What Is Fetal Programming?: A Lifetime Health Is under the Control of in Utero Health. Obstet. Gynecol. Sci. 2017, 60, 506–519. [Google Scholar] [CrossRef]
- Rolfo, A.; Nuzzo, A.M.; De Amicis, R.; Moretti, L.; Bertoli, S.; Leone, A. Fetal–Maternal Exposure to Endocrine Disruptors: Correlation with Diet Intake and Pregnancy Outcomes. Nutrients 2020, 12, 1744. [Google Scholar] [CrossRef]
- Godleski, S.; Shisler, S.; Colton, K.; Leising, M. Prenatal Tobacco Exposure and Behavioral Disorders in Children and Adolescents: Systematic Review and Meta-Analysis. Pediatr. Rep. 2024, 16, 736–752. [Google Scholar] [CrossRef]
- Liu, M.; Soon, E.Y.; Lange, K.; Juonala, M.; Kerr, J.A.; Liu, R.; Dwyer, T.; Wake, M.; Burgner, D.; Li, L.-J. Maternal Smoking Intensity During Pregnancy and Early Adolescent Cardiovascular Health. J. Am. Heart Assoc. 2025, 14, e037806. [Google Scholar] [CrossRef]
- Feng, G.; Jiang, Y.; Li, Q.; Yong, H.H.; Elton-Marshall, T.; Yang, J.; Li, L.; Sansone, N.; Fong, G.T. Individual-level factors associated with intentions to quit smoking among adult smokers in six cities of China: Findings from the ITC China Survey. Tob. Control 2010, 19 (Suppl. 2), i6–i11. [Google Scholar] [CrossRef]
- World Health Organization (WHO). WHO Report on the Global Tobacco Epidemic (2011) Warning About the Dangers of Tobacco; World Health Organization (WHO): Geneva, Switzerland, 2011. [Google Scholar]
- Pieraccini, G.; Furlanetto, S.; Orlandini, S.; Bartolucci, G.; Giannini, I.; Pinzauti, S.; Moneti, G. Identification and determination of mainstream and sidestream smoke components in different brands and types of cigarettes by means of solid-phase microextraction-gas chromatography-mass spectrometry. J. Chromatogr. A 2008, 1180, 138–150. [Google Scholar] [CrossRef]
- Coleman, T.; Britton, J.; Thornton, J. Nicotine replacement therapy in pregnancy. BMJ 2004, 328, 965–966. [Google Scholar] [CrossRef] [PubMed]
- Shah, T.; Sullivan, K.; Carter, J. Sudden infant death syndrome and reported maternal smoking during pregnancy. Am. J. Public Health 2006, 96, 1757–1759. [Google Scholar] [CrossRef] [PubMed]
- Tarasi, B.; Cornuz, J.; Clair, C.; Baud, D. Cigarette Smoking during Pregnancy and Adverse Perinatal Outcomes: A Cross-Sectional Study over 10 Years. BMC Public Health 2022, 22, 2403. [Google Scholar] [CrossRef]
- Hodyl, N.A.; Stark, M.J.; Scheil, W.; Grzeskowiak, L.E.; Clifton, V.L. Perinatal Outcomes Following Maternal Asthma and Cigarette Smoking during Pregnancy. Eur. Respir. J. 2013, 43, 704–716. [Google Scholar] [CrossRef]
- Abraham, M.; Alramadhan, S.; Iniguez, C.; Duijts, L.; Jaddoe, V.W.; Den Dekker, H.T.; Crozier, S.; Godfrey, K.M.; Hindmarsh, P.; Vik, T.; et al. A systematic review of maternal smoking during pregnancy and fetal measurements with meta-analysis. PLoS ONE 2017, 12, e0170946. [Google Scholar] [CrossRef] [PubMed]
- Breunis, L.J.; Been, J.V.; de Jong-Potjer, L.; Steegers, E.A.; de Beaufort, I.D.; de Kroon, M.L.; Ismaili M’hamdi, H. Incentives for Smoking Cessation during Pregnancy: An Ethical Framework. Nicotine Tob. Res. 2019, 22, 1553–1559. [Google Scholar] [CrossRef]
- Finnegan, L.P. Perinatal morbidity and mortality in substance using families: Effects and intervention strategies. Bull. Narc. 1994, 46, 19–43. [Google Scholar] [PubMed]
- Suter, M.A.; Aagaard, K.M. The Impact of Tobacco Chemicals and Nicotine on Placental Development. Prenat. Diagn. 2020, 40, 1193–1200. [Google Scholar] [CrossRef] [PubMed]
- Iyengar, G.V.; Rapp, A. Human placenta as a ‘dual’ biomarker for monitoring fetal and maternal environment with special reference to potentially toxic trace elements. Part 1: Physiology, function and sampling of placenta for elemental characterisation. Sci. Total Environ. 2001, 280, 195–206. [Google Scholar] [CrossRef]
- Kotłowska, A.; Szefer, P. Recent Advances and Challenges in Steroid Metabolomics for Biomarker Discovery. Curr. Med. Chem. 2019, 26, 29–45. [Google Scholar] [CrossRef]
- Piasek, M.; Škrgatić, L.; Sulimanec, A.; Orct, T.; Sekovanić, A.; Kovačić, J.; Katić, A.; Branović Čakanić, K.; Pizent, A.; Brajenović, N.; et al. Effects of Maternal Cigarette Smoking on Trace Element Levels and Steroidogenesis in the Maternal–Placental–Fetal Unit. Toxics 2023, 11, 714. [Google Scholar] [CrossRef]
- Lee, B.; Kroener, L.L.; Xu, N.; Wang, E.T.; Banks, A.; Williams, J.; Goodarzi, M.O.; Chen, Y.I.; Tang, J.; Wang, Y.; et al. Function and Hormonal Regulation of GATA3 in Human First Trimester Placentation. Biol. Reprod. 2016, 95, 113. [Google Scholar] [CrossRef]
- Byrns, M.C. Regulation of progesterone signaling during pregnancy: Implications for the use of progestins for the prevention of preterm birth. J. Steroid Biochem. Mol. Biol. 2014, 139, 173–181. [Google Scholar] [CrossRef]
- Seaborn, T.; Simard, M.; Provost, P.R.; Piedboeuf, B.; Tremblay, Y. Sex Hormone Metabolism in Lung Development and Maturation. Trends Endocrinol. Metab. TEM 2010, 21, 729–738. [Google Scholar] [CrossRef] [PubMed]
- Velickovic, K.; Cvoro, A.; Srdic, B.; Stokic, E.; Markelic, M.; Golic, I.; Otasevic, V.; Stancic, A.; Jankovic, A.; Vucetic, M.; et al. Expression and Subcellular Localization of Estrogen Receptors α and β in Human Fetal Brown Adipose Tissue. J. Clin. Endocrinol. Metab. 2014, 99, 151–159. [Google Scholar] [CrossRef]
- Dodd, J.M.; Crowther, C.A.; Cincotta, R.; Flenady, V.; Robinson, J.S. Progesterone supplementation for preventing preterm birth: A systematic review and meta-analysis. Acta Obstet. Gynecol. Scand. 2005, 84, 526–533. [Google Scholar] [CrossRef]
- Darlas, M.; Kalantaridou, S.; Valsamakis, G. Maternal Hyperandrogenemia and the Long-Term Neuropsychological, Sex Developmental, and Metabolic Effects on Offspring. Int. J. Mol. Sci. 2025, 26, 2199. [Google Scholar] [CrossRef]
- Tanaka, T.; Kojo, K.; Suetomi, T.; Nagumo, Y.; Midorikawa, H.; Matsuda, T.; Nakazono, A.; Shimizu, T.; Fujimoto, S.; Ikeda, A.; et al. Distinct Clusters of Testosterone Levels, Symptoms, and Serum Trace Elements in Young Men: A Cross-Sectional Analysis. Nutrients 2025, 17, 867. [Google Scholar] [CrossRef]
- Zhu, B.T.; Cai, M.X.; Spink, D.C.; Hussain, M.M.; Busch, C.M.; Ranzini, A.C.; Lai, Y.L.; Lambert, G.H.; Thomas, P.E.; Conney, A.H. Stimulatory effect of cigarette smoking on the 15 alpha-hydroxylation of estradiol by human term placenta. Clin. Pharmacol. Ther. 2002, 71, 311–324. [Google Scholar] [CrossRef]
- Chełchowska, M.; Ambroszkiewicz, J.; Gajewska, J.; Mazur, J.; Lewandowski, L.; Reśko-Zachara, M.; Maciejewski, T.M. Influence of Active Exposure to Tobacco Smoke on Nitric Oxide Status of Pregnant Women. Int. J. Environ. Res. Public Health 2018, 15, 2719. [Google Scholar] [CrossRef] [PubMed]
- Ellberg, C.; Olsson, H.; Jernström, H. Current Smoking Is Associated with a Larger Waist Circumference and a More Androgenic Profile in Young Healthy Women from High-Risk Breast Cancer Families. CCC Cancer Causes Control 2018, 29, 243–251. [Google Scholar] [CrossRef] [PubMed]
- Osawa, Y.; Tochigi, B.; Tochigi, M.; Ohnishi, S.; Watanabe, Y.; Bullion, K.; Osawa, G.; Nakabayashi, Y.; Yarborough, C. Aromatase inhibitors in cigarette smoke, tobacco leaves and other plants. J. Enzym. Inhib. 1990, 4, 187–200. [Google Scholar] [CrossRef]
- Chakladar, J.; Shende, N.; Li, W.T.; Rajasekaran, M.; Chang, E.Y.; Ongkeko, W.M. Smoking-Mediated Upregulation of the Androgen Pathway Leads to Increased SARS-CoV-2 Susceptibility. Int. J. Mol. Sci. 2020, 21, 3627. [Google Scholar] [CrossRef]
- Rehan, M.; Zargar, U.R.; Sheikh, I.A.; Alharthy, S.A.; Almashjary, M.N.; Abuzenadah, A.M.; Beg, M.A. Potential Disruption of Systemic Hormone Transport by Tobacco Alkaloids Using Computational Approaches. Toxics 2022, 10, 727. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, L.M.; Lorigo, M.; Cairrao, E. Relationship between Androgens and Vascular and Placental Function during Pre-eclampsia. Curr. Issues Mol. Biol. 2024, 46, 1668–1693. [Google Scholar] [CrossRef]
- Lynch, C.; Chan, C.S.; Drake, A.J. Early Life Programming and the Risk of Non-Alcoholic Fatty Liver Disease. J. Dev. Orig. Health Dis. 2017, 8, 263–272. [Google Scholar] [CrossRef]
- Schlinger, B.A.; Remage-Healey, L. Neurosteroidogenesis: Insights from Studies of Songbirds. J. Neuroendocrinol. 2011, 24, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Benowitz, N.L. Nicotine addiction. N. Engl. J. Med. 2010, 362, 2295–2303. [Google Scholar] [CrossRef]
- Csiszar, A.; Podlutsky, A.; Wolin, M.S.; Losonczy, G.; Pacher, P.; Ungvari, Z. Oxidative stress and accelerated vascular aging: Implications for cigarette smoking. Front. Biosci. 2009, 14, 3128–3144. [Google Scholar] [CrossRef]
- Narkowicz, S.; Płotka, J.; Polkowska, Ż.; Biziuk, M.; Namieśnik, J. Prenatal exposure to substance of abuse: A worldwide problem. Environ. Int. 2013, 54, 141–163. [Google Scholar] [CrossRef]
- Kotłowska, A.; Sworczak, K.; Stepnowski, P. Urine metabolomics analysis for adrenal incidentaloma activity detection and biomarker discovery. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2011, 879, 359–363. [Google Scholar] [CrossRef] [PubMed]




| Characteristic | Non-Smoking | Passive Smokers | Active Smokers |
|---|---|---|---|
| (N = 30) | (N = 20) | (N = 20) | |
| Age (range) | 21–35 | 21–35 | 21–35 |
| BMI (median, interquartile range) | 20.89 | 21.57 | 23.14 |
| (20.02–23.70) | (20.20–22.57) | (21.63–24.03) | |
| Smoking (number of cigarettes/24 h) | |||
| 1–5 | 0 | 0 | 3 |
| 6–11 | 0 | 0 | 13 |
| 11–15 | 0 | 0 | 4 |
| Passive exposure (at least twice a week) | 0 | 20 | 0 |
| Gender of the baby | |||
| Female | 14 | 9 | 9 |
| Male | 16 | 11 | 11 |
| Apgar score (median, SD) | 8.87 ± 0.78 | 8.9 ± 1.02 | 8.75 ± 0.79 |
| Weeks of pregnancy (median, interquartile range) | 41.00 | 39.00 | 39.00 |
| (39.00–41.00) | (38.00–40.00) | (38.00–41.00) | |
| Weight of the baby (g) | 3745 | 3305 | 3125 |
| (median, interquartile range) | (3540–3930) | (3080–3400) | (3090.00–3460) |
| Education level | |||
| Elementary | 0 | 0 | 0 |
| Secondary | 2 | 1 | 1 |
| Higher education | 28 | 19 | 19 |
| Consumption of dairy products | |||
| Everyday | 29 | 20 | 20 |
| 3 times a week | 1 | 0 | 0 |
| Consumption of vegetables | |||
| Everyday | 30 | 20 | 19 |
| 3 times a week | 0 | 0 | 1 |
| Consumption of alcohol | |||
| Once a month | 2 | 2 | 1 |
| Hormone [ng/g Wet Tissue] | C (Median [IQR]) | PS (Median [IQR]) | AS (Median [IQR]) | KW_H | KW_p | KW_p_BH |
|---|---|---|---|---|---|---|
| Estradiol | 45.05 [40.05; 47.10] | 30.80 [28.90; 33.42] | 23.40 [22.05; 26.32] | 54.41 | 1.53 × 10−12 | 9.18 × 10−12 |
| Estriol | 133.50 [123.65; 144.88] | 122.80 [118.90; 125.42] | 107.20 [101.12; 111.08] | 34.65 | 2.99 × 10−8 | 3.59 × 10−8 |
| Estrone | 63.55 [60.30; 73.05] | 58.90 [53.52; 59.90] | 49.30 [44.47; 55.38] | 35.20 | 2.27 × 10−8 | 3.59 × 10−8 |
| Progesterone | 1528.10 [1413.50; 1651.47] | 1383.40 [1306.50; 1408.75] | 1229.55 [1142.60; 1350.30] | 33.05 | 6.66 × 10−8 | 6.66 × 10−8 |
| Testosterone | 14.80 [12.80; 15.90] | 17.80 [16.48; 18.68] | 19.65 [18.32; 21.18] | 34.71 | 2.90 × 10−8 | 3.59 × 10−8 |
| Pregnanediol | 234.10 [225.80; 249.03] | 216.40 [204.68; 226.23] | 167.70 [146.65; 180.20] | 48.89 | 2.42 × 10−11 | 7.25 × 10−11 |
| Hormone | Pair | U | p_raw | p_adj_BH |
|---|---|---|---|---|
| Estradiol | C vs. AS | 600.00 | 3.00 × 10−9 | 9.00 × 10−9 |
| Estradiol | C vs. PS | 589.00 | 1.10 × 10−8 | 1.65 × 10−8 |
| Estradiol | PS vs. AS | 346.00 | 8.27 × 10−5 | 8.27 × 10−5 |
| Estriol | C vs. AS | 566.50 | 1.38 × 10−7 | 4.14 × 10−7 |
| Estriol | C vs. PS | 465.00 | 1.12 × 10−3 | 1.12 × 10−3 |
| Estriol | PS vs. AS | 336.00 | 2.46 × 10−4 | 3.69 × 10−4 |
| Estrone | C vs. AS | 571.00 | 8.45 × 10−8 | 2.54 × 10−7 |
| Estrone | C vs. PS | 495.00 | 1.16 × 10−4 | 1.74 × 10−4 |
| Estrone | PS vs. AS | 300.00 | 7.09 × 10−3 | 7.09 × 10−3 |
| Pregnanediol | C vs. AS | 600.00 | 3.00 × 10−9 | 9.00 × 10−9 |
| Pregnanediol | C vs. PS | 504.00 | 5.56 × 10−5 | 5.56 × 10−5 |
| Pregnanediol | PS vs. AS | 385.00 | 6.01 × 10−7 | 9.01 × 10−7 |
| Progesterone | C vs. AS | 548.00 | 9.51 × 10−7 | 2.85 × 10−6 |
| Progesterone | C vs. PS | 500.50 | 7.47 × 10−5 | 1.12 × 10−4 |
| Progesterone | PS vs. AS | 316.00 | 1.78 × 10−3 | 1.78 × 10−3 |
| Testosterone | C vs. AS | 32.50 | 1.23 × 10−7 | 3.69 × 10−7 |
| Testosterone | C vs. PS | 103.50 | 1.03 × 10−4 | 1.55 × 10−4 |
| Testosterone | PS vs. AS | 101.00 | 7.66 × 10−3 | 7.66 × 10−3 |
| Hormone | AS vs. C | PS vs. C |
|---|---|---|
| Estradiol | −46.2% [−52.7; −38.9] (p = 1.23 × 10−21) | −31.1% [−36.8; −24.9] (p = 2.78 × 10−17) |
| Estriol | −24.7% [−30.7; −18.2] (p = 2.35 × 10−11) | −12.3% [−17.6; −6.6] (p = 4.02 × 10−5) |
| Estrone | −25.9% [−32.5; −18.8] (p = 1.78 × 10−10) | −17.4% [−25.0; −9.0] (p = 1.03 × 10−4) |
| Progesterone | −28.2% [−42.8; −9.8] (p = 0.00436) | −11.7% [−16.7; −6.4] (p = 2.84 × 10−5) |
| Testosterone | +40.8% [+26.5; +56.6] (p = 3.27 × 10−10) | +21.3% [+10.4; +33.1] (p = 5.21 × 10−5) |
| Pregnanediol | −31.4% [−36.7; −25.7] (p = 2.76 × 10−20) | −9.3% [−13.6; −4.8] (p = 8.78 × 10−5) |
| (A) | |||
| Metric | Value | ||
| Accuracy | 0.900 | ||
| weighted AUC (OvR) | 0.994 | ||
| (B) | |||
| True\Pred | C | PS | AS |
| C | 29 | 1 | 0 |
| PS | 3 | 15 | 2 |
| AS | 0 | 1 | 19 |
| (C) | |||
| Class | Precision | Recall | F1-Score |
| C | 0.91 | 0.97 | 0.94 |
| PS | 0.88 | 0.75 | 0.81 |
| AS | 0.90 | 0.95 | 0.93 |
| Term | β (kg) | SE | p |
|---|---|---|---|
| Weeks | 0.062 | 0.026 | 0.0168 |
| BMI | 0.014 | 0.023 | 0.538 |
| Sex (Male = 1) | −0.122 | 0.095 | 0.201 |
| ln(Estradiol) | 0.373 | 0.238 | 0.117 |
| ln(Estriol) | 0.377 | 0.482 | 0.435 |
| ln(Estrone) | −0.125 | 0.272 | 0.645 |
| ln(Progesterone) | 0.021 | 0.372 | 0.955 |
| ln(Testosterone) | −0.146 | 0.361 | 0.685 |
| ln(Pregnanediol) | 0.315 | 0.328 | 0.337 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kotłowska, A.; Fitzek, S.; Stettner, R.; Narkowicz, S.; Kiełbratowska, B.; Szefer, P. Targeted Analysis of Placental Steroid Hormones in Relation to Maternal Tobacco Smoke Exposure: Early Markers Relevant to DOHaD (Developmental Origins of Health and Disease). Int. J. Mol. Sci. 2025, 26, 10548. https://doi.org/10.3390/ijms262110548
Kotłowska A, Fitzek S, Stettner R, Narkowicz S, Kiełbratowska B, Szefer P. Targeted Analysis of Placental Steroid Hormones in Relation to Maternal Tobacco Smoke Exposure: Early Markers Relevant to DOHaD (Developmental Origins of Health and Disease). International Journal of Molecular Sciences. 2025; 26(21):10548. https://doi.org/10.3390/ijms262110548
Chicago/Turabian StyleKotłowska, Alicja, Sebastian Fitzek, Rafał Stettner, Sylwia Narkowicz, Bogumiła Kiełbratowska, and Piotr Szefer. 2025. "Targeted Analysis of Placental Steroid Hormones in Relation to Maternal Tobacco Smoke Exposure: Early Markers Relevant to DOHaD (Developmental Origins of Health and Disease)" International Journal of Molecular Sciences 26, no. 21: 10548. https://doi.org/10.3390/ijms262110548
APA StyleKotłowska, A., Fitzek, S., Stettner, R., Narkowicz, S., Kiełbratowska, B., & Szefer, P. (2025). Targeted Analysis of Placental Steroid Hormones in Relation to Maternal Tobacco Smoke Exposure: Early Markers Relevant to DOHaD (Developmental Origins of Health and Disease). International Journal of Molecular Sciences, 26(21), 10548. https://doi.org/10.3390/ijms262110548

